Traffic Accidents Severity Prediction using Support Vector Machine Models - Université d'Angers
Article Dans Une Revue International Journal of Innovative Technology and Exploring Engineering Année : 2020

Traffic Accidents Severity Prediction using Support Vector Machine Models

Zeinab Farhat
  • Fonction : Auteur
Ali Karouni
  • Fonction : Auteur
Bassam Daya
  • Fonction : Auteur
Nizar Hmadeh
  • Fonction : Auteur

Résumé

In recent years, road traffic accidents (RTA) have become one of the highest national health concerns worldwide. RTA have become the leading cause of losing lives among children and youth. Recent studies have proven that Data Mining Techniques can break down the complexity that prevails between RTA and corresponding factors. In this paper, Support Vector Machine (SVM) based on Radial basis function (RBF) and Linear Kernel Function is applied to predict fatal road accidents in Lebanon. The experimental results reveal that SVM using RBF give the highest accuracy (86%) and the best AUC (86.6%). The obtained decision-making model claims to tackle the fatal RTA phenomenon.
Fichier principal
Vignette du fichier
F4393049620.pdf (458.79 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03993917 , version 1 (17-02-2023)

Licence

Identifiants

Citer

Zeinab Farhat, Ali Karouni, Bassam Daya, Pierre Chauvet, Nizar Hmadeh. Traffic Accidents Severity Prediction using Support Vector Machine Models. International Journal of Innovative Technology and Exploring Engineering, 2020, 9 (7), pp.1345-1350. ⟨10.35940/ijitee.F4393.059720⟩. ⟨hal-03993917⟩
66 Consultations
779 Téléchargements

Altmetric

Partager

More