String topology for spheres - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Commentarii Mathematici Helvetici Année : 2009

String topology for spheres

(1)
1

Résumé

Let M be a compact oriented d-dimensional smooth manifold. Chas and Sullivan have defined a structure of Batalin-Vilkovisky algebra on H*(LM). Extending work of Cohen, Jones and Yan, we compute this Batalin-Vilkovisky algebra structure when M is a sphere Sd, d ≥ 1. In particular, we show that H*(LS2;{F}2) and the Hochschild cohomology HH*(H*(S2);H*(S2)) are surprisingly not isomorphic as Batalin-Vilkovisky algebras, although we prove that, as expected, the underlying Gerstenhaber algebras are isomorphic. The proof requires the knowledge of the Batalin-Vilkovisky algebra H*(Ω2S3;{F}2) that we compute in the Appendix.

Fichier non déposé

Dates et versions

hal-03040209 , version 1 (04-12-2020)

Identifiants

  • HAL Id : hal-03040209 , version 1
  • OKINA : ua158

Citer

Luc Menichi. String topology for spheres. Commentarii Mathematici Helvetici, 2009, 84 (1), pp.135 - 157. ⟨hal-03040209⟩
5 Consultations
0 Téléchargements

Partager

Gmail Facebook Twitter LinkedIn More