Logical characterization of groups of data: a comparative study - Université d'Angers
Article Dans Une Revue Applied Intelligence Année : 2018

Logical characterization of groups of data: a comparative study

Résumé

This paper presents an approach for characterizing groups of data represented by Boolean vectors. The purpose is to find minimal set of attributes that allow to distinguish data from different groups. In this work, we precisely defined the multiple characterization problem and the algorithms that can be used to solve its different variants. Our data characterization approach can be related to Logical Analysis of Data and we propose thus a comparison between these two methodologies. The purpose of this paper is also to precisely study the properties of the solutions that are computed with regards to the topological properties of the instances. Experiments are thus conducted on real biological data.
Fichier principal
Vignette du fichier
logical_analysis.pdf (383.72 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02516582 , version 1 (13-10-2021)

Identifiants

Citer

Arthur Chambon, Tristan Boureau, Frédéric Lardeux, Frédéric Saubion. Logical characterization of groups of data: a comparative study. Applied Intelligence, 2018, 48 (8), pp.2284-2303. ⟨10.1007/s10489-017-1080-3⟩. ⟨hal-02516582⟩
84 Consultations
138 Téléchargements

Altmetric

Partager

More