Toward comprehensive short utterances manipulations detection in videos - Université d'Angers
Article Dans Une Revue Multimedia Tools and Applications Année : 2024

Toward comprehensive short utterances manipulations detection in videos

Résumé

In a landscape increasingly populated by convincing yet deceptive multimedia content gen- erated through generative adversarial networks, there exists a significant challenge for both human interpretation and machine learning algorithms. This study introduces a shallow learning technique specifically tailored for analyzing visual and auditory components in videos, targeting the lower face region. Our method is optimized for ultra-short video seg- ments (200-600 ms) and employs wavelet scattering transforms for audio and discrete cosine transforms for video. Unlike many approaches, our method excels at these short durations and scales efficiently to longer segments. Experimental results demonstrate high accuracy, achieving 96.83% for 600 ms audio segments and 99.87% for whole video sequences on the FakeAVCeleb and DeepfakeTIMIT datasets. This approach is computationally efficient, making it suitable for real-world applications with constrained resources. The paper also explores the unique challenges of detecting deepfakes in ultra-short sequences and proposes a targeted evaluation strategy for these conditions.
Fichier principal
Vignette du fichier
s11042-024-20284-x.pdf (801.82 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Licence

Dates et versions

hal-04752448 , version 1 (24-10-2024)

Licence

Identifiants

Citer

Abderrazzaq Moufidi, David Rousseau, Pejman Rasti. Toward comprehensive short utterances manipulations detection in videos. Multimedia Tools and Applications, 2024, pp.1-14. ⟨https://doi.org/10.1007/s11042-024-20284-x⟩. ⟨hal-04752448⟩
20 Consultations
12 Téléchargements

Altmetric

Partager

More