Weaving Nanoscale Cloth through Electrostatic Templating
Résumé
Here we disclose a simple route to nanoscopic 2D woven structures reminiscent of the methods used to produce macroscopic textiles. We find that the same principles used in macroscopic weaving can be applied on the nanoscale to create two-dimensional molecular cloth from polymeric strands, a molecular thread. The molecular thread is composed of Co6Se8(PEt3)4L2 superatoms that are bridged with L = benzene bis-1,4-isonitrile to form polymer strands. As the superatoms that make up the polymer chain are electrochemically oxidized, they are electrostatically templated by a nanoscale anion, the tetragonal Lindqvist polyoxometalate Mo6O192–. The tetragonal symmetry of the dianionic template creates a nanoscale version of the box weave. The crossing points in the weave feature π-stacking of the bridging linker. By examining the steps in the weaving process with single crystal X-ray diffraction, we find that the degree of polymerization at the crossing points is crucial in the cloth formation. 2D nanoscale cloth will provide access to a new generation of smart, multifunctional materials, coatings, and surfaces.
Domaines
ChimieOrigine | Accord explicite pour ce dépôt |
---|
Loading...