Communication Dans Un Congrès Année : 2024

Hybrid Energy-Efficient Local Path Planning for Autonomous Vehicles in Dynamic Environments

Résumé

Efficient trajectory planning plays a crucial rolein the development of autonomous vehicles, ensuring safe andoptimized navigation in dynamic environments. This paperproposes a novel energy-efficient hybrid trajectory planningby integrating a sampling-based method with an optimizationbased path refining method. It uses the strength of the samplingbased methods to reduce the solution space and generatea reactive trajectory in a dynamic environment. Followingpath selection, a septic path is generated and utilized asa reference for an energy-efficient path-refining optimizationproblem, producing a jerk-controlled trajectory with enhancedcomputational efficiency. The simulations were conducted ina joint-simulation environment using Simulink/Matlab andthe Scaner Studio vehicle dynamics and driving environmentsimulator. The findings demonstrate the effectiveness of ourapproach in achieving significant energy savings while adeptlyaddressing dynamically changing environments.
Fichier principal
Vignette du fichier
ITSC24_0444_FI.pdf (1.67 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04651719 , version 1 (21-11-2024)
hal-04651719 , version 2 (21-11-2024)

Identifiants

  • HAL Id : hal-04651719 , version 2

Citer

Fadel Tarhini, Reine Talj, Moustapha Doumiati. Hybrid Energy-Efficient Local Path Planning for Autonomous Vehicles in Dynamic Environments. 27th IEEE International Conference on Intelligent Transportation Systems (ITSC 2024), Sep 2024, Edmonton (Canada), Canada. ⟨hal-04651719v2⟩
370 Consultations
15 Téléchargements

Partager

More