A Local Binary Pattern-Based Method for Color and Multicomponent Texture Analysis - Université d'Angers
Article Dans Une Revue Journal of Signal and Information Processing Année : 2020

A Local Binary Pattern-Based Method for Color and Multicomponent Texture Analysis

Résumé

Local Binary Patterns (LBPs) have been highly used in texture classification for their robustness, their ease of implementation and their low computational cost. Initially designed to deal with gray level images, several methods based on them in the literature have been proposed for images having more than one spectral band. To achieve it, whether assumption using color information or combining spectral band two by two was done. Those methods use micro structures as texture features. In this paper, our goal was to design texture features which are relevant to color and multicomponent texture analysis without any assumption. Based on methods designed for gray scale images, we find the combination of micro and macro structures efficient for multis-pectral texture analysis. The experimentations were carried out on color images from Outex databases and multicomponent images from red blood cells captured using a multispectral microscope equipped with 13 LEDs ranging from 375 nm to 940 nm. In all achieved experimentations, our proposal presents the best classification scores compared to common multicomponent LBP methods. 99.81%, 100.00%, 99.07% and 97.67% are maximum scores obtained with our strategy respectively applied to images subject to rotation, blur, illumination variation and the multicomponent ones.
Fichier principal
Vignette du fichier
jsip_2020082815481366.pdf (908.09 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-02935292 , version 1 (10-09-2020)

Licence

Identifiants

Citer

Yao Taky Alvarez Kossonou, Alain Clément, Bouchta Sahraoui, Jérémie Zoueu. A Local Binary Pattern-Based Method for Color and Multicomponent Texture Analysis. Journal of Signal and Information Processing, 2020, 11 (3), pp.58 - 73. ⟨10.4236/jsip.2020.113004⟩. ⟨hal-02935292⟩
214 Consultations
154 Téléchargements

Altmetric

Partager

More