Model selection, updating and prediction of fatigue crack propagation using nested sampling algorithm - Université d'Angers
Communication Dans Un Congrès Année : 2017

Model selection, updating and prediction of fatigue crack propagation using nested sampling algorithm

Résumé

Mathematical models are often used to interpret experimental data, estimate the parameters and then predictions can be made. In practice, and in several applications, it is common that often more than one model could be used to describe the dynamics of a given phenomenon. Modelling and prediction of fatigue crack growth (FCG) is one of the engineering problems where a number of models with different levels of complexities exist and the selection of the most suitable one is always a challenging task. In this study, model selection, updating and prediction of fatigue crack propagation is carried out under a Bayesian framework. The nested sampling algorithm is selected to estimate the evidence of each competing model using an experimental data set of Aluminum 2024-T3. The obtained results are very encouraging and show the efficiency of the proposed approach when dealing with model selection, updating and prediction issues.
Fichier principal
Vignette du fichier
ANIS_BEN_ABDESSALEM_CFM_2017_MS_NS.pdf (1.57 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02527888 , version 1 (19-11-2024)

Licence

Identifiants

Citer

Mohamed-Anis Ben Abdessalem. Model selection, updating and prediction of fatigue crack propagation using nested sampling algorithm. 23e Congrès Français de Mécanique, Aug 2017, Lille, France. ⟨hal-02527888⟩
23 Consultations
0 Téléchargements

Partager

More