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GAUSS-KRONECKER CURVATURE AND EQUISINGULARITY AT INFINITY OF DEFINABLE
FAMILIES

NICOLAS DUTERTRE AND VINCENT GRANDJEAN

ABSTRACT. Assume given a polynomially bounded o-minimal structure expanding the real numbers. Let (Ts)s∈R

be a globally definable family of C2-hypersurfaces of Rn. Upon defining the notion of generalized critical value
for such a family, we show that the functions s → |K(s)| and s → K(s), respectively the total absolute Gauss-
Kronecker and total Gauss-Kronecker curvature of Ts, are continuous in any neighbourhood of any value which
is not generalized critical. In particular this provides a necessary criterion of equisingularity for the family of the
levels of a real polynomial.

1. INTRODUCTION

One of the main goal of equisingularity theory (of families of subsets, functions, mappings) is to find relations
between numerical data and regularity conditions. In the local complex analytic case, this subject has been
widely studied since the end of the 60’s and many interesting results, some of them now classical, have been
established. For example, Hironaka [Hir] proved that the multiplicity is constant along the strata of a Whitney
stratification of a complex analytic set. In [Tei1] Teissier proved that a µ∗-constant family of hypersurfaces
with isolated singularities is Whitney equisingular. The reverse implication was proved later by Briançon and
Speder [BrSp]. These results were extended to the case of ICIS by Gaffney [Gaf1]. Maybe the most important
result of local complex analytic equisingularity theory is Teissier’s polar equimultiplicity theorem [Tei2], which
states that Whitney regularity is equivalent to constancy of polar multiplicities. Teissier’s results were refined
and extended by Gaffney [Gaf2] to obtain sufficient conditions for equisingularity of a family of mappings.

When one considers global equisingularity problems, the first natural family to study is the family of fibres
of a polynomial mapping. Following [Tho], a polynomial function from Kn to K, for K = R or C, is a smooth
locally trivial fibration above the connected components of the complement of a (minimal) finite subset B(f)

of K, called the set of bifurcation values of f . In the complex plane case, Hà and Lê [HL] gave the following
numerical criterion to characterize bifurcation values: A value c does not lie in B(f) if and only if the Euler
characteristic of the fibres of f is constant in a neighborhood of c. This result was generalized by Parusiński
[Par] to the case of complex polynomials with isolated singularities at infinity, and then by Siersma and Tibăr
[SiTi1] to the case of complex polynomials with isolated W-singularities at infinity. In [Tib1] Tibăr studies
the more general situation of a 1-parameter family of complex hypersurfaces, and proves a global version of
the results of Teissier and Briançon and Speder mentioned above: Considering a family of complex affine
hypersurfaces Xτ = {x ∈ Cn : F (τ, x) = 0} given by a polynomial function F : C × Cn 7→ C, he defines
the notion of t-equisingularity at infinity and proves, under some additional conditions, that t-equisingularity
at infinity is controlled by the constancy of a finite sequence of numbers, called the generic polar intersection
multiplicities. As a consequence, if the family consists of non-singular affine hypersurfaces, then the constancy
of the generic polar intersection multiplicities at τ0 implies that the family is C∞ trivial at τ0.
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In the real semi-algebraic/sub-analytic setting (or more generally in the definable setting), it is hopeless to
expect that constancy of numerical data is equivalent to regularity conditions. First, because of lack of con-
nectivity, one cannot define invariants like the µ∗-sequence, polar multiplicities or generic polar intersection
multiplicities. However, using arguments from differential topology and integral geometry, one sees that these
invariants admit geometric characterizations that still make sense in the real case. For instance, the multiplicity
of a complex analytic germ is equal to its density [Dra] and the µ∗-sequence, the polar multiplicities and the
generic polar intersection multiplicities are related to curvature integrals (see [La, Loe, Dut1, SiTi2]). Unfortu-
nately, in the real situation, these geometric quantities do not belong to discrete sets and therefore, one cannot
expect results relating their constancy to regularity conditions. It is more reasonable to study properties like
continuity or Lipschitz continuity in the parameters of the family. The first result in this direction is due to
Comte [Com], who established a real version of Hironaka’s theorem, proving that the density is continuous
along the strata of a (w)-stratification of a sub-analytic set. This result was generalized and strengthened by
Valette [Val]: continuity of the density holds for (b)-regular stratifications and the density is Lipschitz con-
tinuous along the strata of (w)-stratifications. Later Comte and Merle [ComMe] established a real version of
Teissier’s theorem [Tei2]. Using tools from integral geometry and geometric measure theory, they associated
with each sub-analytic germ a sequence of numbers, called the local Lipschitz-Killing invariants, and showed
that they are continuous along the strata of a (w)-stratification of a sub-analytic set. Recently, Nguyen and
Valette [NgVa] extended this continuity result to (b)-stratifications and moreover proved that these invariants
are Lipschitz continuous along the strata of a (w)-stratification (see also the first author work [Dut2] for rela-
tions with the densities of polar images).

In the global real context, it is still true that the bifurcation set of a definable function from Rn to R is a finite
set of points (see [NeZa, LoZa, Tib2, d’Ac1]). In [TiZa] Tibăr and Zaharia provided necessary and sufficient
conditions for a real plane polynomial function to be locally trivial over the neighborhood of a regular value
(see [JoTi] for a generalization to a family of real curves). Unlike the complex case, their criterion is not only
numerical but involves topological conditions at infinity. Later in [CosPe], Coste and de la Puente proved an
equivalent version of Tibăr-Zaharia’s results in terms of polar curves. Due to the links between polar curves
and the Gauss-Kronecker curvature of the levels of a function provided by exchange formulas, it seems natural
to study the variations of the total curvature of the levels (i.e. the integral of the Gauss-Kronecker curvature on
the level) of a definable function, and to seek how bifurcation values interfere in these variations.

That is what the second author did in two papers. In [Gra1] he considers a globally definable function
f : Rn 7→ R of class at least C2, and proved that the following functions:

t 7→
∫
f−1(t)

κ , and t 7→
∫
f−1(t)

|κ|

where κ is the Gauss-Kronecker curvature, admit at most finitely many discontinuities. In [Gra2] he proved
that if the function t 7→

∫
f−1(t) |κ| is continuous at a regular value c which satisfies an extra condition, then c

is not a bifurcation value of f . He explained that for a real polynomial function with isolated singularities at
infinity this extra condition is always satisfied, so this result can be interpreted as a real version of Parusiński’s
result mentioned above.

The aim of the present paper is to provide a kind of reverse implication of the latter mentioned result.

We will work in the more general situation of a one parameter family of hypersurfaces. More precisely,
we consider a globally definable function over an a priori given polynomially bounded o-minimal structure
F : Rn × R 7→ R of class C2+m with non-negative integer m. Assuming that 0 is a regular value of F , the
0-level M = F−1(0) is thus a globally definable hypersurface in Rn+1 of class C2+m. We use the coordinates
(x, t) in Rn × R and we write tM : M 7→ R, (x, t) 7→ t for the projection on the t-axis.

For a value c in R, let Mc = t−1M (c) and Tc = πM (Mc) ⊂ Rn, where πM is the projection from M to
Rn. If c is a regular value, then the hypersurface Tc is oriented by ∂xF (x, c). Therefore, we consider the
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Gauss-Kronecker curvature κc of Tc and define two functions:

c 7→ K(c) =

∫
Tc

κc(p)dp , and c 7→ |K|(c) =

∫
Tc

|κc|(p)dp.

By a straightforward adaptation of the methods of [Gra1], we show that these two functions have finitely many
discontinuities (Theorem 6.1) and in Theorem 8.1, we give a criterion on the regular value c of tM for the
function t 7→ |K|(t) to be continuous at c. Namely, we prove

Theorem 8.1. Let c be a regular value taken by tM at which it is horizontally spherical at infinity. Then the
total absolute curvature function t 7→ |K|(t) is continuous at c. Consequently the total curvature function
t 7→ K(t) is continuous at c.

The notion of horizontally sphericalness at infinity is a regularity condition at infinity: A regular value c of
tM is horizontally spherical at infinity if for any sequence (pk)k∈N of M converging at infinity to (u, c), u is
orthogonal to the limit of the unitary gradients ∇tM|∇tM |(pk). A key ingredient of the proof of our main result,
Theorem 8.1 is Lemma 8.2 stating, informally, that under these hypotheses there no accumulation of curvature
at infinity nearby the level c.

We also prove that (t)-equisingularity at infinity implies horizontal sphericalness (Corollary 5.2). Therefore
Theorem 8.1 shows that (t)-equisingularity at infinity implies continuity of the function t 7→ |K|(t). This can
be considered as a first step towards a real version of Tibăr’s result [Tib1] mentioned above.

To be complete, we show here more than Theorem 8.1. Its conclusion also holds true in any connected
component of the pencil of levels over a small interval of regular values ]c − ε, c + ε[ (see Theorem 8.3). In
other words the connected components of the pencil of levels cannot compensate altogether the a priori possible
discontinuities of some.

The paper is organized as follows. Section 2 contains material on compactifications, o-minimal structures
and Thom’s (af ) condition. In Section 3, we recall some facts about conormal geometry so that we can
introduce the notion of t-equisingularity. Sections 4, 5 and 7 contain definitions and new results on regularity at
infinity of globally definable C2+m-families of hypersurfaces. In Section 6, we generalize the results of [Gra1]
to our situation. Section 8 contains the proof of the main result. Section 9 deals with the particular case of the
levels of a function.

Acknowledgments. The authors are very grateful to Si Tiep Dinh for useful, fruitful and inspiring conversa-
tions. The second author would like to thank the I2M and LAREMA for their working conditions while visiting
the first author.

2. MISCELLANEOUS MATERIAL

Let Rn be the Euclidean space of positive dimension n.
Let 〈−,−〉 be the associated scalar product. For any point x of Rn, let |x| be the norm

√
〈x,x〉 of x.

Let Sq−1R be the Euclidean sphere of Rq of center the origin and positive radius R.
Let Bq

R be the closed Euclidean ball of Rq of center the origin and positive radius R. When q is understood
we will only write BR.

Let clos(−) denote the operation ”taking the closure of” in Rn. Each Euclidean space Rn embeds semi-
algebraically in the closed unit-ball Bn

1 , as its interior via the mapping x 7→ x√
1+|x|2

. We may then speak of

Bn
1 as the spherical compactification of Rn (see the next section).

Let M be an o-minimal structure expanding the real field R. Assume it is polynomially bounded and let
FM be the field of its exponents ([vdDM, vdD]). Any subset of any Rp definable inM will be called below
definable.

Usually globally definable subsets ofM are defined as definable subsets of any closed unit Euclidean ball.
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Since each Rn embeds semi-algebraically in the closed unit-ball Bn
1 , a subset X of Rn is globally definable

if it is definable in the spherical compactification of Rn.
Let X be a subset of Rn. A mapping f : X 7→ Rp is globally definable if its graph is globally definable in

Rn+p.
We would like to remind the following fact (see [d’Ac1]): Let γ : [1,+∞[ 7→ Rn be a C1 globally definable

arc such that γ(t) 7→ ∞ as t goes to +∞. Then there exists a unit vector u of Sn−1 such that

lim
∞

γ

|γ|
= u = lim

∞

γ′

|γ′|
.

Let f : (R≥1,+∞)→ R be the germ at∞ of a continuous globally definable function. We write f ∼ te for
an exponent e in FM ∪ {−∞}, with the convention that t−∞ = 0 for large t, to mean

f ∼ te ⇐⇒ lim
t→+∞

f(t)

te
∈ R∗ .

Note that there always exists such an exponent e.

Let G(p, n) be the Grassmann manifold of p-vector subspaces of Rn. We denote G∨(p, n) the space of
p-vector subspaces of the space L(Rn,R) of linear forms over Rn, and we will call it sometimes the dual of
G(n− p, n).

We recall Thom’s condition (or relative Whitney’s condition (a)).
Let X,Y be two connected C1 submanifolds of a definable compactification of Rn, such that Y is contained

in clos(X) \X . Let g : (X t Y ) 7→ R be a C1 mapping, for X t Y the disjoint union of X and Y . Let y be a
point of Y .

The function g satisfies Thom (ag)-condition at y if the following two conditions hold:
(i) For any sequence (xk)k of points of X converging to y such that the sequence (Txk

X)k converges to T in
the appropriate Grassmann bundle, then TyY is contained in T ;
(ii) For any sequence (xk)k of points of X converging to y, such that the sequence (Txk

X)k converges to T
which contains TyY and the sequence (ker dxk

g)k converges to K in the appropriate Grassmann bundle, then
ker dyg is contained in K.

In practice we want to stratify g with Thom’s condition asking that the strata Y is contained in some specified
level of g.

3. COMPACTIFICATION AND CONORMAL GEOMETRY AND t-EQUISINGULARITY AT INFINITY

Let 0 be the origin of Rn.
As already seen in the previous section, we can compactify Rn as the closed unit ball Bn

1 .

An alternative presentation to the spherical compactification is the spherical blowing-up bl∞ of Rn at infin-
ity, that is the mapping given by

bl∞ : Sn−1×]0,+∞[ 7→ Rn \ {0}
(u, r) 7→ u

r

It is a Nash diffeomorphism and a re-parametrization of Rn \ {0} embedded in Bn
1 . It is more convenient to

look at it this way since it is a good real avatar of the projective compactification PRn (which in our globally
definable context is not as relevant as in the algebraic case).
We denote by Sn−1∞ := Sn−1 × 0 the sphere at infinity. Let us denote and identify

Rn := Rn t Sn−1∞ = (Sn−1 × [0,+∞[) t 0,

the spherical compactification of Rn at infinity, with boundary ∂Rn := Sn−1∞ , the sphere at infinity.
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Let Z be the closure of the subset Z of Rn taken into Rn. The tangent link of Z at∞ is defined as

Z∞ := Z ∩ Sn−1∞ .

The tangent cone of Z at infinity C∞(Z) is defined as the (non-negative) cone over Z∞. Whence Z∞ is not
empty (equivalently Z is not bounded) we also observe that

Z∞ := clos

{
u ∈ Sn−1 : ∃Z 3 (xk)k →∞ such that

xk
|xk|
→ u

}
.

For any definable subset Z of Rn, it is globally definable if, by definition, Z is definable in Rn. Thus
whenever a subset Z of Rn is globally definable, its tangent link at infinity Z∞ is definable and of dimension
at most dimZ − 1.

Although heavy to define it is convenient to use the formalism of conormal geometry. We are especially
interested in conormal geometry at infinity.

Now let Z = {(x, t) ∈ Rn × R : G(x, t) = 0}, where G : Rn × R 7→ R is a globally definable function of
class at least C2, and let Z be its closure in Rn × R.

We assume that 0 is a regular value of G and we consider Z as a definable family {Zt}t∈R of hypersurfaces
in Rn. Let g : Z → R be a definable function which we assume to be C1. For any regular point (x, t) of the
function g, let T(x,t)g be the subspace of T(x,t)Z tangent at (x, t) to the level of g through (x, t). Let us define
the following subset of Rn × R×G∨(1, n+ 1):

X ∨
g := clos{(x, t, ξ) ∈ Z \ crit(g)×G∨(1, n+ 1) : ξ(T(x,t)g) = 0},

where G∨(1, n+ 1) is the dual of G(1, n+ 1).

Definition 3.1. The relative conormal space of g is the space X ∨
g .

Let πn+1 : Rn × R×G∨(1, n+ 1) 7→ Rn × R be the projection given as πn+1(x, t, ξ) = (x, t).

Definition 3.2. The relative conormal space of g at infinity is the space X ∞
g defined as

X ∞
g := π−1n+1(Z

∞) ∩X ∨
g ,

where Z∞ = Z ∩ (Sn−1∞ × R).
For any p ∈ Z∞, let (X ∞

g )p be the fibre of X ∨
g above p, that is (X ∞

g )p = π−1n+1(p) ∩X ∨
g .

We introduce now the notion of t-equisingularity [Tib1] adapted to the context of Section 4.

Let rZ : Z 7→ R be defined as (x, t) 7→ |x|. It is continuous globally definable and C1 outside 0× R ∩ Z.
The space of characteristic covectors C of Z at infinity is the subset of Rn ×Rn ×G∨(1, n+ 1) defined as

C (Z) := X ∞
rZ
.

It is closed and definable.
Let τ : Rn × R be defined as (x, t) 7→ t.
The following notion is due to Tibăr [Tib1]:

Definition 3.3. Let p in Z∞.
(i) The family {Zt}t∈R is t-equisingular at p if

C (Z)p ∩ (X ∞
τ )p = ∅.

(ii) The family {Zt}t∈R is t-equisingular at infinity at c if it is t-equisingular at p for all p in Z∞ ∩ τ−1(c).

The definition above is slightly different from those given in [SiTi1, Tib1, DiRuTi], since there it is given via
the projective compactification of Rn. Anyhow they are equivalent.

Any co-vector in (X ∞
τ )p has kernel the horizontal hyperplane Rn × 0. We deduce that any limit of tangent

spaces T of rZ at p does not lie in Rn × 0 whenever {Zt}t∈R is t-equisingular at p.
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4. REGULARITIES AT INFINITY FOR DEFINABLE FAMILIES OF HYPERSURFACES

We present here two regularity conditions at infinity for the function restriction of a coordinate projection
along a globally definable one parameter family of hypersurfaces. In the next section, we will compare alto-
gether these regularity conditions with t-equisingularity, introduced in the previous section.

Let F : Rnx × Rt 7→ R be a C2+m globally definable function, for some non-negative integer m.
Assuming that Rn × R is equipped with the canonical Euclidean structure, let ∇F be the gradient field of

F . Without further hypotheses, the real number 0 may be a critical value of F , and ∇F may be vanishing on
the zero level of F .

Working Hypothesis: 0 is a regular value of F .

Let M be the zero locus F−1(0) of the function F , which is a closed globally definable subset of Rn+1 and
a C2+m hypersurface. Let M be its closure in Rn × R.

We define two mappings (π, t) : Rn×R 7→ Rn×R obtained respectively as the restrictions of the projection
over Rn and over R, and both are semi-algebraic.

Let tM be t|M the restriction of t to M and let πM be the restriction of π to M , both are C2+m and globally
definable mappings. Let us write Mc := t−1M (c) and Tc := πM (Mc) subset of Rn.

Definition 4.1. Let c be a value taken by tM . The function tM is said locally Ck trivial at c if there exists a
positive real number ε such that t−1M (]c− ε, c+ ε[) is a trivial Ck-bundle with fibre Mc.

Mimicking what was done for level hypersurfaces of functions [LoZa, TiZa, d’Ac1, d’AcGr1, d’AcGr2,
Gra2], sufficient conditions about the gradient of tM guarantee trivialization (see below). Since M is globally
definable and each of its connected component is orientable, let νM be a C1+m globally definable unitary field
normal to M . Since 0 is not a critical value of F , we choose

νM :=
∇F
|∇F |

= νxM + νtM∂t

where νxM is the component of νM in Rn × 0, and writing∇F = ∂xF + ∂tF∂t, where ∂xF lies in Rn × 0.
Let p = (x, t) be a point of M . We have

TpM = {(u, w) ∈ Rn × R : 〈∂xF,u〉+ ∂tF · w = 0}.

It is easy to prove the following relation:

∇tM = − ∂tF

|∇F |2
∂xF +

|∂xF |2

|∇F |2
∂t = −νtMνxM + |νxM |2∂t

and thus

|∇tM | =
|∂xF |
|∇F |

= |νxM |.

The critical locus of tM is

crit(tM ) = {p ∈M : ∂xF (p) = 0}.

Since M is a C2+m orientable hypersurface, the function tM is C2+m as well. Since it is globally definable,
the set of its critical values K0(tM ) := tM (crit(tM )) is finite.

Let ν tM : M \ crit(tM ) 7→ Sn be the unitary gradient of∇tM ,

ν tM :=
∇tM
|∇tM |

.

The Local Conical Structure Theorem ensures the existence of a positive number SM such that for any
S > SM the hypersurface M is transverse with SnS , the Euclidean sphere of radius S. As a consequence of this
fact we also have:
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Lemma 4.2. For any A > maxc∈K0(tM )|c|, there exists RA such that for any R > RA the globally definable
C2+m hypersurface M ∩ (Rn×]−A,A[) is transverse to the cylinder Sn−1R × R.

Proof. Let A� 1 be given. Let us define the following subset

Σ := {(x, t) ∈M : x ∧∇F (x, t) = 0}.

Note that Σ \ 0× R is contained in M ∩ {∂tF = 0} and that Σ is a closed globally definable subset of M .

Let us assume that the statement of the lemma is not true. Thus there exists a C1 globally definable path
γ : [1,+∞[ 7→ Σ ∩ Rn×]−A,A[ such that γ(s)→ (u, c) in M∞ as s goes to +∞, with |c| < A.
We can parameterize γ in such a way that |γ(s)| = s, which gives the following

γ(s) = (su, 0) + sev(s)

for a C1 and globally definable mapping s 7→ sev(s) ∈ Rn ×R such that lim∞ v 6= (0, 0) and e < 1. We also
have that s 7→ νM (s) = ∇F

|∇F |(γ(s)) goes to ν in Sn as s goes to∞. Note that γ′(s)
|γ′(s)| goes to (u, 0) as s goes to

+∞. Since

γ(s) ∧ νM (s) = 0 and 〈γ′(s), νM (s)〉 = 0 ,

we deduce that

u ∧ ν = 0 and 〈u, ν〉 = 0,

which is absurd. �

We can introduce now the Malgrange regularity condition at infinity.

Definition 4.3. Let c ∈ R be a value.

(i) The function tM satisfies the Malgrange condition at c if there exist positive constants R, ε,Ac such that

(4.1) |x| > R, |t− c| < ε =⇒ |x| · |∇tM (x, t)| ≥ Ac

which is equivalent to

(4.2) |x| > R, |t− c| < ε =⇒ |x| · |∂xF | ≥ Ac|∇F |.

(ii) A value c which is not satisfying the Malgrange condition is called an asymptotic critical value (ACV for
short). Let K∞(tM ) be the set of ACV of tM .

Similarly to the case of real or complex polynomial families [Par, Tib1, Tib2, TiZa] we find

Theorem 4.4 (see also [LoZa, Kur, d’Ac1, d’AcGr1]). (i) There exists a finite subset B(tM ) of R such that the
function tM is a locally C1+m trivial at any value c not lying in B(tM ).

(ii) B(tM ) ⊂ K0(tM ) ∪K∞(tM ).

(iii) K∞(tM ) is finite.

(iv) If c is a regular value taken by tM and does not lie in K∞(tM ), the local trivialization can be realized by
a vector field colinear to ν tM .

Proof. We are going to sketch the proofs of (iii) following [d’Ac1] and (iv) following [d’Ac1, d’Ac2, d’AcGr1].
Both (i) and (ii) can be deduced from these two points.

For simplicity we write f for tM .

SinceM is polynomially bounded, there exists a globally definable function ρ : [1,+∞[ 7→ R+ such that
(see [d’Ac1, Lemma 3.3]):

(1) limR→∞ R−1ρ(R) = +∞ and (2) K∞(f) = Kρ
∞(f)
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where

Kρ
∞(f) := {c ∈ R : ∃(xk, tk) ∈M , xk →∞ and tk → c such that ρ(|xk|) · |∇f(xk, tk)| → 0}.

In particular for R large enough there exists an exponent α of (FM)>1 such that ρ(R) ≥ Rα.

Following the steps of [d’Ac1, Theorem 3.4], we show that Kρ
∞(f) is finite.

Assume that there exists c′ > c such that for each c ≤ t ≤ c′ the level {f = t} is neither empty nor is a
critical level. Let us consider the following subset

∆ := {(s, w) ∈ R2 : ∀δ > 0 , ∃ε > 0, ∃R > 0 : |x| > R, |tM (x)− w| < ε =⇒ |x| · |∇tM (x)| − s| < δ}.

This subset is globally definable. Let θ : [c, c′] 7→ [0,+∞[ be the function defined as follows

θ(t) := inf{∆ ∩ {w = t}}.

It is globally definable. We wish to show that it vanishes only finitely many times on [c, c′]. Assume that θ is
identically 0 over [c, c′] (up to work with a smaller c′). Under these hypotheses the globally definable subset

Σ := {ρ(|x|) · |∇f(x, t)| < f(x, t)− c}

is not empty outside of a compact subset of M ∩ t−1M [c−ε, c+ε] (see [d’Ac1, p. 40]). By definition of Σ, there
exists a C1 globally definable arc going to infinity γ : [1,+∞[7→ Σ such that

lim
∞
f ◦ γ = c.

Let h = f ◦ γ, and let us parameterize γ such that |x(γ(R))| = R, so that |γ′| goes to 1 at infinity. We find

0 < −h′ ≤ h

|ρ|
|γ′| < 2

h

|ρ|
.

Let R0 be large enough and let u(R) = 2h(R0)− h(R) once R ≥ R0, and let a > 1 be such that

lim
∞
R−aρ(R) = +∞.

We deduce for R ≥ R0 (up to taking a larger R0)

0 < u′(R) < 2
u(R)

|ρ(R)|
<

u

Ra
.

Applying the Gronwall Lemma provides for R ≥ R0

u(R) ≤ h(R0) · λ(R0) with λ(R0) := exp

(
1

(a− 1)Ra−10

)
.

We know that lim∞ u = 2h(R0) but we can choose R0 a priori such that λ(R0) < 2, concluding that the
function θ cannot vanish identically over [c, c′].

Point (iv) is of importance for the rest of the paper so we sketch its proof as a variation of the proof of
[d’AcGr1, Theorem 3.5]. Let

χ :=
1

|∇tM |2
∇tM .

Any trajectory γ of χ is parameterized by the levels of tM : starting at a point of Mc we find

tM (γ(s)) = c+ s .

Since the Malgrange condition is not affected by a change of origin of Rn, we can assume that for every small
enough positive real number ε there exists a constant Aε so that

(4.3) |x| · |∇tM (p)| ≥ Aε for all p = (x, t) ∈ t−1M [c− ε, c+ ε] .

For |s| ≤ ε we deduce

|γ(s)| ≤ |γ(0)|+
∫ |s|
0

1

|∇tM (γ(z))|
dz .
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Combining this latter inequality with Gronwall Lemma provides

|γ(s)| ≤ |γ(0| · exp

(
|s|
Aε

)
.

Since χ is C1+m in M \ crit(tM ), the function tM is C1+m-trivial at c by the flow of χ with initial conditions
along Mc. �

Definition 4.5. The set of generalized critical values is defined as

K(tM ) := K0(tM ) ∪K∞(tM ).

The Malgrange condition at a regular value c encodes the geometry at infinity of the pencil of nearby fibres.
Indeed we have the following

Lemma 4.6. Let c be a value taken by tM which is not a generalized critical value. Let (pk)k be a sequence
of points of M converging in M to (v, c) in Sn−1∞ × {c} ∩M while tM (pk) goes to c. Assume that ν tM (pk)

converges in M to ν in Sn. Then ν is orthogonal to v.

Proof. These limits can be achieved along a C1 globally definable path ]0, 1[7→ M, s 7→ p(s) = (x(s), t(s))

as s goes to 0 with lim0 p = (v, c) ∈ M∞. We choose the parameterization of p so that |x(s)| = s−1. Let
t(s) := tM (p(s)) and so on. Let us write

t(s) = c+Asa + o(sa)

x(s) = s−1v + o(s−1)

ν tM (s) = ν + sdν1 + o(sd)

νxM (s) = seνx + o(se)

νtM (s) = sfνt + o(sf )

where a, d, e, f ∈ (FM)≥0 ∪ {+∞} with a, d positive exponents, min(e, f) = 0, and A ∈ R, ν1 ∈ Rn × R,
νx ∈ Rn × 0, νt ∈ R are non-zero vectors whence the corresponding exponent is not∞ and

ν = −νt ν
x

|νx|
+ |νx|∂t.

We deduce that there exists a continuous definable function ϕ : (R≥0, 0) 7→ R with ϕ(0) = Aa, such that

t′(s) = sa−1ϕ(s) and x′(s) = −s−2v + o(s−2).

Using the Malgrange condition provides

1 ≥ |νxM (s)| = |∇tM (s)| ≥ Ac s

for some positive constant Ac. Thus e ≤ 1. Since

0 = 〈νxM + νtM∂t,x
′ + t′∂t〉 = 〈νxM ,x′〉+ νtMt′

we deduce that

νtM t′ = −〈νxM ,x′〉 = se−2[−〈νx,v〉+ o(1)].

From this last equation we deduce that there exists an exponent e′ ≥ e such that

sa−1+f ∼ |νtM t′| = |〈νxM ,x′〉| ∼ se
′−2,

so that 〈νx,v〉 = 0. �

To conclude this section we introduce a final regularity condition.
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Definition 4.7. Let c be a regular value of tM taken by tM .
The function tM is horizontally spherical at c at infinity if for any sequence (pk)k of M converging to

(u, c) ∈M∞, then

(4.4)
〈

lim
∞

νxM
|νxM |

, u

〉
= 0,

where lim∞
νxM
|νxM |

means the closed set of all the possible accumulation values, as k goes to infinity, of the

unitary vector field of νxM
|νxM |

along the sequence (pk)k.

Note that the following holds true:

Lemma 4.8. The condition of Equation 4.4 is equivalent to

〈lim
∞
νtM ,u〉 = 0

along any sequence (pk)k of M converging to a point (u, c) in M∞.

Indeed, similarly to what has been done for globally definable functions, we have the following:

Proposition 4.9. Let c be a regular value taken by tM . The function tM is horizontally spherical at c at infinity
if and only if there exists an exponent ec in FM∩] − ∞, 1[ and a positive constant Ec, such that there exist
positive real numbers ε and R such that

(4.5) (x, t) ∈ t−1M ([c− ε, c+ ε]) \BR =⇒ |x| · |∇tM | ≥ Ec|tM (x, t)− c|ec .

Proof. In this globally definable and polynomially bounded context, we can show (as in [d’AcGr2]) that a
Bochnak-Łojasiewicz inequality type at the value c not in K0(tM ) at infinity holds: there exists a positive
constant Lc such that there exist positive real numbers ε and R such that

(4.6) (x, t) ∈ t−1M ([c− ε, c+ ε]) \BR =⇒ |x| · |∇tM | ≥ Lc|tM (x, t)− c|.

1) Assume tM is horizontally spherical at c at infinity.

Let p :]0, 1[7→ M be any continuous globally definable path such that it goes to (u, c) as s goes to 0. Writing
p = (x, t) and parameterizing as |x(s)| = s−1, we have

p(s) = (s−1u + o(s−1), c+Asa + o(sa))

for A 6= 0 and a ∈ (FM)>0 ∪ {+∞}. The numbers A and a depend on the choice of the path s 7→ p(s). We
obtain that along p there exists a′ ≤ a such that

|x| · |∇tM | ∼ sa
′
.

Note that

a′ < a ⇐⇒ lim
0

〈
νtM ,

p

|p|

〉
= 0.

In particular the latter equivalence shows that

tM (x, t)→ c as x→ +∞ =⇒ |tM (x, t))− c|
|x| · |∇tM (x, t)|

→ 0 as x→ +∞ .

Let ε0 be a small enough positive number such that [c− ε0, c+ ε0] contains only a single asymptotic critical
value: c. Let R0 be a positive large enough number. Let Vε0,R0 be the globally definable subset defined as

Vε0,R0 := {(x, t) ∈M : |t− c| ≤ ε0 , |x| ≥ R0}.

For R ≥ R0 let µ0 : [R0,+∞[→ R be defined as

µ0(R) := min{|x| · |∇tM (x, t)| for (x, t) ∈ Vε0,R0 and |x| = R}.
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The function µ0 is globally definable and tends to 0 as R goes to infinity since c is an ACV. If R0 is large
enough, we can write

µ0(R) = A0R
−a0(1 + o(1)) with A0 > 0, a0 ∈ (FM)>0.

Let V0 be the closure of Vε0,R0 in M , thus V0 is compact in Rn×R. Let W0 be the part at infinity of V0, that
is

W0 := V0 ∩ (Sn−1∞ × R).

The function

ψ0 : V0 \W0 3 (x, t)→ |tM (x, t))− c|
|x| · |∇tM (x, t)|

extends continuously and definably over V0 taking the value 0 along W0, by hypothesis of horizontal spherical-
ness. In the same way, the function

ρ0 : V0 \W0 3 (x, t)→ |x|−1

also extends continuously and definably over V0 taking the value 0 along W0. Furthermore we see that

ρ0 = 0 =⇒ ψ0 = 0 .

Thus by a Łojasiewicz argument, there exist a positive exponent b and a positive constant B such that in V0 the
following inequality holds true:

ψ0 ≤ Bρb0 ⇐⇒ ψ0 ≤ B|x|−b.

Let µ1 be the function defined as follows:

µ1 : V0 \W0 3 (x, t)→ µ0(|x|).

The function µ1 is globally definable, continuous and extends continuously to V0 taking the value 0 along W0.
Therefore we deduce that in V0 \W0 we have

|tM (x, t)− c| ≤ C0 · µ
b
a0
1 · |x| · |∇tM (x, t)| ≤ C0 · (|x| · |∇tM (x, t)|)

b+a0
a0

where C0 is a positive constant. This latter inequality provides the announced result.

2) Assume the inequality holds.

Let p :]0, 1[7→ M be a globally definable continuous path such that lim0 p = (u, c). Writing p = (x, t) and
parameterizing as |x(s)| = s−1, we have that

t(s) = c+Asa + o(sa)

p(s) = (s−1u + o(s−1), t(s)) ∈ Rn × R

νxM (s) = sbν + o(sb) ∈ Rn × 0

νtM (s) = sd(λv) + o(sd) ∈ Rn × 0

with A 6= 0 and a ∈ (FM)>0 ∪ {∞} while b, d ∈ (FM)≥0, min(b, d) = 0, with λ 6= 0 and ν ∈ Rn \ 0.
Since the path p lies on M , we know that

〈νM ,p′〉 = 〈νxM ,x′〉+ νtMt′ = 0

from which we deduce

(4.7) b− 2 ≤ d+ a− 1 .

We want to show that ν is orthogonal to u, in other words b < d+ a+ 1.
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We have the following estimates

|∇tM |(s) = |νxM |(s) ∼ sb

|x| · |∇tM |(s) ∼ sb−1.

Using Inequality (4.5), we get

(4.8) b− 1 ≤ ec · a < a and b < a+ 1.

Since d is non negative, this yields the orthogonality of u and ν. �

5. COMPARING REGULARITY CONDITIONS AND TRIVIALITY

We are working within the context of Section 4.
We have introduced previously three regularity conditions at infinity for the function tM . We are going to

compare them here.
The hypersurface M ⊂ Rn × R is the definable family of the hypersurfaces {Tt}t∈R of Rn and M is its

closure in Rn×R. LetM∞ be the intersection ofM with the boundary at infinity Sn−1∞ ×R. By Lemma 4.2, the
globally definable function rM : Rn×R 7→ R, defined as (x, t) 7→ |x|, is transverse to M ∩Rn×R×]−A,A[

for some positive given A whenever x is large enough.
In Section 3 was defined

C (M) := X ∞
rM

the space of characteristic covectors ofM at infinity, which is a closed definable subset of Sn−1∞ ×R×G∨(1, n+

1).

From Definition 3.3, we also know that: (i) the family {Tt}t∈R is t-equisingular at p ∈M∞ if

(5.1) C (M)p ∩ (X ∞
τ )p = ∅,

where τ : Rn × R 7→ R is the projection on the last factor and, (ii) the family {Tt}t∈R is t-equisingular at
infinity at c if it is t-equisingular at p ∈M∞ for all p ∈M∞ ∩ τ−1(c).

Let p = (u, c) ∈ M∞. The family {Tt}t∈R is t-equisingular at p if for any sequence pk = (uk, tk)

converging to p such that the sequence of T ′k, the tangent space to the level of rM through pk, converges to
T ′, then the latter is not contained in Rn × 0. This definition is more geometric than the Malgrange condition,
which is of interest since we have the following:

Proposition 5.1 (see [DiRuTi] for functions). If the family {Tt}t∈R is t-equisingular at infinity at c then the
function tM satisfies the Malgrange condition at c.

Proof. Suppose that the Malgrange condition is not satisfied at c. There is a globally definable path γ :

[1,+∞[ 7→M , γ = (γx, γt), with lim∞ γ = p = (u, c) ∈M∞ and such that

(|x| · |∇tM |) ◦ γ → 0 as r → +∞ .

Equivalently (
|x| ·

∣∣∣∣∂xF∇F
∣∣∣∣) ◦ γ → 0 .

The following vector V in Rn × R:

V =
∂xF

|∇F |

(
x

0

)
+

1

|∇F |

(
∂xF

∂tF

)
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is a normal vector to the level of rM through the point (x, t). We see that V ◦ γ →

(
0

±1

)
, since

(|x| ·
∣∣∣∣∂xF∇F

∣∣∣∣) ◦ γ → 0 ,

∣∣∣∣∂xF∇F
∣∣∣∣ ◦ γ → 0 and

∂tF

|∇F |
→ ±1.

This contradicts the observation made just above. �

Since we just have seen that t-equisingularity at infinity implies the Malgrange condition, we need to check
if there is a relation between these and sphericalness at infinity. To this end an obvious corollary of Proposition
4.9 is the following:

Corollary 5.2. Let c not be a generalized critical value. Then tM is horizontally spherical at c at infinity. In
other words t-equisingularity at infinity at c implies horizontal sphericalness at c at infinity.

Proof. It is just reformulating the fact that Malgrange at c is equivalent to have ec ≤ 0 in Equation (4.5). �

We can now state the last result of this section about local triviality:

Theorem 5.3. Let c be a value at which tM is horizontally spherical at infinity. Then tM is C1+m is locally
trivial at c.

Proof. Once we have moved the origin of Rn × 0 so that its value is not c, we just have to integrate the field
χ = 1

|∇tM |ν tM as before. Inequality (4.5) now holds in t−1M [c− ε, c + ε] \BR0 for a large positive R0. As in
[d’AcGr1, d’AcGr2] combining it with Gronwall Lemma will show that any trajectory of χ parameterized over
[0, ε] with initial point in Mc ∩BR stays in BKR for some constant K depending only on c and ε. �

As a final remark, there are polynomial examples in [d’AcGr1] with regular values which are ACV, but with
exponent ec < 1.

6. CURVATURE AND ABSOLUTE CURVATURE OF FAMILIES OF GLOBALLY DEFINABLE HYPERSURFACES

Some of the material presented here can also be found in [Gra1] (or adapted from it).

Let H be a globally definable and oriented hypersurface of Rn of class C1+m with m ≥ 1.
Assume that now H is connected and let νH : H 7→ Sn−1 be an orientation. The unitary normal mapping

νH is globally definable and Cm.
Assume that the maximal rank of dxνH when x ranges H is n− 1.
There exist finitely many definable disjoint connected open subsets (Ui)i∈I of Sn−1 such that

clos(νH(H)) = ∪i∈Iclos(Ui)

and for each i ∈ I , the mapping νH induces a globally definable finite covering

νH : Hi 7→ Ui

where Hi := ν−1H (Ui) and such that

dim νH(H \ (∪i∈IHi)) ≤ n− 2.

Denoting κH the determinant of dνH , that is the Gauss-Kronecker curvature of M at the considered point, the
total Gauss curvature K(H) of H is defined (if it exists, and it does as we see below) as

K(H) :=

∫
H
κH(x)dx.

An application of the formula of change of variables gives∫
H
κH(x)dx =

∑
i∈I

(−1)divoln−1(Ui)
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for (−1)di the degree of the covering mapping νH |Hi : Hi 7→ Ui for each i.

We introduce another average of curvature, namely the total absolute curvature |K|(H) of H defined as

|K|(H) :=

∫
H
|κH(x)|dx

Another application of the formula of change of variables yields,∫
H
|κH(x)|dx =

∑
i∈I

ei · voln−1(Ui)

where ei is the number of sheets of the covering νH |Hi : Hi 7→ Ui.
The hypothesis on the rank of dνH guarantees that ei is positive. Otherwise both curvatures are 0.

Returning to the notations and hypotheses of Section 4, the hypersurface M can also be seen as a globally
definable family of hypersurfaces FtM := (Tc)c∈Im(tM ) of Rn. We can define the following mapping:

N : M \ crit(tM ) 7→ Sn−1

(x, t) 7→ νxM
|νxM |

.

The mapping N is called the Gauss mapping of the family FtM . It is globally definable and C1+m. The
restriction of N |Tc is denoted Nc, so that the family of mappings (Nc)c∈Im(tM )\K0(tM ) is globally definable,
where Im(tM ) is the image of the function tM . Let κc be the Gauss-Kronecker curvature of Tc. Thus we can
define two functions

K : Im(tM ) \K0(tM ) → R
c 7→ K(c) :=

∫
Tc
κc(p)dp,

|K| : Im(tM ) \K0(tM ) → R
c 7→ |K|(c) :=

∫
Tc
|κc|(p)dp.

The introductory material of this section guarantees that both functions are well defined. The paper [Gra1] has
dealt with the case where M is a graph. We can state now the result of this section:

Theorem 6.1. (i) There are finitely many values in Im(tM ) \K0(tM ) at which the function t 7→ K(t) is not
continuous

(ii) There are finitely many values in Im(tM ) \K0(tM ) at which the function t 7→ |K|(t) is not continuous

(iii) If |K| is continuous at c, so is K.

Sketch of Proof. It is a very similar proof to that of [Gra1, Sections 4,5,6].

Let us consider the following globally definable and C1+m mapping

Ψ : M 7→ Sn−1 × R
p 7→ (N(p), tM (p)).

It is a local diffeomorphism at any point of M \ crit(Ψ). Let ∆ := Ψ(crit(Ψ)) which is definable, closed and
of dimension lower than or equal to n− 1. Let U := (Sn−1 × R) \∆.
There exists an integer number pM such that for any (u, t) ∈ U the fibre Ψ−1(u, t) has at most pM points. For
any point (u, t) in U the degree δ(u, t) of Ψ at (u, t) may range from −pM to pM . In particular the function
(u, t) 7→ δ(u, t) is definable and

δ(u, t) = deguNt.

We define the following subsets

Uk := {(u, t) ∈ U : #Ψ−1(u, t) = k}

Ut := {u ∈ Sn−1 : (u, t) ∈ U} = Nt(Tt \ crit(Nt))

Ut,k := {u ∈ Sn−1 : (u, t) ∈ Uk}.
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The subsets Ut and Ut,k are open, and we obtain finitely many globally definable families (Ut)t∈Im(tM )\K0(tM )

and (Ut,k)t∈Im(tM )\K0(tM ).
Note that Ut = ∪kUt,k and since the function u 7→ deguNt is definable, it is constant on each connected

component of Ut.
Let c be a regular value of tM . Since Hausdorff limits of closed definable subsets of a given compact space

exist, we can set

V +
c := limt→c,t>c clos(Ut) and V +

c,k := limt→c,t>c clos(Ut,k)

V −c := limt→c,t<c clos(Ut) and V −c,k := limt→c,t<c clos(Ut,k).

Let V1, . . . , Vdc be the connected components of Uc. For each i = 1, . . . , s, let ki be the integer number such
that Vi ⊂ Uc,ki . For each i = 1, . . . , dc there exists l+i ≥ ki and l−i ≥ ki such that

Vi ⊂ V −
c,l−i

and Vi ⊂ V +

c,l+i
.

In particular we deduce that for each i

voln−1(Vi) ≤ min{ voln−1(V
−
c,l−i

) , voln−1(V
+

c,l+i
) } .

Let δi be the degree of Nc at any point of Vi. We find

K(c) =

dc∑
i=1

δi · voln−1(Vi) and |K|(s) =

dc∑
i=1

ki · voln−1(Vi).

From the previous arguments we get that each following limit exists

K+
c := lim

t→c,t>c
K(t) , K−c := lim

t→c,t<c
K(t) , |K|+c := lim

t→c,t>c
|K|(t) , |K|−c := lim

t→c,t<c
|K|(t) ,

and we obviously get

|K|(c) ≤ min(|K|−c , |K|+c ).

The rest of the proof follows from the following arguments: Assume that eachUt has dt connected Vt,1, . . . , Vt,dt .
Each such connected component Vt,i lies in Ut,ki(t) with ki(t) ≤ kj(t) if and only if i ≤ j. Moreover the degree
of Nt at any point of Vt,i is constant and equal to δi(t). These comes from properties of Ψ and U . From here we
deduce that there exists a finite subset Z of R such that for any J connected component of (R \Z) ∩ Im(tM ),
the numbers dt, ki(t), δi(t) are independent of t in J . Moreover each function t 7→ voln−1(Vt,i) is continuous
over J . �

7. MORE ON REGULARITY AT INFINITY

Let N : M \ crit(tM ) 7→ Sn−1 be the Gauss mapping of the family of the regular levels of tM . Similarly to
the conormal geometry at infinity (in Rn×R) of the function tM , we are interested in the limits of N at infinity
(in Rn).

Let Γ(N), contained in M × Sn−1, be the graph of N, let Γ(N) be its closure in Rn × R × Sn−1 and
N : Γ(N) 7→ Sn−1 be the projection onto Sn−1, so that we can think of it as the extension by continuity of N
to Γ(N).

The closed definable subset T∞c,+ is defined as

T∞c,+ := {u ∈ Sn−1∞ : ∃(pk)k ∈M such that lim
∞

pk = (u, c)}.

Let V∞c := N(π−1(T∞c,+ × {c})), in other words it is the definable closed subset

V∞c =
{
v ∈ Sn−1 : ∃((xk, τk))k ∈M such that xk →∞, τk → c, N(xk, τk)→ v

}
,

corresponding to all the limits at infinity of normals to the hypersurfaces (Tt)t as t tends to c.
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For each u ∈ Sn−1∞ , let V∞c,u := V∞c ∩N(π−1(u)× {c}), that is

V∞c,u =

{
v ∈ Sn−1 : ∃((xk, τk))k ∈M such that xk →∞, τk → c,

xk
|xk|

→ u, N(xk, τk)→ v

}
.

Note that whenever u does not belong to T∞c,+ we find that V∞c,u is empty.

A very rigid consequence of tM being horizontally spherical at c at infinity is the following:

Lemma 7.1. Let c be a regular value taken by tM at which it is horizontally spherical at infinity. Then each u

in T∞c,+ and each v in V∞c,u are orthogonal.

Proof. Obvious from the definition of the horizontal sphericalness. �

Let c be a regular value taken by tM at which it is horizontally spherical at infinity. Let ε be a positive
real number such that for each t ∈ [c − ε, c + ε] the function tM is horizontally spherical at t at infinity. Let
Tc,ε := t−1M ([c+ ε, c− ε]).

We find that for each for η in ]ec, 1[, there exists a positive real numberR such that for every (x, t) belonging
to Tc,ε \ clos(BR), we have

(7.1) |x| · |∇tM (x, t)| ≥ |t− c|η.

Let ξ be the following definable vector field

ξ :=
1

|∇tM |
νStM
|νStM |

, for |(x, t)| ≥ R� 1, and |t− c| ≤ ε.

It is definable and C1+m, non vanishing, tangent to the Euclidean spheres. The flow of the differential equation

ṗ(t) = ξ(p(t)) and ξ(0) ∈ Tc × {c} \BR

induces a C1+m diffeomorphism (Tc × {c} \BR)× [−ε, ε] 7→ Tc,ε \BR.

Using Inequality (7.1) we deduce that the length l(p0,pt) of the trajectory of ξ between the point p0 of
Tc × {c} \BR and pt, point reached after time t, is bounded as

(7.2) l(p0,pt) ≤ |p0|
(
t1−η

1− η

)
.

Inequality (7.2) implies that the angle θ(t) between the vector pt and p0 tends to 0 as t goes to 0. This
proves the following:

Lemma 7.2. Let c be a regular value taken by the function tM at which it is horizontally spherical at infinity.
Then T∞c = T∞c,+, thus T∞c,+ is of dimension at most n− 2.

8. MAIN RESULT

Our main result Theorem 8.1 presented in this section is a consequence of results of equisingularity theory
and of our context.

Theorem 8.1. Let F : Rn × R 7→ R be a C2+m globally definable function over a polynomially bounded
o-minimal structure, for a non negative integer number m. Assuming that 0 is regular value of F , let M be the
level {F = 0}. Let tM be the projection of M onto R.

Let c be a regular value taken by tM at which it is horizontally spherical at infinity. Then the total absolute
curvature function t 7→ |K|(t) is continuous at c. Consequently the total curvature function t 7→ K(t) is
continuous at c.

It is a straightforward consequence of the following

Lemma 8.2. Under the hypotheses of Theorem 8.1, we find

dimV∞c ≤ n− 2.
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Let us show the main result.

Proof of the main result. Let |K| : t 7→ |K|(t) be the total absolute curvature function of the family of hy-
persurfaces (Tt)t. By Lemma 8.2 we find that V∞c has (n − 1)-dimensional volume zero. Following [Gra1,
Proposition 6.8], we deduce there is no accumulation of curvature at infinity at c. In other words the function
|K| is continuous at c, and so is K by point (iii) of Theorem 6.1. �

Before going into the proof of Lemma 8.2, we observe that it states that there is no accumulation of curvature
at infinity nearby the level c, or equivalently there are no half-branch at infinity of the generic polar curve along
which the function tM tends to c (see [Tib1, Gra2] for local triviality results with a similar flavor).

Proof of Lemma 8.2. Let v be a limit of normal direction lying in V∞c . By the Curve Selection Lemma we can
find a globally definable continuous path, going to infinity, along which this limit is reached: there exists such
a path γ such that

N ◦ γ → v and tM ◦ γ → c.

In particular there exists a positive exponent α, in the field of exponents FM of the structureM such that

tM ◦ γ − c
|γ|α

→ a ∈ R∗.

In other words there exists a positive exponent e such that the germ at infinity of γ lies in

He := {p ∈ Tc,ε \BR : |tM (p)− c| ≤ |p|−e}.

If the exponent e belongs to FM, thenHe is globally definable and so is its closureHe in Rn×R. Let us define

V∞,ec :=
{
v ∈ Sn−1 : ∃ (pk)k ∈ He such that N(pk)→ v

}
which is a closed definable subset of Sn−1 contained in V∞c whenever e lies in FM.

Let H∞e be the intersection He ∩ Sn−1∞ × {c}. The function tM extends continuously and definably to He
taking the value c alongH∞e . Let te be the restriction of this extension toHe \BR.

According to [Bek, Loi], we can stratify the pair (te,He \BR) with Thom’s condition. Furthermore we can
require that X := He \BR and Y := H∞e are union of strata.

Suppose first that X and Y are strata. The dimension of Y is d ≤ n− 2 sinceH∞e is contained in T∞c,+, thus
of dimension lower than or equal to n − 2 by Lemma 7.2. Let p = (u, c) be a point of Y and let T := TpY

which is contained in Rn × 0. Note that T and u are orthogonal.
Let v be a limit of the normal N at infinity at u taken into He along a path γ. We will show that v and

T ⊕Ru are orthogonal. We recall that νM = νxM +νtM∂t. Let ν be the limit of νM along γ as γ goes to infinity
and let η be the limit of ν tM . Writing ν as (νx, νt) in Rn × R, we have

v =
νx

|νx|
and η = −νtv + |νx|2∂t.

Thom’s condition implies that η and T are orthogonal. Moreover, by horizontal spherical-ness at infinity, η and
u are also orthogonal, therefore η and T ⊕ Ru are orthogonal too. Hence, if νt 6= 0, then v is orthogonal to
T ⊕ Ru since T ⊕ Ru is contained in Rn × 0. If νt = 0 then v = ν. Using the arguments of the proof of
Lemma 4.2, we see that u and ν are orthogonal. By Whitney’s condition (a), we know that TpY is a subspace
of lim∞ TγM and so TpY and ν are orthogonal. Hence we conclude that v = ν is orthogonal to TpY ⊕ Ru.

Let V∞,ec,u := V∞,ec ∩ V∞c,u. We have proved that dimV∞,ec,u ≤ (n − 1) − (d + 1) = n − d − 2, and thus
dimV∞,ec ≤ n− 2.

In the general case the only thing to check is that whenever X contains a (globally definable) stratum S of
dimension s at most n − 1, then its contribution to V∞c is at most of dimension n − 2. But this is so since the
graph of N|S is of dimension s, so that its limits at infinity{

v ∈ Sn−1 : ∃S 3 (xk, τk)k such that τk → c , N(xk, τk)→ v
}
⊂ V∞c
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have dimension at most s− 1 ≤ n− 2.

We conclude that V∞,ec has dimension lower than or equal to n− 2 for any exponent e of FM.

Since any limit v of V∞c belongs to some V∞,ec for some e in FM, and since the family (V∞,ec )e∈(FM)>0 is
increasing as e goes to 0, we get that V∞c is the Hausdorff limit at e = 0 of V∞,ec , thus has dimension lower
than or equal to n− 2. �

We conclude with an interesting observation. For this purpose we need a few more preparations. Let c be
regular value taken by tM . Let ε be a positive number such that [c − ε, c + ε] consists only of regular values.
Let Z be a connected component of t−1M (]c− ε, c+ ε[). Let us consider now tZ the restriction of tM to Z. Let
Zt × {t} := t−1Z (t) = Mt ∩ Z. Let KZ(t) :=

∫
Zt
κ and |K|Z(t) :=

∫
Zt
|κ| for t in ]c − ε, c + ε[. Then we

actually have showed the following:

Theorem 8.3. Under the above hypotheses, assume furthermore that tZ is horizontally spherical at infinity at
c. Then the functions KZ and |K|Z are continuous at c.

To rephrase informally Theorem 8.3, the continuity of t 7→ |K|(t) nearby the value c at which the function
tM is horizontally spherical at infinity, is equivalent to the continuity nearby c of each function t 7→ |K|Z(t)

for each connected component Z of t−1M (]c− ε, c+ ε[).

9. THE SPECIAL CASE OF FUNCTIONS

We treat here briefly the case of functions which is a special case of the context presented here. The continuity
of curvatures is the same property but the regularity conditions are a little bit different.

Let f : Rn 7→ R be a C2+m, with non-negative m, globally definable function. We denote the level f−1(t)
by Ft and its closure in the spherical compactification by Ft. Its intersection with the sphere at infinity Sn−1∞
will be denoted F∞t . Let νf be the unitary gradient field ∇f

|∇f | .

The function f satisfies Malgrange condition at c if there are positive constants R, ε,A such that

|x| > R, |f(x)− c| < ε =⇒ |x| · |∇f(x)| ≥ A|f(x)− c|.

We would like to introduce what the analogue of horizontal spherical-ness in this context would be. The
function f is spherical at the regular value c at infinity if along any sequence of points (xk)k of Rn such that
|xk| goes to∞ and f(xk) goes to c, we have〈

lim
∞
νf (xk) , lim

∞

xk
|xk|

〉
= 0,

whenever each limit exists.
This condition is equivalent to the following result already proved in [d’AcGr1, d’AcGr2] which justified the
introduction for families of the notion of horizontal spherical-ness at infinity.

Theorem 9.1 ([d’AcGr1, d’AcGr2]). Let c be a regular value of f taken by f . The function f is spherical at
infinity at c if and only if there exists an exponent ec in FM∩]−∞, 1[ and a positive constant Ec such that

|x| � 1, |f(x− c| � 1 =⇒ |x| · |∇f(x)| ≥ Ec|f(x)− c|ec .

It is well known that t-regularity is equivalent to Malgrange [DiRuTi] (their proof goes through the globally
definable context) and that Malgrange is equivalent to requiring having ec ≤ 0, thus spherical-ness at infinity.

Let K(t) be the total Gauss-Kronecker curvature of Ft and |K|(t) be the total absolute Gauss-Kronecker
curvature of Ft. In the context of functions what we have proved is the following:
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Theorem 9.2. Let f : Rn 7→ R be a globally definable C2+m function for some non-negative integer m. Let c
be a regular value at which the function is spherical at infinity.

(1) Then the function t 7→ |K|(t)| is continuous at c, and thus so is t 7→ K(t).
(2) As for Theorem 8.3, for any connected component Z of f−1]c− ε, c+ ε[ for positive ε small enough, the

function t 7→ |K|Z(t) is continuous at c, and thus so is t 7→ KZ(t).

Let us end with a last result on equisingularity of the family of fibres of a function.

Corollary 9.3. Let f : Rn 7→ R be a globally definable C2+m function for some non-negative integer m. Let
c be a regular value at which the function is spherical at infinity.

If n is odd then the following function is continuous at c

t 7→
∫
G(n−1,n)

χ
(
f−1(t) ∩H

)
dH.

If n is even then the following function is continuous at c

t 7→
∫
G(n−1,n)

[χ ({f ≥ t} ∩H)− χ ({f ≤ t} ∩H)] dH.

Proof. By Theorem 9.2, we know that the function t 7→ K(t) is continuous at c. Then we apply Theorem 4.5
in [Dut1]. If n is odd, the result is clear because the function t 7→ χ

(
f−1(t)

)
is constant in a neighborhood of

c. If n is even, it is enough to prove that the functions t 7→ χ ({f ≥ t}) and t 7→ χ ({f ≤ t}) are constant in a
neighborhood of c. By the Mayer-Vietoris sequence, if t > c then we have

χ ({f ≥ c}) = χ ({f ≥ t}) + χ ({c ≤ f ≤ t})− χ
(
f−1(t)

)
.

So if t is close enough to c then χ ({f ≥ c}) = χ ({f ≥ t}), for f is a fibration over [c, t]. Similarly we can
show that χ ({f ≤ c}) = χ ({f ≤ t}) for t > c close enough to c. The same argument works for t < c. �
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[JoTi] C. JOIŢA & M. TIBĂR, Bifurcation values of families of real curves, Proc. Roy. Soc. Edinburgh Sect. A, 147 (2017), no. 6,

1233–1242.
[Kur] K. KURDYKA, On gradients of functions definable in o-minimal structures, Ann. Inst. Fourier 48, no. 3 (1998), 769–784.
[La] R. LANGEVIN, Courbure et singularités complexes, Comment. Math. Helv. 54 (1979) 6–16.
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LABORATOIRE ANGEVIN DE RECHERCHE EN MATHÉMATIQUES, LAREMA, UMR6093, CNRS, UNIV. ANGERS, SFR MATH-
STIC, 2 BD LAVOISIER 49045 ANGERS CEDEX 01, FRANCE.

E-mail address: nicolas.dutertre@univ-angers.fr
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