Simulated perfusion MRI data to boost training of convolutional neural networks for lesion fate prediction in acute stroke - Université d'Angers
Article Dans Une Revue Computers in Biology and Medicine Année : 2019

Simulated perfusion MRI data to boost training of convolutional neural networks for lesion fate prediction in acute stroke

Résumé

The problem of final tissue outcome prediction of acute ischemic stroke is assessed from physically realistic simulated perfusion magnetic resonance images. Different types of simulations with a focus on the arterial input function are discussed. These simulated perfusion magnetic resonance images are fed to convolutional neural network to predict real patients. Performances close to the state-of-the-art performances are obtained with a patient specific approach. This approach consists in training a model only from simulated images tuned to the arterial input function of a tested real patient. This demonstrates the added value of physically realistic simulated images to predict the final infarct from perfusion.
Fichier principal
Vignette du fichier
S0010482519304330.pdf (2.53 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02428568 , version 1 (07-03-2022)

Licence

Identifiants

Citer

Noelie Debs, Pejman Rasti, Léon Victor, Tae-Hee Cho, Carole Frindel, et al.. Simulated perfusion MRI data to boost training of convolutional neural networks for lesion fate prediction in acute stroke. Computers in Biology and Medicine, 2019, 116, pp.103579. ⟨10.1016/j.compbiomed.2019.103579⟩. ⟨hal-02428568⟩
147 Consultations
168 Téléchargements

Altmetric

Partager

More