Inference of over-constrained NFA of size k + 1 to efficiently and systematically derive NFA of size k for grammar learning - Université d'Angers
Communication Dans Un Congrès Année : 2023

Inference of over-constrained NFA of size k + 1 to efficiently and systematically derive NFA of size k for grammar learning

Résumé

Grammatical inference involves learning a formal grammar as a finite state machine or set of rewrite rules. This paper focuses on inferring Nondeterministic Finite Automata (NFA) from a given sample of words: the NFA must accept some words, and reject others. Our approach is unique in that it addresses the question of whether or not a finite automaton of size k exists for a given sample by using an overconstrained model of size k + 1. Additionally, our method allows for the identification of the automaton of size k when it exists. While the concept may seem straightforward, the effectiveness of this approach is demonstrated through the results of our experiments.
Fichier principal
Vignette du fichier
ICCS2023.pdf (463.15 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04199534 , version 1 (07-09-2023)

Identifiants

Citer

Tomasz Jastrząb, Frédéric Lardeux, Eric Monfroy. Inference of over-constrained NFA of size k + 1 to efficiently and systematically derive NFA of size k for grammar learning. International Conference on Computational Science (ICCS), Jul 2023, Prague, Czech Republic. pp.134-147, ⟨10.1007/978-3-031-35995-8_10⟩. ⟨hal-04199534⟩

Collections

UNIV-ANGERS LERIA
13 Consultations
45 Téléchargements

Altmetric

Partager

More