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Highlights

Robust models to infer flexible
nondeterministic finite automata

Tomasz Jastrzab, Frédéric Lardeux, Eric Monfroy

• Proposed over-constrained inference models for NFA of size k+1 allow
us to efficiently and systematically derive NFA of size k.

• Experimental results indicate that proposed models help to reduce the
number of unsolved instances for selected benchmark sets.

• Inferred NFA can be post-processed to reduce or increase the number
of accepting states and to increase the number of transitions, producing
automata that are globally more or less accepting.
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Abstract1

Grammatical inference involves learning a formal grammar as a finite state2

machine or a set of rewrite rules. This paper focuses on inferring nonde-3

terministic finite automata (NFA) from a given sample of words: the NFA4

must accept some words, and reject the others. To address this task we5

construct several over-constrained inference models capable of finding NFA6

of size k + 1, which are directly convertible to NFA of size k. Additionally,7

we propose an NFA evaluation method based on random walks along with8

two methods used to enhance the acceptance rates of the inferred NFA.9

The effectiveness of our approach is demonstrated through the results of10

comprehensive experiments conducted on several benchmark sets. This paper11

is an extended version of the ICCS 2023 paper entitled “Inference of over-12

constrained NFA of size k+1 to efficiently and systematically derive NFA of13

size k for grammar learning” [1].14

Keywords: grammatical inference, nondeterministic automata, SAT models

1. Introduction15

As defined in [2], grammatical inference consists in learning formal gram-16

mars in terms of finite automata or production rules, from a given learning17

sample of words. This research topic has various applications going from com-18

piler design, bioinformatics, and pattern recognition up to machine learning.19

In this article, we are interested in learning finite automata: more precisely,20

given a set of positive examples and negative examples, we want to learn21

nondeterministic finite automaton (NFA) that will accept the positive words22

and reject the negative words.23
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Although deterministic automata are much simpler and more efficient to24

use, they are generally much larger (in terms of the number of states) than25

nondeterministic automata for the same language. Moreover, in most of the26

models (a model is a description of the problem in a declarative language),27

the complexity is related to the number of states. Hence, as most of the28

works in the state of the art, we focus on learning NFAs.29

Our goal is to generate the smallest NFA, i.e., the goal is to minimize the30

number k of states in the automaton. This is typically done by determining31

lower (such as 1) and upper bounds (such as the size of a prefix tree acceptor1)32

on the number of states, and using some optimization algorithms taking33

advantage of the properties of the problem, to find the smallest possible34

number of states.35

Given a sample of positive and negative words, the problem of learning36

(generating) a finite automaton has been studied in various communities,37

using a variety of tools. For example, DeLeTe2 [3] consists in building the38

prefix tree acceptor (PTA), and then, reducing the size of the NFA by merging39

states having similar behavior. Some newer approaches can be cited, such40

as the family of algorithms for regular languages inference presented in [4].41

Some studies are based on metaheuristics [5], such as hill-climbing in [6].42

Some other techniques, such as constraint programming [7] are based43

on complete solvers, i.e., some generic algorithms for solving a determined44

type of variables and constraints (e.g., a SAT solver for solving a Boolean45

formula over some Boolean variables) that can always find a solution if one46

exists, prove unsatisfiability, and find the global optimum in optimization47

problems. Constraint programming (CP) [8] is a problem-solving paradigm48

for solving combinatorial problems using techniques originating from artificial49

intelligence, computer science, and operations research. In CP, the user50

does not describe how to solve the problem, but they state the problem51

with decision variables linked by some relations called constraints. Various52

types of variables (Boolean, bounded integers, . . . ) and various types of53

constraints (linear, non-linear arithmetic, symbolic, such as unification, . . . )54

can be considered. In CP, a model represents a problem, and an instance55

is given by a model and some data. In our case, the problem consists of56

1A prefix tree acceptor (PTA) is a tree-like deterministic finite automaton built from
the sample by using each prefix in the sample as a state. Note that it is possible to build
the PTA for only positive words or both types of words.
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generating an NFA with a generic sample, (i.e., a not-yet-defined sample in57

which the positive and negative words and their numbers are parameters),58

and an instance is the instantiation of the model with a given sample.59

In CP, the problem is generally modeled (or stated) as a Constraint Sat-60

isfaction Problem (CSP) or a Constrained Optimization Problem (COP).61

Again, various techniques, in terms of types of variables and constraints,62

have been employed: for example, Integer Non-Linear Programming (INLP)63

in [9] or parallel SAT solvers in [10, 11]. Additionally, the author of [12]64

proposed two strategies for solving the CSP formulation of the problem,65

and [13] presents a parallel approach for solving the optimization variant of66

the problem.67

We believe that a good model is at least as important as a good solver.68

Thus, contrary to many works, we are not interested to adapt a solver to69

our problem, nor to design an ad-hoc solver. Instead, we aim at enhancing70

SAT models for grammatical inference and NFA generation. SAT is the71

well-known SATisfiability problem which was defined in the seventies [14].72

Modeling in SAT consists in defining and stating the problem with Boolean73

variables and a Boolean formula in Conjunctive Normal Form (CNF) 2. In74

a previous paper [15], we have proposed several SAT models, either starting75

from prefixes or suffixes of words, or trying to optimize both prefixes and76

suffixes at the same time. These models applied to given samples enable us77

to generate smaller SAT instances than a standard model. Moreover, these78

instances are solved more easily by standard SAT solvers.79

Here, we want to exploit a property of the problem based on the size80

(i.e., the number of states) of the generated NFA. More precisely, we focus81

on creating over-constrained models3 of NFA of size k + 1 (i.e., NFA with82

k+1 states) with some special properties that allow reducing them to classical83

NFA of size k. The benefit of these over-constrained models mainly resides84

in their spatial complexity. Whereas the complexity of the generation of an85

NFA of size k for a learning sample S is in O(σk3) variables, and O(σk3)86

2In fact, most of the solvers only accept SAT instances in CNF, and converting a
formula into CNF can bring an exponential explosion to the size of the formula.

3Over-constraining a model consists in adding some extra constraints to reduce the
number of solution of the model, and thus the search space, expecting the solver to be
more efficient on this over-constrained model. In our case, we reduce the number of
possible NFA of size k+1, but we are sure to have a solution if there is an NFA of size k.
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clauses (with σ =
∑

w∈S |w| for most of the models4), the generation of our87

over-constrained NFA of size k + 1 is in O(σk2) variables and clauses.88

Moreover, we propose a technique for ensuring that a k+1 NFA can always89

be reduced to a k NFA. It relies on the notion of possibly final states—these90

are the states from the k+1 NFA (except for the (k+1)’th state) such that:91

1) they have outgoing nondeterministic transitions for the same symbol, one92

going to the k + 1 state, and another one going to some other state, and93

2) they are not the last state of a path reading some negative word of the94

sample. For the k NFA, these states may thus be final. Consequently, the95

simplest reduction from k+1 to k NFA consists in transforming each possibly96

final state of the (k + 1) NFA into a final state of the k NFA.97

We also try to increase the number of transitions in the NFA. Usually,98

transitions that are not defined (i.e., transitions whose existence do not99

change the behavior of the NFA w.r.t. the given sample) are not consid-100

ered in the NFA. Densifying consists in adding some of these transitions.101

Given the densified NFA, we try to reduce or increase the number of final102

states, without violating the constraints imposed by the sample. The idea is103

to obtain NFAs that accept positive words of the sample, reject the negative104

ones, but are also globally more accepting or more rejecting. For example,105

if we want to classify peptides, it is better to accept fewer peptides that are106

sure to be safe than accepting more, with some harmful ones among them.107

Our contribution is thus three-fold. Firstly, we propose some over-con-108

strained inference models for NFA of size k + 1, which allow us to straight-109

forwardly reduce the found NFA to one of size k. Secondly, we propose some110

methods to reduce or extend the number of accepting states and to densify111

the automaton to influence its global acceptance rates—this way we obtain112

a flexible method of generating NFAs of various characteristics. Finally, we113

propose an evaluation method based on random walks which allows us to114

compare the obtained NFA from different perspectives.115

The structure of this paper is as follows. Section 2 gives an overview of116

the NFA inference problem. Section 3 describes the proposed extensions of117

the classical models. In Section 4, we present some properties concerning118

the extensions. The results of our comprehensive experiments are shown and119

discussed in Section 5 and we conclude in Section 6.120

4Only the complexity of the prefix model is in O(σk2) variables, and O(σk2) clauses.

4



2. Inference of automata: related works and SAT models121

Let Σ = {a1, . . . , an} be an alphabet of n symbols, and S = S+ ∪ S−
122

be a learning sample made of two sets. The problem consists in inferring a123

grammar for a language L (called the target language) such that words from124

S+ (called positive words) belong to L, and words from S− (called negative125

words) do not belong to L: S+ ⊆ L and S− ∩ L = ∅.126

Automata are finite state machines used to recognize strings. A string is127

read from left to right, and at each step, the next state is chosen based only128

on the previous state and the symbol being read. This makes the automata129

powerful enough to accept a limited class of languages that are called regular130

languages (e.g., [16]), the class of languages we are interested in.131

The classification of a word with an automaton can be made determinis-132

tic by allowing only one action to be possible at each step. These machines,133

called deterministic finite automata (DFA), are generally easier to manipu-134

late. However, nondeterminism may be a partial solution to the difficulties135

one has to face when learning: incomplete data, problem complexity, etc.136

We focus here on inferring a regular language by learning nondeterministic137

finite automata. This means that words from S+ must be accepted by the138

generated automaton, and words from S− must be rejected. A nondetermin-139

istic finite automaton (NFA) is a quintuple A = (Σ, Q, I, F, δ) where Σ is an140

alphabet, Q is a finite set of states, I ⊆ Q is the set of initial states (in the141

following, we consider only one initial state, i.e., state q1), F is the set of final142

(accepting) states, and δ : Q × Σ =⇒ 2Q is a transition function. A word143

w = a1...al is recognized by A if there is a sequence of states qi1 , . . . , qil with144

the ij in [1..l] and qil ∈ F such that there exists a sequence of transitions145

δ(qi1 , a1), . . . , δ(qil , al) with qij+1
∈ δ(qij , aj).146

Before defining formally the NFA inference problem, we motivate the use147

of NFA and SAT models.148

2.1. Why using SAT models for inferring NFA?149

Many approaches have been developed for the generation of automata in150

the context of grammatical inference. We motivate and justify here the use151

of SAT models.152

First, note that our goal is to obtain a flexible method that can be easily153

adapted to NFA, DFA, and specific automata (e.g., automata with three sorts154

of states as presented in [2]). We also want to be able to generate various155

languages L corresponding to S, able to be more “accepting” or “rejecting”156
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as shown in our experiments. Moreover, we do not want to develop an ad-hoc157

tool, nor a too specific algorithm.158

The pioneer work of Dana Angluin (e.g., [17]) is based on an oracle (called159

the Teacher) which can answer membership queries about a word, and can160

also test equivalence of 2 grammars (in case of negative answer, it also pro-161

vides a counterexample. Although a sample could replace the Teacher, it is162

not known “a priori” how many loops Angluin’s algorithm must perform to163

succeed in inferring the grammar, and thus, what should be the sample size.164

In our case, we want to be able to generate a grammar, even with a very165

small sample5.166

In [3], Denis et al. proposed an algorithm designed to discern regu-167

lar languages. This algorithm operates by generating a specialized form of168

nondeterministic finite automaton known as a residual finite state automaton169

(RFSA). Then, they propose a new learning algorithm, DeLeTe2, based on170

the search for the inclusion relations between the residual languages of the171

target language. Thus, the algorithm yields an RFSA as its output. The au-172

thors establish that unless |Σ| = 1, the characterization of the class of regular173

languages over Σ using RFSAs cannot be achieved in polynomial time.174

RPNI is one of the methods which are based on merging states from the175

Prefix Tree Acceptor (PTA). A PTA is a tree-like DFA built by using each176

prefix of the sample (only from S+ in the case of RPNI) as a state. Then, this177

kind of method tries to merge states and to propagate the merges under the178

condition of not merging states that represent positive samples with those179

which represent negative ones. In the case of RPNI, the method also keeps180

the automaton deterministic.181

Some newer approaches based on state merging can be cited, such as182

the family of algorithms for regular languages inference presented in [4]: the183

method is based on building, for each word of S+, an irreducible subautoma-184

ton (i.e., merging two states would lead to acceptance of some word from185

S−). Each subautomaton is obtained by merging states in the automaton186

that just recognizes the word. The output of any algorithm from the family187

consists of a collection of selected NFAs for each positive word. Each member188

of the family infers the class of regular languages in the limit. The authors189

claim that this method gives better results than DeLeTe2, and RPNI [18].190

5However, it is obvious that the quality of the generated NFA in terms of classification
is also depending on the size and quality of the sample.
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However, the final NFAs may differ from each other: indeed, depending on191

the algorithm used, the number of subautomata inferred for each word or the192

order of state merging can vary.193

Another state merging algorithm, called order independent learning (OIL),194

was proposed in [19]. The OIL algorithm, employing the notion of a univer-195

sal automaton, converges towards generating an NFA for recognizing the196

target language, irrespective of the sequence in which states are merged.197

The authors demonstrate that while the merging of states in varying orders198

may result in distinct NFAs, the language accepted by these NFAs consis-199

tently corresponds to the target language. However, OIL requires a universal200

sample. Although there exists such a sample for each regular language, we201

cannot be dependent of such a property since for real applications, samples202

are obtained by observation generally.203

To our knowledge, the result of state merging algorithms always depend204

on the order of merges (or works with some specific samples in the case of205

OIL). Moreover, it is not possible to know beforehand the size of the obtained206

NFA/DFA, nor to know whether this size is minimal. It is also not possible207

to influence the acceptance rates of the automaton, i.e., respecting a sample208

S, will the DFA/NFA be globally more accepting or more rejecting towards209

a set of words to be classified?210

The problem of methods based on metaheuristics [5] is the impossibility211

to ensure the existence or not of a solution. Thus, as with hill-climbing in [6],212

one may fail to find a correct solution.213

Compared to the previously cited methods, one can decide to use some al-214

ready existing tools, such as constraint solvers [7] that are complete, i.e., they215

can always find a solution if one exists, prove unsatisfiability otherwise, and216

find the global optimum in optimization problems. To use these solvers, the217

problem is generally modeled as a Constraint Satisfaction Problem (CSP) or218

a Constrained Optimization Problem (COP). Various types of variables and219

constraints can be used. In [9], Integer Non-Linear Programming (INLP) has220

been used. Although rather “elegant”, such models are not well suited for the221

NFA problem. We performed some tests with PyCSP [20] and the ACE [21]222

solver, and only trivial and extremely small samples could be tackled.223

Using a SAT model and a classical SAT solver is thus an alternative to224

infer an NFA with k states, k being given. However, one has to be careful225

since as shown in [22], a model such as the direct model can have a spatial226

complexity in the order of O(|S+|.k|ω+|) with ω+ the longest word of S+,227

and k the number of states of the generated NFA. Better models have a228
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complexity in the order of O(k3) or even O(k2). The models can easily be229

completed to infer DFAs by just adding some few constraints: for each state230

and for each symbol a of Σ, they enforce at most one outgoing transition with231

a. The problem thus becomes more constrained than with NFA, and one232

could think it would be easier to solve it. However, the generated automata233

are much larger (exponentially larger than NFA in the worst case), and this234

significantly limits the inference of DFA.235

Note also that the satisfiability problem which consists in computing an236

NFA of size k, can be easily extended to an optimization problem: for each237

k smaller than the minimum NFA size k∗ the problem is not satisfiable, and238

for each k > k∗ the problem is satisfiable; it is thus easy to find the minimal239

NFA by a dichotomic use of the satisfiability problem. It is also rather easy240

to parallelize this process, see [13]. As shown in the current paper, it is241

also possible to derive some more or less accepting NFA using the notion of242

“possibly accepting states”. Slightly modifying the models, it is also possible243

to infer some special NFA, such as NFA with three types of states: accepting,244

rejecting, or whatever states (see [23] for inference of 3 sorts automata, and [2]245

for motivations for using them).246

A SAT model thus gives us the required flexibility for tackling other types247

of automata and to make them more or less “accepting”. This is at the cost248

of a less scalable method. However, the performance have been significantly249

improved using hybrid models, some properties, and parallelism, and we can250

now tackle most of the applications we are interested in.251

2.2. Meta-model252

We now formally define the NFA learning problem. To this end, we rely253

on the propositional logic paradigm in order to propose a generic SAT meta-254

model. We then instantiate this meta-model to present some previously255

established models [24] deriving words from prefixes, suffixes, or trying to256

optimize hybrid derivations.257

2.2.1. Notations258

We first need a few notations. For a given k, we also consider K =259

{1, . . . , k}, i.e., the set of the first k non-zero integers. The following integer260

and Boolean variables are the ones that appear in our meta-model:261

• The integer k represents the size of the NFA to be generated; it is given.262
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• For each state i, we have one Boolean variable fi determining whether263

state i is final or not. We thus have the set F of k Boolean variables264

F = {f1, . . . , fk}.265

• For each pair of states (i, j) (i possibly equal to j), and each symbol a266

of Σ we have a Boolean variable δa, # »
i,j determining whether there is a267

transition from state i to state j with the symbol a. We thus obtain a268

set ∆ = {δa, # »
i,j|a ∈ Σ and (i, j) ∈ K2} of nk2 Boolean variables.269

The “path” pw,i1,im+1
is a Boolean variable representing the existence of

a derivation from state i1 to state im+1 for the word w = a1 . . . am, i.e., the
successive transitions from state il to il+1 with the symbol al. In terms of
Boolean variable, pw,i1,im+1

, is defined as follows:

pw,i1,im+1
= δa1,

#      »
i1,i2

∧ . . . ∧ δam,
#                »
im,im+1

A path from i1 to im+1 is a sequence of transitions (a derivation), it is thus270

directed. However, we will incrementally build such path either starting from271

i1, starting from im+1, or starting from both sides. Thus, to avoid possible272

confusion between paths and their building, we will refer to it as i1, im+1273

without any direction.274

2.2.2. The meta-model275

The aim of the meta-model is to be generic and parameterized. Hence,276

we can then instantiate it in order to obtain various models. Our meta-model277

to define an NFA of size k (that we denote by k NFA) can be described with278

the following constraints:279

• This constraint is only related to the empty word λ, and the status280

of the initial state: if λ is a word of S+, then the initial state must281

be final; oppositely, if it is a negative word, the initial state cannot be282

final:283

(λ ∈ S+ −→ f1) ∧ (λ ∈ S− −→ ¬f1) (1)

• A positive word w from S+ must terminate in a final state of the k NFA,284

i.e., there must be a path from the initial state 1 to a final state i (fi285

must be true) for the word w:286 ∨
i∈K

pw,1,i ∧ fi (2)

9



• Similarly, a negative word w must not terminate in a final state of the287

k NFA, i.e., either there is no path for w from state 1 to a state from288

K, or each path for w from 1 to a state i implies that i in a not a final289

state:290 ∧
i∈K

(¬pw,1,i ∨ ¬fi) (3)

Of course, the notion of a path can be defined and built in many ways.291

In [24], prefix, suffix, and some hybrid constructions are proposed.292

2.3. From the meta-model to models293

As said before, we can consider various models for inferring NFA. These294

models can differ in terms of the types of constraints and variables, or can295

use the same type of variables, but with a different approach to the problem.296

Instead of Boolean, some models use 0/1 variables to represent transi-297

tions, and final states. Then, depending on the kind of constraints, the model298

can be of the INLP family [9] or the CSP family [8]. We made some pre-299

liminary tests with various models with the constraint modeler PyCSP3 [20]300

and we obtained some disastrous results: the models are elegant and concise,301

but the constraints do not permit sufficient filtering6 or sufficiently efficient302

filtering of the search space. Indeed, for example, some of these constraints303

are based on n-ary sums of max: both of these constraints have costly and304

weak filtering (see, e.g., [8]), and their combination is even worse. Intrinsi-305

cally, the NFA learning problem is a Boolean problem, and thus, it is well306

suited for SAT solvers, i.e., solvers that decide the satisfiability of a Boolean307

formula, generally in CNF.308

One of the most standard models for NFA, the direct model (see [13, 15]),309

consists in considering each possible path for each word, without sharing any310

sub-paths between words. This model which is an instantiation of our meta-311

model, has a very bad space complexity of O(|S+|(|ω+| + 1)k|ω+|) clauses,312

and O(|S+|k|ω+|) variables with ω+ the longest word of S+. Moreover, this313

model does not behave well in practice.314

In [25], 7 different models were defined: the prefix model (P), the suffix315

model (S), and several hybrid models combining prefix and suffix models with316

different splitting strategies of words, such as the best prefix model (P ⋆) to317

6Using a constraint, filtering consists in removing values from variable domains that
will never be part of a solution [8].
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optimize size and use of prefixes, the best suffix model (S⋆) to optimize size318

and use of suffixes, and 3 hybrid models (ILS(Init)) based on a local search319

optimization [26] of word splittings (starting with an initial configuration320

Init, being either a random splitting of words, the splitting found by the P ⋆
321

model, or by the S⋆ model).322

Prefix model. Some models such as the prefix model (P), need some auxiliary323

Boolean variables for representing paths for each prefix of each word (positive324

and negative) of the learning sample. This means that words are built from325

state 1, incrementally, adding each time a new symbol, i.e., symbols are326

concatenated one by one, forming all the prefixes of the word, up to the327

word itself. Given a word ω:328

• For the first symbol of the word ω:329 ∨
i∈K

δa, # »
1,i ↔ pa,1,i (4)

• The path for each prefix w of ω with w = va, v ∈ Σ+, a ∈ Σ, is built330

recursively:331 ∧
i∈K

(
pw,1,i ↔

(∨
j∈K

pv,1,j ∧ δa, #»
j,i

))
(5)

After the transformation into CNF using Tseitin transformations [27], the332

spatial complexity of the prefix model is in O(σk2) variables, and O(σk2)333

clauses with σ = Σw∈S|w| (see [15] for details).334

Suffix model. Models such as the suffix model (S) also need some extra vari-335

ables. This time, we consider recursive concatenation of symbols on the left336

(i.e., av with a ∈ Σ, v ∈ Σ+). Thus, given a word ω, its construction starts337

from the end of the word ω:338

• For the last symbol of the word ω:339 ∨
i,j∈K

δa, # »
i,j ↔ pa,i,j (6)

Note that here, the transition is between states i and j since we do not340

know where the word terminates.341
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• The path for each suffix w of ω with w = av is built recursively:342

∧
i,j∈K

(
pw,i,j ↔

(∨
l∈K

δa, #»
i,l ∧ pv,l,j

))
(7)

As Constraint (6) before, we do not know where the words terminate.343

We thus consider paths between i and j for the suffixes.344

After the transformation in CNF using Tseitin transformations, the spa-345

tial complexity of the suffix model is in O(σk3) variables, and O(σk3) clauses346

with σ being the total length of suffixes for all the words of the sample [15].347

Due to not knowing where a word terminates, in contrast to the prefix model,348

where we always start from state 1, we are now in a O(σk3) space complexity.349

Hybrid models. Whereas the prefix (respectively suffix) model consists in350

splitting words as w = va (respectively as w = av) with a ∈ Σ, hybrid351

models consist in splitting words into a prefix and a suffix that are words352

from Σ+, i.e., w = uv with u, v ∈ Σ+. Then, the prefix u is generated with353

Constraints (4), (5) and the suffix v with Constraints (6), (7). We thus need354

to “glue” together these two sub-paths with the constraints:355

pw,1,i ≡
∨
j∈K

pu,1,j ∧ pv,j,i (8)

Since the suffix part is in O(σk3), the hybrid models are also in O(σk3).356

The question is now, how to split each word of S in order to obtain a357

model that can be solved more efficiently? In what follows, Suf(S) represents358

the set of all suffixes of each word of S, and similarly, Pref(S) is the set of359

all prefixes of words of S. To answer this question, we present three types360

of hybrid models. Each word w ∈ S is thus seen as the concatenation of a361

prefix u and a suffix v (i.e., w = uv) that have to be determined. We thus362

now consider two samples, Su = S+
u ∪ S−

u with S+
u = {u | ∃w ∈ S+, w = uv}363

and S−
u = {u | ∃w ∈ S−, w = uv}, and Sv = S+

v ∪ S−
v with S+

v = {v | ∃w ∈364

S+, w = uv} and S−
v = {v | ∃w ∈ S−, w = uv}.365

• Best suffix model (S⋆
k): as building suffixes is in O(σk3), the idea

is to try to optimize the construction of suffixes. To this end, the
best suffix model S⋆

k is based on an ordering of the set Suf(S). Let
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Ω(v) = {w ∈ S | v ∈ Suf(w)} be the set of words accepting v as a
suffix. Then,

v1 ≽s v2 iff |v1| · |Ω(v1)| ≥ |v2| · |Ω(v2)|

with |.| being both the length of a word and the cardinality of a set.366

The set of best suffixes Bs is composed of the best suffixes (w.r.t. to367

≽s) that cover S [25] and is minimal. Thus, Bs ⊆ Suf(S) such that:368

1.
⋃

v∈Bs
Ω(v) = S, i.e., each word of S has a suffix in Bs;369

2. ∀v′ ∈ Bs, (
⋃

v∈Bs\{v′}Ω(v)) ⊂ S, i.e., if a suffix is removed from Bs,370

at least one word of S has no suffix in Bs.371

3. ∀B′
s ⊆ Suf(S), if B′

s ̸= Bs and B′
s satisfies Conditions 1 and372

2 above, then
∑

v∈Bs
|v||Ω(v)| ≥

∑
v∈B′

s
|v||Ω(v)|, i.e., Bs is the373

largest set of suffixes regarding the ≽s order, and respecting Con-374

ditions 1 and 2 above.375

For each word w ∈ S, v⋆w, the best suffix for w in Bs is:

v⋆w ∈ Bs ∩ Suf(w) and ∀v ∈ Suf(w), v⋆w ≽s v

i.e., the suffix v⋆w for w is the largest suffix possible w.r.t. ≽s in Bs. Set376

Sv will thus be Bs. Then, for each w, the prefix is built as w = uv⋆w,377

and the u′s constitute Su.378

• Best prefix model (P ⋆
k ): this model is built similarly as the best

suffix model above. This time, we have an order between prefixes.
Consider u1 and u2, two prefixes of Pref(S), the set of all prefixes of all
words in S, then:

u1 ≽p u2 ⇔ |u1| ∗ |A(u1)| ≥ |u2| ∗ |A(u2)|

with A(u) = {w ∈ S | u ∈ Pref(w)}. Then, the set Bp of best prefixes379

is equivalent to the set of best suffixes above, but w.r.t. the ordering380

≽p. Finally, the suffixes are built similarly as above.381

• Local search optimization of the splitting (ILSk(Init)): we con-382

sider here that the search space corresponds to all the hybrid models,383

i.e., all the possible splits for all words of S. The fitness function we384
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use is: f(Sp, Ss) = |Pref(Sp)| + k · |Suf(Ss)|7, and the optimization of385

the prefixes and suffixes is based on Iterated Local Search (ILS) [26]386

with the fitness function f for optimizing our hybrid model ILSk(Init).387

The search starts with an initial split Init for each word of S. At each388

iteration, the best split w = uv is found for the selected word w: w is389

selected randomly with a roulette wheel selection based on the weights390

of words defined by weightw = 75%/|S|+25% · |w|/(
∑

wi∈S |wi|). Note391

that the coefficients (75% and 25%) ensure that every word receives392

a minimum weight, augmented by a bonus proportional to its length.393

The number of iterations is given. Since our word selection process394

ensures diversification, there is no need to introduce random walks or395

restarts.396

The Init split can be a random split, but it can also be a split based on397

the best suffix (respectively prefix) model. Note that we do not need398

the S⋆
k (respectively the P ⋆

k ) model itself, but only the splitting: once399

we have determined where to split each word (e.g., for the best suffix400

model, by determining Bs and the best prefix of each word) we have the401

initial split (the initial configuration of the local search), and generating402

the constraints would be useless since this splitting will be improved403

by the local search. In this case, since building Bs or Bp is the costly404

part of the suffix and prefix models, we know that the generation will405

probably be longer than usual models, but with the hope of obtaining406

smaller instances.407

3. Taking advantage of the problem characteristics: model exten-408

sions409

We can now present a property that we will use in what follows. Consider410

a sample S. Then, if there is a k NFA to accept words of S+ and reject411

words of S−, there is also an NFA of size k + 1, also accepting words of S+
412

and rejecting words of S−. This property is quite obvious, for example, it413

is sufficient to add a new state k + 1, and no transition outgoing from or414

incoming to it. It is also rather useless: why generating an NFA of size k+1415

7Since the size of suffix based models (O(k3)) is larger than the size of the prefix model
(O(k2)) by a factor k, we intuitively multiplied the penalty for suffixes by k. Experimen-
tation showed that this fitness function is suitable.
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knowing that the instance is larger than the k NFA instance? However, we416

can refine and complete this property in order to generate k NFA from a417

(k + 1) NFA in cases when k NFA cannot be inferred directly. To do so,418

some extra constraints are added to the (k + 1) NFA to over-constrain it.419

We obtain what we call (k + 1) NFA extensions.420

3.1. From k NFA to (k + 1) NFA421

Let A = (QA,Σ,∆A, q1, F
A) be an NFA of size k. Then, there always422

exists an NFA A′, of size k + 1, such that A′ = (QA′
,Σ,∆A′

, q1, F
A′
) with:423

• QA′
= QA ∪ {qk+1},424

• FA′
= {qk+1},425

• and ∆A′
defined by:

∀i,j∈(QA)2 δA
a,

# »
i,j

↔ δA
′

a,
# »
i,j

∀i∈QA,j∈FA δA
a,

# »
i,j

↔ δA
′

a,
#         »
i,k+1

In fact, there is only one final state for A′, i.e., the newly created state k+1.426

All the transitions of A are kept in A′. For each final state j, for each symbol427

a, for each incoming transition from state i to j with a, a new transition428

from i to k + 1 with a is created. In other words, each transition to a final429

state is duplicated to state k + 1. Following this construction, state k + 1430

does not have any outgoing transition.431

The obvious but important property for the rest of this paper is that the432

language recognized by A′ is the same as the one recognized by A.433

Sketch of the proof :434

1. For each word w ∈ S+ \ {λ}:435

Let w = va with v ∈ Pref(S) and a ∈ Σ. Then v is recognized by436

A and can finish in several states T ⊆ Q (not necessary final states).437

As w ∈ S+, at least one transition δA
a,

# »
i,j

with i ∈ T and j ∈ F exists.438

By the rules of transitions creation, δA
′

a,
#         »
i,k+1

exists and so word w is439

recognized by A′.440
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2. For each word w ∈ S− \ {λ}:441

Let w = va with v ∈ Pref(S) and a ∈ Σ. There may be a path for v442

in A that terminates in states T ⊆ Q. As w ∈ S−, if pA
v,1,j

exists then443

δA
a,

#»
j,i

with j ∈ T , i ∈ F does not exist. Thus, δA
′

a,
#          »
1,k+1

is not created and444

w is then rejected by A′.445

Note that if λ ∈ S+, we can do a very similar construction by considering446

state k + 1 as the second initial state. Since there are no outgoing transitions447

from this state, it will accept λ without affecting the rest of the NFA. If448

λ ∈ S−, no changes need to be introduced to the model, since k + 1 ̸= 1.449

In what follows, we over-constrain an NFA of size k + 1, i.e., we over-450

constrain a (k + 1) NFA model, to obtain an NFA as close as possible to A′.451

The goal is to obtain over-constrained (k+1) NFA model and instances that452

can be solved as easily (or even easier as we will see) as an NFA of size k.453

Moreover, the idea is also that the NFA generated with the over-constrained454

(k + 1) NFA model can be reduced to an NFA of size k. To this end, we455

present two (k + 1) NFA model extensions for which a new state and new456

constraints are added.457

To represent the fact that the new extensions contain one more state458

than the initial k NFA, we name them (k + 1) NFA+ and (k + 1) NFA⋆. Of459

course, new Boolean variables are added for the new final state and the new460

transitions.461

3.2. The (k + 1) NFA+ extension462

Recall that K = {1, . . . , k}, and consider K+ = {1, . . . , k+1} be the k+1463

first non-zero integers.464

A (k + 1) NFA+ is a (k + 1) NFA with some extra properties to help to465

reduce it to a k NFA by a reduction algorithm (as in [24]). The properties466

that we enforce are:467

• a (k + 1) NFA+ has one and only one final state, i.e., state k + 1;468

• there is no outgoing transition for state k + 1;469

• each transition from a state i to state k + 1 with symbol a has an470

equivalent transition from state i to a state j (j ̸= k + 1) reading the471

same symbol a. In what follows, such states i are called possibly final472

states.473
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We need the same variables as a k NFA to model a (k+1) NFA+, together474

with some extra variables, each one related to state k + 1: a variable to fix475

that state k + 1 is final, some variables for the new transitions incoming to476

state k+1, and some new variables to build paths going to state k+1. These477

variables are linked with the following new constraints:478

• No state is final, except state k + 1 which is the only final state:479 ∧
i∈K

(¬fi) ∧ fk+1 (9)

Note that this constraint will mainly impact instances generated with480

the suffix model. Indeed, some steps of unit propagation will be achieved481

directly.482

• There is no outgoing transition from the (k + 1) NFA+ final state:483 ∧
a∈Σ

∧
i∈K+

¬δa, #         »
k+1,i (10)

• Each incoming transition from state i to the (k + 1) NFA+ final state484

k + 1 must also be a transition from i finishing in another state:485

∧
a∈Σ

( ∧
i∈K

(
δa, #         »

i,k+1 →
∨
j∈K

δa, # »
i,j

))
(11)

As said before, this first model extension, the (k+1) NFA+, over-constrains486

the (k+1) NFA to be able to reduce a generated (k+1) NFA into a k NFA487

with the reduction algorithm presented in Fig. 1. The worst-case complexity488

of this algorithm is in O(k|S|) and for a (k + 1) NFA+ obtained by PR
k+1489

model8 the algorithm will always succeed.490

However, we cannot always reduce a (k+1) NFA+ into a k NFA [24]. In491

fact, we experimentally observed that the reduction algorithm (Fig. 1) rarely492

succeeds. Indeed, a (k + 1) NFA+ instance mainly provides information493

when it is unsatisfiable, because then we also know that there is no k NFA.494

8The PR
k+1 model is the reducible prefix model. See [24] for details.
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Algorithm ReduceToKNFA(S, pw,1,i)

1. Based on the variables pw,1,i for i ∈ K and w ∈ S−, determine the set
of candidate final states as QA \ {qj}, where j ∈ K and pw,1,j = true

(i.e., states in which any negative example can be reached cannot be
final).

2. If the set of candidate final states is empty, the algorithm stops without
being able to compute a k NFA.

3. Otherwise, given a non-empty set of candidate final states, for each
word w ∈ S+ test whether the word can be reached in any candidate
state by investigating variables pw,1,i, for these states.

4. If the test in the previous step returns a negative result (i.e., there are
words w ∈ S+ that cannot be reached in any of the candidate final
states), the algorithm stops, without being able to compute a k NFA.

5. Otherwise, the k NFA can be obtained by removing the transitions lead-
ing to state (k + 1) and setting all candidate states to be final.

Figure 1: Sketch of our reduction algorithm.
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3.3. The (k + 1) NFA⋆ extension495

Contrary to the first extension, the second model extension, the (k +496

1) NFA⋆ model, does not need any reduction algorithm. Indeed, the satisfia-497

bility (respectively unsatisfiability) of a (k+1) NFA⋆ implies the satisfiability498

(respectively unsatisfiability) of a k NFA. Moreover, in case of satisfiability,499

the (k + 1) NFA⋆ can always be reduced to a k NFA by just removing the500

k + 1 state and some transitions. Thus, this reduction has also no cost.501

We can define a (k+1) NFA⋆ as a (k+1) NFA+ with some more properties502

on words and a new set of Boolean variables for possibly final states in the503

reduced k NFA (F ∗ = {f ∗
1 , ..., f

∗
k}). A (k + 1) NFA⋆ is reduced to a k NFA504

by removing state k + 1 and all its incoming transitions. Moreover, the505

final states are chosen among the possible final states, by determining the f ∗
i506

of {f ∗
1 , . . . , f

∗
k} that are final states of the k NFA. To determine these final507

states, we have to ensure:508

• A negative word cannot terminate in a possible final state:509 ∧
i∈K

(
f ∗
i →

∧
w∈S−

¬pw,1,i

)
(12)

• A possibly final state must validate at least one positive word of S+:510

∧
i∈K

(
f ∗
i →

( ∨
va∈S+

∨
j∈K

(
pv,1,j ∧ δa, #»

j,i ∧ δa, #         »
j,k+1

)))
(13)

• Each positive word must terminate in at least one possibly final state:511 ∧
w∈S+

∨
i∈K

(pw,1,i ∧ f ∗
i ) (14)

As said before, we do not need any reduction algorithm in this case.512

3.4. Complexity513

Obviously, extensions (k + 1) NFA+ and (k + 1) NFA⋆ have worse com-514

plexity than the k NFA model since they require one more state, some more515

transitions to this state, and some more constraints as defined before. More-516

over, k new Boolean variables are required to define the possibly final states.517
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The extra constraints for constructing the extensions from (k + 1) NFA also518

increase the number of clauses and variables. Table 1 provides the cost in519

terms of variables and clauses, and some details about the arity of the gener-520

ated clauses (unary, binary, and greater). Note that a blank cell corresponds521

to 0.522

Table 1: Complexity in terms of variables and clauses for each new constraint allowing
the definition of the (k + 1) NFA+ (Constraints (9)–(11)) and the (k + 1) NFA⋆ models
(Constraints (9)–(14)).

Variables
Clauses

total unary binary n-ary
Constraint 9 k + 1 k + 1
Constraint 10 n(k + 1) n(k + 1)
Constraint 11 nk nk
Constraint 12 k|S−| k|S−|
Constraint 13 k2|S+| 4k2|S+|+ k 3k2|S+| k2|S+|+ k
Constraint 14 k|S+| (3k + 1)|S+| 2k|S+| (k + 1)|S+|

Note that there are numerous unary and binary clauses that will help SAT523

solvers to be efficient. The global order of complexity remains unchanged or524

decreases: since there is now only one final state, we fall down to O(σk2)525

for building suffixes, and thus for the hybrids. As we will observe in Sec-526

tion 3.5, the implementation of these new constraints significantly lowers the527

complexity of many of the models (O(σk3) clauses to O(σ(k + 1)2) clauses)528

just by simplification.529

3.5. Simplified models530

Despite the additional complexity resulting from the extra variables and531

clauses, the (k + 1) NFA⋆ extension allows us to simplify all other models532

by reducing the number of variables (f disappear) and constraints (Con-533

straints (1) and (10) are removed and Constraints (2) and (3) are simplified).534

The final (k + 1) NFA⋆ models that we use can be defined in terms of the535

following variables:536

• a set of k Boolean variables, F ∗ = {f ∗
1 , . . . , f

∗
k}, determining whether537

state i is a possibly final state or not,538
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• a set of nk(k + 1) Boolean variables representing the transitions from539

state i to state j with the symbol a ∈ Σ: ∆ = {δa, # »
i,j|a ∈ Σ and i ∈540

K and j ∈ K+}, and541

• a set of Boolean variables representing the paths (sequence of transi-542

tions from a state i to a state j reading a word w): Π = {pw,i,j|(i, j) ∈543

K2
+, w ∈ Σ∗}544

and constraints:545

• simplified Constraint (2) due to the existence of only one final state546

k + 1:
∧

w∈S+ pw,1,k+1547

• simplified Constraint (3) due to the existence of only one final state548

k + 1:
∧

w∈S− ¬pw,1,k+1549

• Constraint (11):
∧

a∈Σ

(∧
i∈K

(
δa, #         »

i,k+1 →
∨

j∈K δa, # »
i,j

))
550

• Constraint (12):
∧

i∈K
(
f ∗
i →

∧
w∈S− ¬pw,1,i

)
551

• Constraint (13):
∧

i∈K

(
f ∗
i →

(∨
va∈S+

∨
j∈K

(
pv,1,j ∧ δa, #»

j,i ∧ δa, #         »
j,k+1

)))
552

• Constraint (14):
∧

w∈S+

∨
i∈K
(
pw,1,i ∧ f ∗

i

)
553

The extension also affects positively the constraints used for path defi-554

nitions, regardless of the way in which they are constructed (as outlined in555

Section 2.3). The most significant simplification is for the suffix model, where556

the space complexity changes from O(σk3) clauses to O(σ(k + 1)2) clauses.557

All other models, which at least partially use the suffixes, also undergo this558

complexity reduction.559

4. Properties of the model extensions560

The extensions are over-constrained models for generating (k + 1) NFA.561

This means, that some extra constraints are not required for learning a (k+562

1) NFA, but in our case, these constraints are useful to reduce the generated563

(k + 1) NFA to a k NFA. We can qualify the k NFA+ model as a “weak”564

extension because with it, only the existence of a k NFA can be proved. On565

the other hand, (k+1) NFA is a “strong” extension that proves the existence566

or not of a k NFA.567
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4.1. The (k + 1) NFA+ extension568

Let us first present the properties of the weak extension.569

Main property. Completing the k NFA model with Constraints (9), (10), and570

(11) we obtain the following main property:571

∃ k NFA ⇒ ∃ (k + 1) NFA+ (15)

The contradiction allows us to prove the unsatisfiability of k NFA with572

(k + 1) NFA+:573

̸ ∃ (k + 1) NFA+ ⇏ ∃ k NFA (16)

Proof. The proof is based on the main idea: there always exists a trans-574

formation from any k NFA to a (k + 1) NFA+ which recognizes the same575

language.576

1. A new state k + 1 is added to the k NFA.577

2. For each final state of the k NFA, each incoming transition is duplicated578

into a transition going to state k + 1, with the same transition’s start579

state and the same symbol. Thus, a path pw,1,k+1 exists from the initial580

state to state k+ 1 if and only if a path exists from the initial state to581

the k NFA final states.582

3. Thus:583

• each positive word now terminates in state k + 1,584

• and, a negative word cannot terminate in the state k + 1.585

4. Each final state of the k NFA is now redundant with state k+1. Hence,586

state k + 1 can be considered as the unique final state.587

5. The automaton is then a (k+1) NFA+ since it has only one final state,588

and it accepts positive words and rejects negative words.589
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Figure 2: Example of a (k + 1) NFA+ solution for k = 3 and S = ({a, ab, abb, bbb},
{aab, b, ba, bab, aaa}). It is not possible to find a k NFA with k = 2.

Minor property. Whereas the lack of solutions for (k+1) NFA+ allows us to590

conclude the lack of solutions for k NFA, a solution for (k + 1) NFA+ is not591

sufficient to affirm the existence of a k NFA:592

∃ (k + 1) NFA+ ̸⇒ ∃ k NFA (17)

The simple example shown in Fig. 2 illustrates this property: a k NFA+
593

solution with k = 3 exists, whereas there is no k NFA with two states (k = 2).594

The reduction algorithm presented in Fig. 1 (and initially in [24]) com-595

putes a k NFA from a (k + 1) NFA+ solution. Unfortunately, as already596

mentioned, this algorithm rarely succeeds in computing a k NFA.597

4.2. The (k + 1) NFA⋆ model extension598

We can now observe the strong model extension and its more interesting599

properties. Note that this extension is built on the previous one.600

Main property. Completing the (k + 1) NFA+ model with Constraints (12),601

(13), and (14), we obtain the equisatisfiability between k NFA and (k +602

1) NFA⋆:603

∃ k NFA ≡ ∃ (k + 1) NFA⋆ (18)

Proof. The idea of the proof is based on the fact that: there are some trans-604

formations from k NFA to (k + 1) NFA⋆, and from (k + 1) NFA⋆ to k NFA605

preserving validation of positive words and rejections of negative words.606

⇒ from k NFA to (k + 1) NFA⋆
607

1. the proof is similar to the one in Section 4.1.608

⇐ from (k + 1) NFA⋆ to k NFA609
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1. Each transition δa, #         »
i,k+1 is deleted, and states j such that δa, #         »

i,k+1 ∧610

δa, # »
i,j are now considered as final states.611

2. State k + 1 is removed.612

3. Since there are some transitions to a possible final state redundant613

to transitions to state k+1, each positive word now terminates in614

at least a possible final state.615

4. No negative word can terminate in a possible final state. Other-616

wise, by construction, it would also finish in state k + 1.617

5. The automaton is then a k NFA validating words of S+ and re-618

jecting words of S−.619

Minor property. If there is no solution for a (k + 1) NFA⋆, this means that620

there are also no solutions for the corresponding k NFA model. However,621

nothing can be deduced for the (k + 1) NFA model.622

̸ ∃ (k + 1) NFA⋆ ̸⇏ ∃ (k + 1) NFA (19)

It is easy to prove Property (19) with its contradiction and its rewriting623

using Property (18):624

∃ (k + 1) NFA ̸⇒ ∃ (k + 1) NFA⋆

∃ (k + 1) NFA ̸⇒ ∃ k NFA (20)

Property (20) is correct, otherwise, the existence of a (k+1) NFA solution625

would imply the existence of a k NFA solution. As a counterexample, Fig. 2626

proposes a (k + 1) NFA with k = 3 but no k NFA with k = 2 exists.627

5. Experiments628

We now present the results of a comprehensive experimental study of two629

equisatisfiable models, k NFA and (k+1) NFA⋆. The models were compared630

taking into account three different perspectives:631

1. Models’ performance in terms of the number of solutions and running632

times for k ranging from 1 to the kmax with kmax = min(30, size of the633

PTA built for set S+),634
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2. Models’ ability to find NFA of small (possibly minimum) size—we com-635

pare the sizes of the smallest NFA found for each sample by each model,636

3. Selected characteristics of found NFA established based on the random637

walks algorithm.638

In the experiments, we use five different models for each of the k NFA639

and (k + 1) NFA⋆, namely the best prefix model P ⋆, the best suffix model640

S⋆ and three ILS-based models, ILS(r), ILS(P ⋆), and ILS(S⋆). For the641

(k + 1) NFA⋆ we use the simplified models as described in Section 3.5.642

5.1. Datasets643

The experiments were conducted on three different datasets. They possess644

varying characteristics in terms of alphabet size, sample size, word length645

distribution within the sample, as well as the sizes of the PTAs.646

The first dataset was composed of the samples described first in [13]—in647

what follows this dataset is termed STAMINA. The basic characteristics of648

all 30 samples contained in this dataset are gathered in Table 2. As can be649

observed the samples are based on alphabets of size 2, 5, and 10, with sample650

sizes ranging from 20 to 200 words split equally between sets S+ and S−.651

Thus, the samples are balanced in terms of S+ and S− sizes. Note also that652

the ww-10-30..99 samples possess the strict superset property, i.e., the larger653

samples are the strict supersets of the smaller ones. The st-* samples are not654

related to each other.655

The second dataset was based on WaltzDB—a database of peptide se-656

quences known to be amyloidogenic (harmful) or non-amyloidogenic [28, 29].657

The samples were based on the subsets of peptides as defined in the database658

(see http://waltzdb.switchlab.org/sequences). This dataset is called PEP-659

TIDES in the following sections. Samples’ characteristics are collected in660

Table 3. Note that for each sample mentioned in the table we also generated661

sub-samples containing 10%, 30%, and 50% of the first peptides sequences.662

As can be seen, the alphabet sizes are much bigger than for the STAMINA663

dataset, the samples are also quite imbalanced.664

Finally, the third dataset, REGEXES, was constructed based on regular665

expressions (regexp). For each sample we defined a regexp describing the666

words in S+ and we generated randomly a given number of words having667

the lengths between 1 and 15 symbols. Set S− was constructed by randomly668

shuffling the positive words and ensuring they do not match the regular669

expression. The regular expressions used were as follows:670

25



Table 2: Characteristics of the STAMINA samples. Note that for the st-2-x samples, with
x = {30, 40, . . . , 100} and st-5-y samples, with y = {20, 30, . . . , 100} we observed the same
word length characteristics, so the rows were compacted. |Σ| – size of alphabet, |S+|, |S−|
– sizes of the sets of positive and negative examples, |w| – length of word.
Name |Σ| |S+| |S−| minw∈S+ |w| maxw∈S+ |w| minw∈S− |w| maxw∈S− |w|
st-2-10 2 10 10 3 8 3 8
st-2-20 2 20 20 3 10 3 10
st-2-30..100 2 30..100 30..100 2 10 3 10
st-5-10 5 10 10 3 8 3 8
st-5-20..100 5 20..100 20..100 2 10 2 10
ww-10-10 10 10 10 2 6 2 7
ww-10-20 10 20 20 2 10 2 10
ww-10-30 10 30 30 2 4 2 4
ww-10-40 10 40 40 2 5 2 6
ww-10-50 10 50 50 2 6 2 7
ww-10-60 10 60 60 2 7 2 7
ww-10-70 10 70 70 2 8 2 8
ww-10-80 10 80 80 2 9 2 9
ww-10-90 10 90 90 2 10 2 10
ww-10-99 10 99 99 2 10 2 10

Table 3: Characteristics of the PEPTIDES samples. Sample names correspond to the
following subsets: AH – Amylhex, AMS – Apoai mutant set, Fun – Functionals, FUS –
FUS, Lin – Lindquist, Lit – Literature, NC – Newcores, Seb – Seb set, SOD1 – SOD1,
TMS – Tau mutant set, TDP43 – TDP43. |Σ| – size of alphabet, |S+|, |S−| – sizes of the
sets of positive and negative examples, |w| – length of word.

Name |Σ| |S+| |S−| minw∈S+ |w| maxw∈S+ |w| minw∈S− |w| maxw∈S− |w|
AH 19 79 121 6 6 6 6
AMS 20 79 36 6 6 6 6
Fun 19 11 126 6 6 6 6
FUS 18 1 48 6 6 6 6
Lin 20 3 102 6 6 6 6
Lit 20 204 66 5 6 6 6
NC 18 32 15 6 6 6 6
Seb 20 4 46 6 6 6 6
SOD1 17 8 22 6 6 6 6
TMS 20 92 22 6 6 6 6
TDP43 15 2 92 6 6 6 6

• regex1: (0|11)(001|000|10)∗0,671

• regex2: [0− 4][0− 4][0− 4](012|123|234)∗(0|1),672
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• regex3: [0− 9][0− 4][5− 9](024|135|(98|87))∗(0|6),673

• regex4: [0− 4]∗[5− 9]∗(024|135|(98|87))∗(0|6),674

• regex5: [0− 2]∗[3− 4](0|2)∗(0|1|4).675

Table 4 lists the basic parameters of this dataset. Similarly to the PEPTIDES676

dataset, we also generated sub-samples containing 10%, 30%, and 50% of the677

words in each sample. Due to the way the negative examples were produced,678

the set is balanced in terms of S+ and S− sizes.679

Table 4: Characteristics of the REGEXES samples. |Σ| – size of alphabet, |S+|, |S−| –
sizes of the sets of positive and negative examples, |w| – length of word.

Name |Σ| |S+| |S−| minw∈S+ |w| maxw∈S+ |w| minw∈S− |w| maxw∈S− |w|
regex1 2 100 100 2 15 3 15
regex2 5 100 100 4 13 4 13
regex3 10 100 100 4 15 4 15
regex4 10 100 100 4 15 2 15
regex5 5 100 100 3 15 3 15
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Figure 3: Sizes of prefix tree acceptors built for all STAMINA samples.

To observe further differences between the datasets and the challenges680

they could pose for the SAT models we analyzed the sizes of PTAs built for681

each sample. These sizes are depicted in Figs. 3, 4, and 5, respectively for682

the STAMINA, PEPTIDES, and REGEXES datasets. As can be seen, the683

samples belonging to different datasets differ significantly from each other in684

terms of PTA sizes. For STAMINA samples we observe approximately linear685
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Figure 4: Sizes of prefix tree acceptors built for all PEPTIDES samples. Sample names
ending in ‘-10’, ‘-30’ and ‘-50’ represent the 10%, 30%, and 50% sub-samples. Note the
logarithmic scale on the Y axis.

increase in the size of the PTAs9. The linear trend may be attributed to the686

strict superset property in case of ww-10-30..99 samples, and to the almost687

invariant characteristics of the samples st-2-* and st-5-*. For the PEPTIDES688

samples we either observe no change in PTA size or an exponential increase689

(note the logarithmic scale on the Y axis). The lack of PTA size change690

results from the sample characteristics—the number of positive examples on691

which the PTA is based is very small, and consequently almost the same692

number of positive examples is included in each sub-sample.693

5.2. Random walks algorithm694

Apart from being nondeterministic, the generated automata can also con-695

tain cycles or loops10, which make the languages accepted by them infinite.696

Therefore, it is not feasible to generate a set of all the words accepted by697

such automata, in order to compare their acceptance capabilities. Thus, to698

evaluate the obtained NFA we designed a simple random walks algorithm699

with the aim of capturing the behavior of the NFA based on a finite subset700

of words. The algorithm starts from the initial state and chooses one of the701

outgoing transitions at random with uniform probability. We continue this702

process until one of the following stop conditions is met:703

9Note that for STAMINA samples we used the PTA size after the application of ran-
domized state merging algorithm as reported in [13].

10Note that all the NFA generated in our experiments contained at least one cycle.
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Figure 5: Sizes of prefix tree acceptors built for all REGEXES samples. Sample names
ending in ‘-10’, ‘-30’ and ‘-50’ represent the 10%, 30%, and 50% sub-samples.

SC1: A final (accepting) state was reached. If the state has no outgoing704

transitions, the walk stops here. Otherwise, the walk either continues705

or stops with a certain probability β (in the experiments β = 0.3 was706

used).707

SC2: A state (either final or non-final) without outgoing transitions was708

reached—no further walks are possible. Note that this condition im-709

plies that dead-end states may exist in the inferred automata. It results710

from the SAT solver focusing on finding a solution to a CNF formula711

generated for a given number of states k, which may not be the smallest712

k possible for the given sample. If a solution containing such states is713

found, they can be removed thus producing a smaller NFA.714

SC3: A maximum allowed length of a word was reached. The maximum715

length is sample-dependent and corresponds to the length of the longest716

word in the sample (see Tables 2, 3, and 4).717

Note that condition SC1 may work differently depending on the used model,718

i.e., for the (k + 1) NFA⋆ the only final state that exists has no outgoing719

transitions, so the probability β is irrelevant. For the k NFA model however,720

we can either continue building the path for a word, or we can stop at the721

given state and accept the word built so far. Note that the same applies722

to the k NFA obtained after reduction from (k + 1) NFA⋆. Condition SC2723

naturally always ends the walk in all the models. Finally, condition SC3 was724

added to consider only words of similar characteristics to the ones in the725
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sample, and to avoid infinite walks.726

Given the above conditions, the lengths of accepted words may vary be-727

tween 1 and the maximum allowed word length, whereas the lengths of re-728

jected words depend on the existence of condition SC2. If it is effective, i.e.,729

the automaton contains dead-end states, then rejected words’ lengths may730

also vary between 1 and the maximum length. Otherwise, the rejected words731

will always have the maximum allowed length.732

For each NFA, the random walking was performed T times (in the exper-733

iments T = 1000 was used). For a set of T walks, the following metrics were734

then collected:735

• Number of unique words Uw – since some of the walks could have736

ended up reading the same words (either using the same or different737

paths) we counted the number of words excluding duplicates. Given738

two automata with metrics values Uw1 and Uw2, such that Uw1 ≪ Uw2,739

we can conclude that the latter automaton is more diversified and thus740

has greater generalization and acceptance capabilities than the former741

one.742

• Number of unique word paths Up – similarly to Uw metric, this one743

also takes into consideration the fact that some walks may have used744

the same paths. Note that Up ≥ Uw is always true, since it is possible745

that the same word was read on more than one path. If the number of746

unique word paths is low, it may indicate that the automaton is more747

deterministic and thus, the same path is selected multiple times during748

the random walks.749

• Number of words with multiple unique paths Mwp – this metric gives750

us a hint on how many words can be produced using more than a single751

path. In other words, it shows the nondeterminism of the automaton752

on a higher level, i.e., complete paths rather than single transitions.753

• Number of SC1 stops NSC1 – this metric reflects the number of words754

accepted by the NFA. Note that if the walk ended due to SC2 or SC3755

in a final state, we count it as an SC1 stop.756

• Number of SC2 stops NSC2 – this metric reflects the number of times757

we reached a state without outgoing transitions that is not a final state.758

30



A large value of this metric may indicate a significant number of dead-759

end states in the NFA. Consequently, the automaton’s size could be760

reduced by removing these states.761

• Number of SC3 stops NSC3 – this metric shows how often the algorithm762

wandered around the NFA without reaching the final state (or reaching763

it and escaping from it due to the existence of outgoing transitions in764

case of k NFA model or the reduced (k + 1) NFA⋆ ).765

To sum up, the random walks algorithm aims at providing some mea-766

surable statistics reflecting the behavior of the inferred NFA escaping the767

problem of generating all possible words of an infinite language accepted by768

the automaton.769

5.3. NFA acceptance rate enhancements770

Given an NFA for sample S, we know that it accepts positive words of771

the sample and rejects the negative ones. In this experiment, we want to772

investigate whether the NFA can be also globally more accepting or more re-773

jecting. To address this, we propose a method for NFA densification, aimed774

at increasing the number of transitions, thereby mitigating potential biases775

in the generation process. We then proceed to investigate the effects of min-776

imizing and maximizing the number of final states on the NFA’s acceptance777

rates.778

5.3.1. Densification algorithm779

The generation of NFAs using SAT solvers can introduce a bias in the780

structure of the NFA due to the solver’s preference for assigning value false781

rather than true to Boolean variables. This bias can affect the creation of782

certain transitions. To address this issue, we propose a strategy to densify783

the NFA by adding as many transitions as possible.784

The objective is to respect the properties of the NFA (acceptance of785

positive words and rejection of negative words) while maximizing the number786

of transitions. This can only enhance the acceptability of the NFA. The787

principle is rather straightforward: if the incorporation of a transition does788

not lead to an NFA acceptance of a word from set S−, then that transition789

is incorporated into the NFA. The order of inclusion does influence the final790

NFA, but in our case, we add the transitions starting from the initial state791

and following the numerical order of states. The alphabet is also processed792

in alphanumeric order.793
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5.3.2. Changing the set of final states794

We identify NFAs with the minimal number of states k. The number795

of accepting states among these k states can also significantly impact the796

NFA’s acceptance rates. Thus, we explore two approaches: minimization797

and maximization of the set of accepting states.798

For minimization, we test all combinations of states that are smaller in799

size than the initial NFA’s set of accepting states. We only consider a new set800

of accepting states if it respects NFA’s properties (accepting positive words801

and rejecting negative words) and has the smallest possible size. Conse-802

quently, we are able to construct an NFA with a size of k and the smallest803

number of accepting states.804

For maximization, we follow a similar process, but we test combinations805

of states that are strictly larger in size than the initial NFA’s set of accepting806

states.807

5.4. Experimental setup808

The models were implemented in Python using the PySAT library [30].809

The experiments were carried out on a computing cluster with Intel-E5-810

2695 CPUs, and a fixed limit of 10 GB of memory. Running times were811

limited to 15 minutes, including model generation and solving time. We used812

the Glucose [31] SAT solver with default options. Due to its deterministic813

behavior, we run only one execution of each couple (instance, k), with k814

ranging from 1 to kmax.815

The random walks algorithm was implemented in Java and executed on816

a computer with Intel i7-7560U CPU and 8 GB of memory. The number of817

walks was set to T = 1000 and no time limit was assumed. It took around818

720 s to execute the algorithm for all NFA. To ensure repeatability of the819

results, the pseudo-random number generator was initialized with a fixed820

seed value of 0. The densification algorithm as well as the accepting states821

sets modifications described in Sect. 5.3 were implemented in Python.822

5.5. Results and discussion823

5.5.1. Models’ performance analysis824

Tables 5, 6, and 7 show the results for k NFA and (k + 1) NFA⋆ with825

the 5 models described before for the three analyzed datasets. Each table826

is divided into two parts: instances description and results. Instances are827

described by the model and the average number of variables and clauses. As828

the results, we consider the number of satisfiable instances (Sat), unsatisfiable829
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instances (Unsat), and Unknown solutions (noted ?). Moreover, we give the830

average running time (in seconds). The running time corresponds to the sum831

of the modeling time and the SAT solver resolution time. If no result was832

obtained within the time limit, the running time of 900 seconds was assumed.833

Note that the bold value indicates the model with the minimum number of834

Unknown solutions.835

Table 5: Results for k NFA and (k + 1) NFA⋆ on STAMINA instances. Each instance
corresponds to the average for all samples with all k between 1 and kmax. The bold value
indicates the best model in terms of the number of unsolved instances.

Instances Results
Model Vars Clauses Sat Unsat ? Time

k
N
F
A

ILS(r) 134,610 526,978 117 101 195 465
ILS(P ⋆) 135,352 529,964 119 102 192 467
ILS(S⋆) 59,246 237,169 158 104 181 425
P ⋆ 450,030 1,716,896 85 92 236 467
S⋆ 59,696 238,750 147 104 182 425

(k
+
1)

N
F
A

⋆ ILS(r) 143,335 558,587 143 104 166 403
ILS(P ⋆) 144,631 563,706 142 104 167 406
ILS(S⋆) 63,429 252,733 175 107 161 389
P ⋆ 459,938 1,735,419 114 93 206 338
S⋆ 63,989 254,655 172 107 164 383

The tables show that applying (k + 1) NFA⋆ models generally increases836

the size of the model both in terms of the number of variables and clauses.837

Nevertheless, the sizes remain close to each other and the relative differences838

are acceptable.839

In terms of results, we can note that for STAMINA instances the number840

of unsolved instances drops from 181 for the ILS(S⋆) k NFA model to 161841

achieved by the ILS(S⋆) (k + 1) NFA⋆ model. It is also worth noting that842

each of the (k+1) NFA⋆ models allows to solve from 18 to 30 more instances843

compared to its k NFA equivalent. Furthermore, despite the increased sizes844

of the models, the running time decreases for all (k + 1) NFA⋆ models.845

The PEPTIDES dataset (cf. Table 6) is less favorable for the (k+1) NFA⋆
846

models. The results are often identical for k NFA and (k + 1) NFA⋆, with847

some models showing slightly better performance. This may be attributed848

to the relative simplicity of the peptide samples having big alphabets, small849

word lengths and small NFA sizes. For these samples, the k NFA models850
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are sufficient to find most of the NFA (note that only 7 instances remain851

unsolved).852

Finally, for the REGEXES (cf. Table 7) we observe again a positive impact853

of the (k + 1) NFA⋆ models (except for the P ⋆ and S⋆ models) which allows854

us to reduce the number of unsolved instances by 8. We note a decrease in855

the running times (again except for the S⋆ model), although they generally856

remain very close to each other. Similarly to the STAMINA dataset, the857

ILS-based models tend to achieve the best results, with ILS(S⋆) model being858

again the winner.859

Table 6: Results for k NFA and (k + 1) NFA⋆ on PEPTIDES instances. Each instance
corresponds to the average for all samples with all k between 1 and kmax. The bold values
indicate the best models in terms of the number of unsolved instances.

Instances Results
Model Vars Clauses Sat Unsat ? Time

k
N
F
A

ILS(r) 114,249 431,757 862 11 14 30
ILS(P ⋆) 116,224 439,296 863 11 13 29
ILS(S⋆) 103,895 391,925 869 11 7 22
P ⋆ 327,260 1,245,545 720 11 156 168
S⋆ 319,378 1,218,815 751 11 125 137

(k
+
1)

N
F
A

⋆ ILS(r) 118,469 445,595 864 11 12 27
ILS(P ⋆) 122,350 460,553 863 11 13 28
ILS(S⋆) 110,992 417,222 869 11 7 22
P ⋆ 346,580 1,311,033 727 11 149 161
S⋆ 329,763 1,252,342 749 11 127 139

To conclude, the (k+1) NFA⋆ models generally allow to reduce the num-860

ber of unsolved instances of the problem, keeping or even lowering the time861

budget necessary to arrive at a solution. Hence, they should be considered862

as a good alternative to the k NFA models.863

5.5.2. Small size NFA analysis864

To address the second aspect of comparison, namely the ability of the865

models to find small-sized NFA, we collected the minimum sizes of NFA866

found by each of the k NFA and (k+1) NFA⋆ models. Let us recall that the867

existence of (k + 1) NFA⋆ for a certain k + 1 implies also the existence of a868

corresponding k NFA. Thus, we can expect the following cases:869
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Table 7: Results for k NFA and (k + 1) NFA⋆ on REGEXES instances. Each instance
corresponds to the average for all samples with all k between 1 and kmax. The bold value
indicates the best model in terms of the number of unsolved instances.

Instances Results
Model Vars Clauses Sat Unsat ? Time

k
N
F
A

ILS(r) 360,014 1,397,255 465 26 109 218
ILS(P ⋆) 346,288 1,343,062 472 26 102 216
ILS(S⋆) 281,128 1,095,440 521 26 53 138
P ⋆ 412,111 1,565,067 313 26 261 412
S⋆ 475,580 1,834,252 387 26 187 313

(k
+
1)

N
F
A

⋆ ILS(r) 367,142 1,421,137 474 26 100 204
ILS(P ⋆) 355,958 1,376,936 480 26 94 197
ILS(S⋆) 284,430 1,105,832 529 26 45 129
P ⋆ 424,728 1,599,539 308 26 266 405
S⋆ 464,506 1,785,121 378 26 196 325

C=: The smallest NFA found by the k NFA model has the size of k states,870

and the smallest NFA found by the (k + 1) NFA⋆ model has the size871

k + 1. We can say then that both models performed equally well.872

C+: The smallest NFA found by the k NFA model has the size of k states,873

and the smallest NFA found by the (k+1) NFA⋆ model has the size of874

l such that l ≤ k. This implies that an NFA of size l − 1 exists as well875

and so there is an advantage of using (k+1) NFA⋆ (recall that we can876

directly obtain a k NFA from a (k + 1) NFA⋆ by removing state k + 1877

and its incoming transitions and marking the possibly final states as878

final).879

C−: The smallest NFA found by the k NFA model has the size of k states,880

and the smallest NFA found by the (k + 1) NFA⋆ model has the size881

greater than k+1. This implies that the k NFA model enabled finding882

a smaller automaton than (k + 1) NFA⋆ and so the use of the latter883

does not bring any value.884

Apart from the above cases we may also consider situations in which either885

k NFA or (k + 1) NFA⋆ model failed to find any NFA for the given sample886

within the established time limit. These cases give advantage to the model887

which managed to find an NFA, if any was found at all. However, for sim-888

plicity we include these cases in the above ones.889
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Table 8: Comparison of the smallest NFA sizes found by k NFA and (k+1) NFA⋆ models
according to the evaluation cases C= (same size NFA found by both models), C+ ((k +
1) NFA⋆ model found smaller NFA), and C− (k NFA model found smaller NFA).

STAMINA PEPTIDES REGEXES
Model C= C+ C− C= C+ C− C= C+ C−
ILS(r) 16 11 0 44 0 0 19 0 1
ILS(P ⋆) 17 10 0 44 0 0 20 0 0
ILS(S⋆) 15 12 0 44 0 0 20 0 0
P ⋆ 16 11 0 44 0 0 20 0 0
S⋆ 20 7 0 44 0 0 20 0 0
Total 84 51 0 220 0 0 99 0 1

Table 8 shows the performance of (k + 1) NFA⋆ model vs. k NFA model890

in terms of the aforementioned evaluation cases —the table columns are also891

labelled after them11. Note that for the STAMINA dataset, for three largest892

samples all the models failed to find any NFA, hence these samples are not893

included in the analysis.894

As can be seen, the STAMINA dataset shows the most diverse character-895

istics when it comes to the performance of the models in terms of small-sized896

NFA. The PEPTIDES and REGEXES on the other hand do not benefit897

from the (k + 1) NFA⋆ model, as there were no cases this model allowed us898

to obtain smaller NFA. However, PEPTIDES dataset is also the only one, in899

which the k NFA model did not turn out to be better for any sample. The900

results in Table 8 clearly indicate that the proposed (k + 1) NFA⋆ model is901

useful and acts on par or better than the k NFA model in a vast majority902

of cases. What is more, a detailed analysis has shown that for all analyzed903

samples, there always exists a model which is able to achieve the same or904

better NFA size using the (k+1) NFA⋆ model than using the k NFA model.905

Comparing the performance of respective models we can see that ILS(r)906

is the only model which failed to always achieve the same or better results907

for the (k + 1) NFA⋆. In turn, when we consider C+ evaluation case, the908

ILS(S⋆) model is the winner, being slightly better than the P ⋆ and ILS(r)909

models.910

To sum up, if the goal of the inference is to find the minimal NFA for the911

11Due to the amount of data, detailed smallest sizes of NFA found by the respective
models can be found at https://gitlab.com/tjastrzab/jcs2023.
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Figure 6: Number of unique words obtained within 1000 random walks for the STAMINA,
PEPTIDES, and REGEXES sets and NFA obtained using ILS(S⋆) models. Black dots
represent average values.

given sample, it is profitable to apply the (k + 1) NFA⋆ models, especially912

the ILS(S⋆) model.913

5.5.3. Random walks outcomes analysis914

Let us now compare the metrics obtained by the NFA using the random915

walk algorithm described in Section 5.2. To make the analysis clearer, we de-916

cided to run the random walks algorithm only for the ILS(S⋆) models, since917

they achieved the best results in the previous two experiments. Moreover,918

for each (k + 1) NFA⋆ we determined the reduced k NFA, so that all NFA919

can have multiple final states.920

Figure 6 depicts the box plots along with the average values of the Uw921

metric. Based on these results, we established that the differences in the922

average number of unique words for the STAMINA and PEPTIDES datasets923

are not statistically significant at α = 0.05. On the other hand, for the924

REGEXES dataset, we obtain significant differences at α = 0.05 (based925

on the unpaired t-test, with p = .0490). Comparing the averages and the926

median values in Fig. 6, it is clear that the (k + 1) NFA⋆ models produce927

typically more words than k NFA models. Statistical analysis of the average928

values achieved by the ILS(S⋆
k) and ILS(S⋆

k+1) models shows that they differ929

significantly (with p = .0176 at α = 0.05). These observations indicate that930

the (k+1) NFA⋆ models are a bit denser in terms of the number of transitions,931

allowing more words to be read.932
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Looking at the extreme values, we can get as low as 13 unique words for933

the PEPTIDES, 67 for the REGEXES, and 99 for the STAMINA dataset.934

The maximum values are typically above 950 words, with some NFA achiev-935

ing the value of 1000. This diversity of values indicates that depending on936

the size of the NFA, it may actually be more or less deterministic.937

Figure 7 shows the values of the Up metric for all the NFA. Similarly938

to the Uw metric we can observe a trend of lower average values obtained939

by the k NFA-based models. The behavior observed for the extreme metric940

values varies slightly as compared to the previous metric, with higher—for941

STAMINA and REGEXES datasets—or equal minimum values obtained by942

Up. This indicates that even when the number of read words was small, at943

least a portion of them appeared on different paths within the given NFA.944

The conducted statistical analysis revealed that the average values of Up945

metric differ significantly at α = 0.05 for the STAMINA (p = .0168) and946

PEPTIDES (p = .0161) datasets, while this time we do not observe any sta-947

tistical differences for the REGEXES dataset. Comparing the ILS(S⋆
k) and948

ILS(S⋆
k+1) models across all datasets we also achieve statistically significant949

results (p = .0004).950

200

400

600

800

1000
k k k

k
+
1

k
+
1

k
+
1

STAMINA PEPTIDES REGEXES

Up

Figure 7: Number of unique word paths obtained within 1000 random walks for the
STAMINA, PEPTIDES, and REGEXES sets and NFA obtained using ILS(S⋆) models.
Black dots represent average values.

The analysis of Mwp metric has shown that out of the total number of951

2 946 NFA found, in 2 099 cases (71%) multiple paths were found for at952

least one unique word. Furthermore, in 1 262 cases (43%) at least one word953

possessed more than 2 unique paths. This shows that despite the partially954
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Table 9: Selected statistical parameters for the Mwp metric obtained for 1000 random
walks. In the table, we consider the NFAs inferred by ILS(S⋆

k) and ILS(S⋆
k+1) models

together. The Q1 and Q3 denote the first and the third quartile.

Dataset Min Q1 Median Q3 Max
STAMINA 0 9 17 34 200
PEPTIDES 0 0 2 12 139
REGEXES 0 3 10 27 165

deterministic nature of the NFA, they still reflect their nondeterministic ca-955

pabilities.956

Table 9 shows the extreme values as well as the first (Q1), second (me-957

dian), and third (Q3) quartile for Mwp. It is clear that regardless of the958

dataset, the number of words reachable by multiple paths is mostly less959

than 35. Moreover, around 10%–12% of Mwp metric values would be con-960

sidered as outliers12 for each dataset, based on the analysis of inter-quartile961

range (IQR). This means that obtaining large numbers of words reachable962

via multiple paths is unlikely for the inferred NFA.963

Based on the above, we conclude that the ILS(S⋆
k+1) model provides964

better diversity in terms of both the words and the paths identified using the965

random walks algorithm, as compared to the ILS(S⋆
k) model.966

The metrics related to the stop conditions SC1–SC3 will be discussed in967

the following section to enable the comparison of the “base” automata with968

the automata enhanced with densification and final states’ number modifi-969

cations.970

5.5.4. Acceptance rates analysis971

Similarly to the random walks analysis discussed before, the acceptance972

rate analysis for the models with minimized and maximized number of final973

states with and without densification was performed for the NFA inferred us-974

ing ILS(S⋆) models. The execution of the densification algorithm or changes975

to the number of final states was stopped after 2 hours if no result could be976

found. The algorithm for increasing the number of final states turned out977

to be particularly costly. Consequently, we failed to obtain the results for978

12A value is considered an outlier when it falls below Q1 − 1.5 · IQR or above Q3 +
1.5 · IQR, where Q1 and Q3 are the first and third quartile, and IQR = Q3 − Q1 is the
inter-quartile range.
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the ILS(S⋆
k) model in case of STAMINA and REGEXES datasets. Since the979

main purpose of this research was to evaluate the impact on the number of980

final states and the number of transitions on the acceptance rates, we focus981

on the analysis of NSC1–NSC3 metrics of the random walks algorithm.982

Figures 8 to 10 depict the contribution of SC1–SC3 stop conditions, ex-983

pressed as the percentage of unique word paths. In other words, the bars984

represent the values of NSCi/Up ·100%, for i = 1, 2, 3. Based on them we can985

notice a few things.986

Firstly, we can clearly see that the increase in the number of accepting987

states allows us to achieve better acceptance rates, i.e., the contribution of988

SC1 stop condition always increases when we compare the bars labelled as989

Ext. or Den. & Ext. to the others bars. Specifically, the Ext. variant achieves990

the highest acceptance rates among all analyzed variants (within the set of991

NFAs obtained using ILS(S⋆
k) or ILS(S

⋆
k+1) models, respectively), regardless992

of the dataset.993
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Figure 8: Distribution of SC1 (black), SC2 (gray), and SC3 (white) stop conditions for the
STAMINA samples, and NFA inferred without any modification (Base), with final states
number reduction (Red.), final states number increase (Ext.), final states number reduction
with densification (Den. & Red.), and final states number increase with densification (Den.
& Ext.).

Secondly, when we compare the results obtained by ILS(S⋆
k) and ILS(S⋆

k+1)994

models, we note that in most cases, the acceptance rates of the (k+1) NFA⋆
995

are lower—the exceptions involve Ext. and Den. & Ext. variants in which the996
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k NFA is either unable to produce any outcome, or both models achieve the997

maximum acceptance rate of 100%. For the Base NFAs as well as reduction-998

based variants, the differences range between 2% to 12%.999
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Figure 9: Distribution of SC1 (black), SC2 (gray), and SC3 (white) stop conditions for the
PEPTIDES samples and NFA inferred without any modification (Base), with final states
number reduction (Red.), final states number increase (Ext.), final states number reduction
with densification (Den. & Red.), and final states number increase with densification (Den.
& Ext.).

Thirdly, when we compare the densified and non-densified NFA (i.e., Red.1000

vs. Den. & Red., or Ext. vs. Den. & Red.) we can see that the densification1001

either lowers the acceptance rates or keeps them at the same level as before1002

(only for PEPTIDES and Ext. vs. Den. & Red. variants). This trend can1003

be observed regardless of the dataset and the model.1004

Finally, referring to the overall behavior of the NFA, they are typically1005

more accepting than rejecting—the most extreme exception from this rule can1006

be observed in Fig. 10 for the Den. & Red. variant where the acceptance rates1007

drop to 28% and 25%, respectively for ILS(S⋆
k) and ILS(S⋆

k+1). Increasing1008

the number of states has an expected, positive effect on the acceptance rates,1009

reaching up to 59% increase for the PEPTIDES dataset for a comparison1010

between Den. & Red. and Den. & Ext. variants of (k + 1) NFA⋆.1011

In terms of the other stop conditions, we can see that the contribution1012

of SC2 condition is generally low, ranging from 0% to 7%, with the highest1013

values achieved only for the REGEXES dataset. For the STAMINA and1014
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Figure 10: Distribution of SC1 (black), SC2 (gray), and SC3 (white) stop conditions for the
REGEXES samples and NFA inferred without any modification (Base), with final states
number reduction (Red.), final states number increase (Ext.), final states number reduction
with densification (Den. & Red.), and final states number increase with densification (Den.
& Ext.).

PEPTIDES datasets it does not reach levels higher than 1%. A deeper anal-1015

ysis of SC2 condition occurrences revealed that there were only 2 situations1016

in which a dead-end state was present in the smallest automaton found by1017

the ILS(S⋆) models. It occurred once for the Base NFA, and once for the1018

Red. variant. In both cases it applied to the st-2-70 sample. However, the1019

NFA found was the only automaton found for this sample using ILS(S⋆)1020

models, and so also the smallest one. As a consequence, removing the dead-1021

end state we could have achieved a smaller automaton. Note however, that1022

a yet smaller automaton was found by the ILSk+1(r) model, so the overall1023

goal of finding the minimal NFA was not affected by the dead-end state.1024

A key take-away from this experiment is that increasing the number of fi-1025

nal states is enough to increase the acceptance rates of the automaton. When1026

done in opposite way or is combined with other modifications (densification),1027

the acceptance rates will certainly drop.1028

5.5.5. Length-dependent acceptance rates analysis1029

To finalize the analysis of acceptance rates we verified how they depend on1030

the lengths of random walks performed. To this end we selected the Base and1031
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Ext. variants and performed 1000 random walks for maximum word lengths1032

equal to 1, 2, . . . , 15. The Base variant was chosen because it represents1033

the standard output of our inference models. The Ext. variant, in turn, was1034

selected as the one providing the best acceptance rates so far. As before, we1035

focused only on the NFA produced by ILS(S⋆) models.1036

Figure 11 shows a linear trend of acceptance rates increase with increas-1037

ing length of random walks—this trend is only not preserved in case of PEP-1038

TIDES dataset and the Ext. variant, which achieves a constant 100% accep-1039

tance rate regardless of walk lengths. This results from the fact that extended1040

NFA for PEPTIDES have all their states final, because the negative examples1041

typically contain symbols outside of the alphabet of S+.1042

Moreover, we can observe that Ext. variant always achieves higher accep-1043

tance rates than its Base counterpart (compare white circles to white squares1044

or the two-colored circles to squares of both types). This is consistent with1045

the previous results and proves that increasing the number of final states1046

makes the automata more accepting.1047

Finally, note that the values achieved by the analyzed models correspond1048

to the values presented in Figs. 8 to 10, for max |w| = 10 (STAMINA),1049

max |w| = 6 (PEPTIDES), and max |w| = 13, 15 (REGEXES). This is be-1050

cause in the previous experiments we limited the maximum walk length to1051

the maximum word lengths in the samples.1052

The main conclusion from the above analysis is that there is a linear1053

correspondence between the acceptance rates and the length of the performed1054

walk. Therefore, increasing the walk length further should allow achieving1055

better acceptance rates, diverging however, from the characteristics of the1056

initial sample.1057

6. Conclusion1058

Grammatical inference is the process of learning formal grammars, in our1059

case as a nondeterministic finite automaton. In this paper, we proposed1060

over-constrained models to infer an NFA of size k + 1 ((k + 1) NFA⋆) with1061

properties that allow deriving a solution for the classical model of size k1062

(k NFA). With the new models we take advantage of an important property,1063

i.e., if a (k + 1) NFA⋆ automaton exists, it can be directly reduced to an1064

automaton of size k, and if it does not exist, we have the proof there is no1065

automaton of size k. The advantage of using the (k + 1) NFA⋆ model is to1066

obtain shorter resolution times while increasing the rate of solved instances.1067
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Figure 11: Acceptance rates of NFAs generated using ILS(S⋆) models for the Base
(squares) and Ext. (circles) variants and lengths of random walks varying between 1 and
15, for the STAMINA (a), PEPTIDES (b), and REGEXES (c) datasets. Black items
denote k NFA, while white items denote (k + 1) NFA⋆. The two-colored circles indicate
that both models achieved exactly the same results.
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Despite increased number of variables and clauses in the model of size1068

k + 1, these additional constraints allow us to simplify the model and limit1069

the combinatorial explosion. Furthermore, they allow us to lower the global1070

complexity of most of our models that use a suffix construction.1071

Given an NFA, we can preserve its characteristics and reduce (or increase)1072

the number of its accepting states. Moreover, we can also try to densify1073

the automaton by adding transitions excluded from the NFA by the SAT1074

solver bias. These modifications allow us to gain better control over the1075

NFA’s acceptability, i.e., it may become more accepting or more rejecting.1076

Consequently, using the proposed models and post-processing techniques we1077

obtain flexible NFAs, which can be adjusted to one’s needs.1078

Finally, using random walks we can gain some insight into the structure1079

and behavior of the inferred NFA that accept infinite languages. In this1080

paper, we analyzed their capability of generating unique words and paths, as1081

well as the possible reasons for random walk stops.1082

In the future, we plan to employ parallel computing capabilities to some1083

of the models to further reduce the number of unsolved instances. Moreover,1084

we plan to use the inferred NFA to not only generate new words, but also to1085

classify them.1086
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[23] T. Jastrzab, F. Lardeux, É. Monfroy, Cclassifying words with 3-sort1150

automata, in: 16th International Conference on Agents and Artificial1151

Intelligence, ICAART 2024, SCITEPRESS, 2024. In press.1152

[24] T. Jastrzab, F. Lardeux, E. Monfroy, Taking advantage of a very simple1153

property to efficiently infer NFAs, in: 34th IEEE International Confer-1154

ence on Tools with Artificial Intelligence, ICTAI 2022, virtual, November1155

1-2, 2022, IEEE, 2022.1156

[25] F. Lardeux, E. Monfroy, Optimized models and symmetry break-1157

ing for the NFA inference problem, in: 33rd IEEE International1158

Conference on Tools with Artificial Intelligence, ICTAI 2021, Wash-1159

ington, DC, USA, November 1-3, 2021, IEEE, 2021, pp. 396–403.1160

doi:10.1109/ICTAI52525.2021.00065.1161

47
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