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Abstract
In a landscape increasingly populated by convincing yet deceptive multimedia content gen-
erated through generative adversarial networks, there exists a significant challenge for both
human interpretation and machine learning algorithms. This study introduces a shallow
learning technique specifically tailored for analyzing visual and auditory components in
videos, targeting the lower face region. Our method is optimized for ultra-short video seg-
ments (200-600 ms) and employs wavelet scattering transforms for audio and discrete cosine
transforms for video. Unlike many approaches, our method excels at these short durations
and scales efficiently to longer segments. Experimental results demonstrate high accuracy,
achieving 96.83% for 600 ms audio segments and 99.87% for whole video sequences on
the FakeAVCeleb and DeepfakeTIMIT datasets. This approach is computationally efficient,
making it suitable for real-world applications with constrained resources. The paper also
explores the unique challenges of detecting deepfakes in ultra-short sequences and proposes
a targeted evaluation strategy for these conditions.

Keywords DeepFake · Biometrics · Multimodality · Late fusion · Presentation attacks ·
Adversarial attacks

1 Introduction

In an era marked by rapid advancements in artificial intelligence and Generative Adver-
sarial Networks (GANs), the manipulation of multimedia content has become increasingly
sophisticated and accessible [1, 2]. This growing accessibility opens new avenues for creative
and practical applications but also introduces a significant challenge: multimedia manipu-
lations that are becoming progressively more difficult to detect. These manipulations pose
serious risks, as they can mislead both human perception and automated systems, thereby
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compromising the integrity of information channels [3]. Current detection methods often
rely on resource-intensive deep learning models, which limits their practical use in real-
world environments where computational resources are constrained [4–7].

The latest developments in deepfake technology have greatly influenced multimedia
manipulation, leading to the creation of various methods capable of generating highly realis-
tic synthetic media [8]. Notably, lip-syncing algorithms, which alter lip movements in videos
to align with specific audio tracks, have gained significant attention [8, 9]. These techniques
create a convincing illusion that the person in the video is speaking the provided audio.
Previous research has indicated that detecting manipulations in the lower part of the face,
particularly the lips and mouth, is more challenging compared to other facial features like the
eyes, especially when using deep neural networks such as XceptionNet [10, 11]. This is a crit-
ical aspect of our study, as many deepfake techniques target the lower facial region to create
deceptive effects [1]. The significance of the lip area is further amplified in scenarios where
the upper face is obscured, making other facial features less reliable for verifying authentic-
ity. By focusing on lip area manipulation detection, our research tackles a vital component
of deepfake techniques and seeks to offer a robust solution for ensuring the authenticity of
digital media.

Voice conversion represents a recent advancement in deepfake technology, enabling the
transformation of one person’s voice to closely mimic the vocal characteristics of another
[2, 12]. This technology can be combined with visual manipulations to create even more
convincing synthetic media [2, 13]. Additionally, text-to-speech synthesis has advanced to
the point where synthetic voices are becoming nearly indistinguishable from human voices,
facilitating the creation of highly realistic audio content from text inputs [2, 12, 14]. While
these developments are impressive, they highlight the critical need for effective detection
mechanisms to ensure the authenticity of multimedia content in this new era of synthetic
media.

To tackle the detection of manipulated short utterances in both audio and video, our
research centers on the sub-word level-a domain that has not been widely explored in existing
deepfake detection methods. This focus is essential for handling short sequences, where the
limited amount of information can make pattern recognition particularly challenging. By
examining sub-word elements, our study seeks to capture subtle details that are crucial for
accurately identifying deepfakes, thereby addressing a significant gap in current research.
This innovative approach provides a more precise tool for analyzing brief and nuanced
utterances, contributing to the advancement of multimedia manipulation detection.

In the context of these technological advancements, we introduce a novel shallow learning-
based method specifically designed for the detection of deepfakes in ultra-short video
sequences, ranging from 200 milliseconds (ms) to 600 ms.

The primary contributions of this paper are as follows:

• Novel DetectionMethod: Introduced a specialized shallow learning technique for detect-
ing deepfake content by analyzing the visual and auditory components of multimedia,
specifically targeting the lower region of the face in videos.

• Focus on Ultra-short Segments: Optimized the detection method for ultra-short video
segments ranging from 200 ms to 600 ms, addressing a significant challenge in existing
methods.

• Multi-scale Audio Analysis: Employed a multi-scale analysis for audio features using
the wavelet scattering transform (WST), which effectively captures essential frequency
characteristics of audio signals.
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• High-frequency Video Analysis; Developed a video feature extraction method based on
high-frequency spatial analysis using discrete cosine transforms (DCT), focusing on the
lip region for enhanced detection accuracy.

• Versatility: Designed the method to be versatile, applicable in both unimodal and multi-
modal settings, leveraging visual and auditory cues for a comprehensive evaluation.

• Performance and Efficiency: Demonstrated that the proposed method not only excels
in accuracy for ultra-short segments but also scales efficiently to longer video lengths,
making it suitable for real-world applications with constrained computational resources.

The remainder of this paper is structured as follows: Section 2 reviews existing litera-
ture in audio and visual deepfake detection, emphasizing the limitations and computational
challenges of current approaches. Section 3 describes our hand-crafted methods for audio
and visual deepfake detection. Section 4 details the experimental design and datasets used,
presents the evaluation of our proposed method, and provides a comprehensive analysis of
the results, followed by the conclusion and a discussion of future research directions.

2 Related works

Previous studies in deepfake detection have charted a range of technical methodologies for
analyzing audio and visual components, employing strategies that extend from detailed low-
level hand-crafted features to advanced high-level neural network architectures [2, 6].

In the realm of combating audio deepfakes, the use of Mel-Frequency Cepstral Coef-
ficients (MFCC) is widespread, analyzed through 2D neural network architectures such as
VGG16 andEfficientNet [4, 5, 15]. Thesemethods are promising, yet they demand significant
computational resources and have not been examined when dealing with ultra-short audio
samples. We propose to explore shallow learning methods which require less resources in
this article.

Pianese et al. [16] employed a distinct approach for audio deepfake detection by har-
nessing the Person of Interest (POI) concept, echoing the core ideas of speaker verification
systems [17]. Their strategy focuses on assessing the similarity between the voice under
scrutiny and a pre-existing reference collection of the claimed identity, employing two unique
non-supervised methods: centroid-based and maximum-similarity testing [16]. The primary
challenge of this method is its reliance on a comprehensive reference set for each iden-
tity analyzed. Our methodology aims to address this limitation by proposing an alternative
approach that minimizes the need for such extensive reference collections, thereby enhancing
the practicality and scalability of audio deepfake detection.

Visual-based deep fake detection methods have seen a diverse range of strategies. Some
leverage 3D networks for in-depth sequence analysis [6, 18]. Zhou et al. [18] proposed a
system that exploits the intrinsic synchronization between audio and visual elements, partic-
ularly focusing on the lips’ movement and corresponding audio at the word level. Employing
amultimodal neural network, they experimentedwith three types of fusionmechanisms based
on attention mechanisms [18]. However, it’s noteworthy that [18] employed 3D networks for
video feature extraction and attention mechanisms, processes that are known for their high
resource demands.

On the other side, alternative approaches to deepfake video detection primarily employ
image-basedmethods, placing a significant focus on facial features as discussed in references
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[4, 6]. In otherwords, thesemethods involve the independent analysis of each framewithin the
video input by thenetwork, culminating in a conclusive decision throughhardor soft voting [4,
6]. While these techniques demand fewer resources compared to their 3D counterparts, they
lack the incorporation of temporal information essential for thoroughly examining videos.

In light of these limitations, our methodologies designed for audio-visual detection rely
on shallow learning and only the lips part of the face, demanding fewer resources and demon-
strating a comprehensible and interpretable nature. Our visual deepfake detection is based on
sequence level, in other words, we exploit the temporal anomalies with less computational
cost.

3 Methodological framework

3.1 Proposedmethodology pipeline

The global view of the proposed method is depicted in Fig. 1 and will be detailed in this
section.After some standard pre-processing steps,we apply a dual-phasemethod for deepfake
detection. Initially, we extract features separately from the video’s facial imagery and the
corresponding audio. We then proceed to independently classify the authenticity of both
video and audio. Finally, we bring together these independent classifications at a decision
level, harnessing the temporal information inherent in both modalities.

3.1.1 Pre-processing: lips part selection

As illustrated in the pre-processingmodule of our pipeline in Fig. 1, ourmethodology focuses
on the precise isolation of the lip region from the talking face within the video frame. We
employ Google’s Mediapipe tool [19], an existing algorithm specifically designed for lip
detection and known for its proficiency in identifying facial landmarks. Mediapipe attains a
lip detection precision of 94.4%. The majority of errors arises from faces in extreme poses,
where the technique struggles to locate the lip position.

Fig. 1 Proposed pipeline for short utterances manipulations detection in videos
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3.2 Methodology

We detail our method, which is based on new hand-crafted techniques for extracting features
from both audio and video. This is shown in the proposed method module of our pipeline in
Fig. 1.

3.2.1 Audio feature extraction

Our approach aims to refrain from making assumptions regarding the specific frequency
domain impacted by deep fake alterations in the audio signal. As a result, we have chosen
to employ a multi-scale analysis for the development of our audio features. The literature
presents variousmulti-scale decompositionmethodologies, such asMel FrequencyCepstrum
Coefficients (MFCC) and Mel-Spectrograms, along with the Wavelet Scattering Transform
(WST). For the purposes of this study, we have selectively employed the WST. The selec-
tion was based on WST’s proven efficacy in capturing essential frequency characteristics of
audio signals, which are crucial for identifying the subtle alterations introduced by deepfake
techniques.

Consider an audio signal x ∈ R
tx sampled at 16kHz and maximally normalized, where

tx ∈ N
∗. We partition this signal into its positive xp ∈ R

tx and negative xn ∈ R
tx components

as follows: ⎧
⎪⎨

⎪⎩

xp = ReLU (x)

xn = ReLU (−x)

x = xp − xn

. (1)

Let us introduce �, denoting the Wavelet Scattering Transform (WST) designed for one-
dimensional signals as presented in existing works [20, 21]. The fundamental idea behind
WST is the iterative application of the wavelet transform [22] coupled with a modulus opera-
tion serving as a non-linear function and subsequently averaging the result through aGaussian
filter. This transformation technique is subject to multiple hyper-parameters, including the
invariance scale (window length), the transform depth, and the quality factors which deter-
mine the number of wavelets per octave. This WST is suited for our purpose as it gives a
frequency characterization of an audio.

A preliminary assessment of disparities between an authentic audio and its cloned using
the audio deepfake generation method described in [12]. The two scattergrams (c-d) in the
Fig. 2 illustrate variations in the WST between the upper and lower samples of the two
audio sources, while the scattergrams (a-b) of the two signals without decomposition have
small dissimilarities. The two plots in (c-d) shows that the fake audio is characterized by
predominantly negative values with a positive value at 0Hz, whereas the authentic one
primarily consists of positive values and exhibits null values at 0Hz.

In line with the existing research on audio processing [20], we have set the window
length at 32ms and chosen four layers, which are adequate for capturing the majority of the
signal’s energy [23]. With this setup and a sampling frequency of 16kHz, we derive 153
WST coefficients. Subsequently, we compute the WST � of our signal x and both negative
xn and positive xp components. This results in the output matrices Xn,Xp,X ∈ R

C×Tx ,
where (C ∈ N

∗) denotes the number of WST coefficients, ranging from zero order up to the
fourth order, here C = 153.

The core concept of our method hinges on using transformed matrices to calculate the
lower bounds of the Pearson correlation coefficient, focusing on the interactions between
Xp , Xn , X, and Xp − Xn . This approach is integral to our analysis, as it leverages only the
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Fig. 2 (a) The difference between the WST of positive and negative sample of Real audio. (b) The difference
between the WST of positive and negative sample of the fake audio represented in (a). (c) The WST of the
same real signal. (d) The WST of the fake signal. Only the zero-th and the first order WST are presented and
the fake signal was generated using the method described in [12]

inherent elements of the audio signal, thus eliminating the need for external benchmarks.
Mathematically, the framework of our proposed method can be described as follows:

S(c) = min
(
ρ(Xn(c),Xp(c) − Xn(c)),

ρ(X(c),Xp(c) − Xn(c)),

ρ(Xp(c),Xp(c) − Xn(c))
)
, (2)

where c = 1, ..,C is the channel index of the WST coefficients, S = (S(1), ...,S(C)) ∈ R
C

is the features vector to detect a fake audio and ρ is the Pearson coefficient across temporal
axis.

We employ the Pearson Correlation Coefficient to elucidate the interrelationships among
the distinct components of the audio signal. Analyzing the correlation patterns between the
positive and negative aspects of the WST coefficients allows us to detect inconsistencies
characteristic of deepfake manipulations. Such irregularities are indicative of alterations,
given that genuine audio signals typically demonstrate a stable and consistent correlation
pattern, which is often disrupted in manipulated audio.

3.2.2 Video feature extraction

Following the exposition of our audio deepfake detectionmethodology, we now introduce the
algorithm we designed to discern the authenticity of visual sequences. This method hinges
on both the spatial and temporal attributes of a video, focusing primarily on detecting any
anomalies or inconsistencies in themotion or appearance of a speaking subject in a videowith
a zero head pose. Given that deepfake generation algorithms exhibit difficulties in accurately
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replicating the high-frequency characteristics inside the mouth area such as the teethes [24,
25], our method emphasizes the high-frequency components of the video signal.

Let V ∈ R
tv×3×Nx×Ny be a video sequence depicting the lip movements of a subject

speaking without head pose. The video frames are converted to gray-scale for analysis. For
each temporal instance t = 1, ..., tv , we take the fourth-order spatial derivative of the frame

V (t) ∈ R
Nx×Ny with respect to both x and y axes to yield ∂4V

∂x2∂ y2
∈ R

tv×3×Nx×Ny . This
operation effectively shifts the energy of the signal toward the high-frequency domain.

Subsequently, we apply the two-dimensional discrete cosine transform (DCT2), denoted

as�, to ∂4V
∂x2∂ y2

, resulting in the frequency representation of the rate of intensity change across
frames. Drawing inspiration from existing work [26], which leverages temporal variations
in Pearson correlation coefficient to identify talking regions, we compute this coefficient for
successive frames. Mathematically, the process can be described as follows

⎧
⎨

⎩

�( ∂4V
∂x2∂ y2

)(t) = (νi, j (t))1≤i≤Nx ,1≤ j≤Nx ∈ R
Nx×Ny

ρ(t) = pearson(�( ∂4V
∂x2∂ y2

)(t),�( ∂4V
∂x2∂ y2

)(t − 1)) ∈ R, t = 2, ..., tv
, (3)

where �
(

∂4V
∂x2∂ y2

)
(t) represents the high-frequency components obtained from the DCT2

transform � of the frame V (t), and ρ(t) denotes the Pearson correlation coefficient between
two successive frames V (t) and V (t + 1). To perform an analysis over a specific duration or
the entire length of the video, we construct a scatter plot using the temporal mean μ and the
standard deviation σ of the ρ values.

4 Experimental analysis

In this section, we detail the experimental procedures used to validate our method against
existing state-of-the-art (SOTA) solutions [5, 6, 16, 27] for both audio and visual deepfake
detection. Our validation process includes experiments with two reputable datasets which
would be explained in the following.

4.1 Datasets

We introduce benchmark and reference datasets that are widely accepted and commonly
employed in the field of deepfake detection to assess the effectiveness of our proposed
methods. Note that this may not be an exhaustive list.

4.1.1 FakeAVCeleb

The FakeAVCeleb dataset serves as a comprehensive and developed resource for audio-visual
deepfake detection [28]. Originating from the frequently cited VoxCeleb2multimodal corpus
[29], FakeAVCeleb stands out for its frame rate of 25 f ps and an average video duration of
approximately 7.8 seconds. Employing an array of SOTA deepfake generation methods such
as lip-syncing and face-swapping technologies [30–33], the authors have fabricated videos
that pose a realistic and formidable challenge in discerning their authenticity.

To bolster its applicability, the dataset has been curated to offer ethnic and gender diversity,
thus paving the way for equitable and representative evaluation. Structurally, it comprises
four distinct categories of audio-visual data:
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• A collection of 500 videos with real-audios and real-videos (RvRa),
• Another set of 500 videos where the audio has been cloned or generated from a speech
text while the visual content remains authentic (RvFa),

• A larger set of 9, 700 videos featuring real audio coupled withmanipulated visual content
(FvRa),

• Finally, a comprehensive set of 10, 800 videos in which both the visual and audio com-
ponents are synthetic (FvFa).

The FakeAVCeleb dataset introduces three distinct classes of manipulated content, along-
side a dedicated category for wholly authentic videos. For testing our method, videos from
this dataset have been chunked into segments ranging from 200 ms to 600 ms in duration.

4.1.2 DeepfakeTIMIT

The DeepfakeTIMIT dataset emerges as an essential benchmark in the realm of deepfake
detection, featuring an average video length of approximately 4.25 seconds. Originating from
the VidTIMIT database [34], it employs GAN-based face-swapping techniques to generate
manipulated content [35, 36]. This corpus is bifurcated into two main categories: the first
contains 320 clips with manipulated visuals yet authentic audio (‘Fake Video - Real Audio’),
while the second consists of 430 clips preserving both the original video and audio (‘Real
Video - Real Audio’).

Our investigation is primarily aimed at the low-quality segment of the DeepfakeTIMIT
collection. This specific tier provides invaluable insights into the robustness of deepfake
detection methods when operating under suboptimal conditions. It thereby furnishes a more
nuanced understanding of algorithmic performance constraints, especially considering that
diminished visual and auditory quality exacerbate the challenges of distinguishing authentic
content from fabricated instances. For the purposes of our study, we implemented a pre-
processing step that involved the removal of silent segments from the video clips in the
dataset. This ensured that the subsequent segmentation into durations ranging from 200 ms
to 600 ms resulted in utterances containing at least a word, thereby guaranteeing meaningful
audio-visual data for analysis.

4.2 Experimental strategy

4.2.1 The first experiment

The first experiment assesses the capability of our model in detecting deepfakes within short
utterances. For this purpose,we segmented the datasets into framesof 200 to 600milliseconds,
with a 50% overlap between consecutive frames. This approach ensures that the dataset is
both robust and continuous, enabling a thorough analysis of the model’s performance.

The data was split into training, validation, and test sets using a 60-20-20% ratio, which
is a standard practice to ensure a balanced evaluation of the model. We utilized a Support
Vector Machine (SVM) with a Radial Basis Function (RBF) kernel to classify the features
extracted as described in (2). TheRBFkernelwas chosen for its effectiveness in handling non-
linear patterns within the data. During the training and validation phases, the regularization
coefficient was carefully tuned to 0.01, optimizing the model’s performance by controlling
the balance between model complexity and classification accuracy.
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Table 1 Performance of our
proposed method on the whole
audio length modality of
FakeAVCeleb compared to the
SOTA methods (Real: 500 videos
from RvRa , Fake: 500 videos
from FvFa ). Bold entries
indicate the best performance

Model Accuracy

MFCC + XceptionNet [5] 76.6%

Mel-Spectrograms + DST-Net [4] 97.51%

MFCC + DST-Net [4] 88.5%

X-vectors + SVM [7, 16, 37] 99.98%

ECAPA-TDNN + SVM [16] 99.97%

Our hand-crafted method 99.83%

4.2.2 The second experiment

The second experiment evaluates the effectiveness of ourmodel in detecting deepfakeswithin
the visual channel of videos, both in short utterances and across entire video frames. Similar
to the approach used for audio signals, we segmented the video datasets into short frames
ranging from 200 to 600 milliseconds. This segmentation allows us to focus on brief visual
segments, which are particularly challenging in deepfake detection.

We applied the same cross-validation strategy as in the first experiment to ensure consistent
and rigorous evaluation of the model’s performance in the visual domain. By maintaining
this uniform approach, we were able to accurately assess the model’s ability to detect visual
manipulations in both short and extended video sequences.

4.3 Exprimental results

4.3.1 Experiment 1

Our experimental framework, as detailed in (2), is designed to evaluate the effectiveness of
our hand-crafted method for detecting deepfake audio. We rigorously tested our approach
using the FakeAVCeleb dataset [28], which predominantly consists of synthesized audio
samples that pose significant challenges for detection algorithms. The results, shown in
Tables 1 and 2, indicate that our method not only surpasses SOTA deep learning techniques
in accurately identifying deepfakes within short audio utterances but also maintains a high
level of performance when applied to the full duration of the audio.

4.3.2 Experiment 2

We present the empirical evaluation of our visual deepfake detection approach, formulated as
per (3). The focus of this investigation is restricted to the lip region of the subject, contingent

Table 2 Accuracy of our method in (2) on short utterances and full audio modality in FakeAVCeleb, compared
to SOTA methods (FC denotes Fully Connected layers followed by a softmax function). Bold entries indicate
the best performance

X-vectors + SVM [7, 16, 37] ECAPA-TDNN + SVM [16] Our Method

Whole video 99.98% 99.97% 99.83%

600 ms 96.35% 89.03% 96.83%

200 ms 85.62% 75.13% 87.02%
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upon the maintenance of a zero-degree head pose throughout the recording session. Conse-
quently, this evaluation is exclusively conducted on the DeepfakeTIMIT dataset.

Our aim is to track the temporal behavior of the Pearson coefficient defined in (3), then we
decide the authenticity of the visual sequence. We considered 20 fake videos fromDeepfake-
TIMIT and 20 real videos from VidTIMIT. We then split every video into chunks of 600ms
and an overlap of 50%, we obtain 279 fake and 279 real videos. To imprint the temporal
dynamics of our parameter in (3), we choose the mean and the standard deviation.

Figure 3 provides a visual demonstration of ourmethod’s effectiveness. The figure presents
a scatter plot that includes various measurements, such as the average and variation (standard
deviation) of the Pearson coefficient. This visual arrangement effectively separates real videos
from fake ones. The top-left part of the plot illustrates the application of the DCT coefficient
to unaltered video frames. In contrast, the top-right part shows the results of applying the first
spatial derivative to the video frames. Notably, the bottom-left section of the plot underscores
our method’s strong capability in distinguishing real from fake videos. Based on this last
observation, the authenticity of the video can be done by setting a threshold on the inverse
coefficient of variation C−1

v plotted at the bottom right of the Fig. 3. For various values of the
threshold C−1

v ranging from −1 to 10, we plot the receiver operating characteristic (ROC)
curve (not shown) and the optimal threshold to distinguish genuine and fake videos giving a
maximum detection accuracy 98.39% was found at 1.

Setting the threshold at 1 allowed us to achieve a remarkable detection accuracy of 99.87%
across the entire VidTIMIT andDeepfakeTIMIT video datasets. This result strongly validates
the effectiveness of our method in reliably distinguishing between authentic and manipulated
content. To further highlight the capability of our approach, we conducted a performance
comparison with SOTA methods, as detailed in Tables 3 and 4.

Fig. 3 Analysis of low-quality 20 fake and genuine videos split into 600ms with an overlap of 50% using
our method. Top-left: Mean and standard deviation without spatial derivation. Top-right: After second-level
spatial derivation. Bottom-left: After fourth-level spatial derivation. Bottom-right: Temporal inverse coefficient
of variation of videos from DeepfakeTIMIT and VidTIMIT
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Table 3 Performance of the
SOTA and our proposed method
on whole length visual sequence
from low-quality videos of
DeepfakeTIMIT. Bold entries
indicate the best performance

Model Accuracy

XceptionNet (Image level detection) [28] 65.98%

I3D (Sequence level detection) [6] 96.38%

Our hand-crafted method 99.87%

4.4 Comparison and discussion

Themethodologywe have formulated for the detection of fake audio signals exhibits numero-
us distinct advantages, with its performance and generalizability being particularly noteworthy.

Unlike some methods that depend on a predefined set of reference speakers, as discussed
in [16], our approach distinguishes itself by removing the need for these comparisons and
trainable parameters. This distinction is clearly demonstrated in Fig. 4, which shows the
Pearson coefficients across WST channels for both authentic and fake audios produced using
Text-To-Speech (TTS) techniques [12].

Moreover, our technique demonstrates a robust capacity to handle short audio utterances,
maintaining satisfactory performance which incrementally improves with the length of the
audio sample. This trend is particularly advantageous for scenarios commonly faced in the
real world, where audio clips are often brief.

On the visual modality, the robustness of our visual-level deepfake detection method is
underscoredby its efficacyunder a rangeof challenging conditions. Specifically, the technique
exhibits high performance even when subjected to low-quality videos. What sets our method
apart is its unique focus on the lip region for detection-a region notoriously difficult for
traditional deepfake detection methods to analyze. This focus doesn’t merely serve to fill a
gap in existing methodologies; it provides our system with a marked advantage over SOTA
deep learning-based approaches. Moreover, this is achieved with very limited number of
hyperparameters, which significantly reduces the computational overhead and simplifies the
implementation.

The crux of ourmethod is its strategic utilization of high-frequency spatial energy patterns.
By pushing spatial energy towards these higher frequencies, our system is able to signifi-
cantly amplify the contrast between real and fake visual sequences, a fact that is empirically
supported by the results. This approach not only serves to enhance detection capabilities but
also fortifies our system’s adaptability. This adaptability is further substantiated by the sys-
tem’s performancemetrics under scenarios involving short utterances, ranging in length from
200ms to 600ms. Even under these non-ideal conditions, the system was able to maintain a
reasonable performance level.

However, it’s important to note that the scope of the current study did not extend to
evaluating the technique’s robustness against videos with varying luminosity or noise levels.

Table 4 Accuracy comparison of SOTAperformancewith our proposed approach using visual sequences from
low-quality DeepfakeTIMIT videos over various time segments. Bold entries indicate the best performance

XceptionNet [28] Multi-view video CNN [27] Our Method

Whole video 65.98% 98.43% 99.87%

600 ms 68.19% 99.12% 99.39%

200 ms 61.98% 99.36% 99.88%
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Fig. 4 Pearson coefficient value (y-axis) described in (2) per each channel (x-axis) (orange circles refers to
the real audio and the blue star stands to the fake audio)

Given the demonstrated performance of the method, this remains a crucial avenue for future
research, to comprehensively assess the system’s applicability under a wider array of real-
world conditions. As long as the luminosity does not change temporally or spatially in
temporal or spatial frequency ranges which are discriminant between real and fake this
should not have impact on the performance of our method.

5 Conclusion and future work

In this study, we introduced a full-pipeline approach to detect fake audio and video con-
tent, leveraging hand-crafted features for audio and distinctive visual cues, particularly in
the lip region. Our method demonstrates high interpretability and computational efficiency,
achieving robust performance on the FakeAVCeleb and DeepfakeTIMIT datasets. This uni-
fied strategy underscores the synergy between auditory and visual elements, reflecting a
comprehensive stance against the rising tide of deepfake technologies. The robustness of our
approach is evident as it maintains performance metrics across various conditions without
requiring a reference dataset or a complex train-test split, marking a significant advancement
over existing deep learning methods.

Future work will focus on enhancing this synergy by integrating audiovisual features at
multiple levels of abstraction, potentially leading to a more resilient detection mechanism
against sophisticated deepfake manipulations. We also aim to optimize performance for
short utterances and expand the model’s robustness to accommodate diverse environmental
variables such as noise and lighting conditions. These efforts will contribute to ensuring the
authenticity and trustworthiness of digital media in an era of rapidly advancing synthetic
content technologies.

123



Multimedia Tools and Applications

Supplementary information

Data sharing not applicable to this article as no datasets were generated during the current
study. The article references two databases that are publicly accessible.

Author Contributions Conceptualization, A.M.; Methodology, A.M., D.R. and P.R.; Software, A.M.; Valida-
tion, D.R. and P.R.; Formal analysis, D.R. and P.R.; Investigation, P.R.; Writing-original draft, A.M., D.R.
and P.R.; Writing-review & editing, A.M., D.R. and P.R.; Visualization, A.M.; Supervision, D.R. and P.R. All
authors have read and agreed to the published version of the manuscript.

Funding Open access funding provided by Université d’Angers. The Ph.D. grant of Abderrazzaq Moufidi is
funded by Angers Loire Metropole (ALM).

Data Availability The article references two databases that are publicly accessible.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Zhang T (2022) Deepfake generation and detection, a survey. Multimed Tools Appl 81(5):6259–6276
2. Huang T-h, Lin J-h, Lee H-y (2021) How far are we from robust voice conversion: A survey. In: 2021

IEEE Spoken Language Technology Workshop (SLT), pp 514–521. IEEE
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