Gauss-Kronecker Curvature and equisingularity at infinity of definable families - Université d'Angers
Pré-Publication, Document De Travail Année : 2021

Gauss-Kronecker Curvature and equisingularity at infinity of definable families

Résumé

Assume given a polynomially bounded o-minimal structure expanding the real numbers. Let (Ts)s∈R be a globally definable family of C2 hypersurfaces of Rn. Upon defining the notion of generalized critical value for such a family, we show that the functions s → |K(s)| and s → K(s), respectively the total absolute Gauss-Kronecker and total Gauss-Kronecker curvature of Ts, are continuous in any neighbourhood of any value which is not generalized critical. In particular this provides a necessary criterion of equisingularity for the family of the levels of a real polynomial
Fichier principal
Vignette du fichier
DutertreGrandjeanCurvatureContinuity.pdf (336.82 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02308350 , version 1 (25-02-2022)

Identifiants

Citer

Nicolas Dutertre, Vincent Grandjean. Gauss-Kronecker Curvature and equisingularity at infinity of definable families. 2019. ⟨hal-02308350⟩
133 Consultations
93 Téléchargements

Altmetric

Partager

More