Article Dans Une Revue Journal of computational science Année : 2024

Robust models to infer flexible nondeterministic finite automata

Résumé

Grammatical inference involves learning a formal grammar as a finite state machine or a set of rewrite rules. This paper focuses on inferring nondeterministic finite automata (NFA) from a given sample of words: the NFA must accept some words, and reject the others. To address this task we construct several over-constrained inference models capable of finding NFA of size , which are directly convertible to NFA of size . Additionally, we propose an NFA evaluation method based on random walks along with two methods used to enhance the acceptance rates of the inferred NFA. The effectiveness of our approach is demonstrated through the results of comprehensive experiments conducted on several benchmark sets. This paper is an extended version of the ICCS 2023 paper entitled “Inference of over-constrained NFA of size to efficiently and systematically derive NFA of size for grammar learning” (Jastrzab et al., 2023 [1]).
Fichier principal
Vignette du fichier
2023_JCS_v3 (1).pdf (545.23 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04568947 , version 1 (06-05-2024)

Identifiants

Citer

Tomasz Jastrzab, Frédéric Lardeux, Eric Monfroy. Robust models to infer flexible nondeterministic finite automata. Journal of computational science, 2024, 79, pp.102309. ⟨10.1016/j.jocs.2024.102309⟩. ⟨hal-04568947⟩

Collections

UNIV-ANGERS LERIA
53 Consultations
50 Téléchargements

Altmetric

Partager

More