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Abstract

In this manuscript, I present my research accomplishments in various do-
mains, focusing on the development of machine learning and deep learning
algorithms for analyzing images and signals. I outline my expertise in
creating unique databases that have contributed significantly to research
success, such as low-cost seedling growth, the 3D models of natural rose-
bush plants, and the AgTech data challenge. Furthermore, I detail my
involvement in multimodal student behavior monitoring and a multimodal
speaker recognition database.

My research has focused on contributing to machine learning and deep
learning, specifically in texture-based feature extraction, developing deep
learning algorithms, and overcoming challenges related to image annota-
tion. I have explored shallow learning techniques for life science imaging,
such as local binary patterns and wavelet scattering transform. In deep
learning, I have developed convolutional neural network models for mi-
croscopic image analysis and MRI, as well as recurrent neural networks
and long short-term memory networks for spatio-temporal images. Ad-
ditionally, I have examined multimodal CNN models and devised novel
techniques to tackle image annotation challenges.

My work has revolved around advancing the field of machine learn-
ing and deep learning for examining and interpreting images and signals
across various domains, such as life science imaging and biometric analysis.
My future research directions include minimizing dependency on manual
annotation and developing novel techniques on multimodal generative self-
supervised learning to extract meaningful and high-quality features from
multimodal data.

Beyond developing new methodologies, my research pursuits aim to
foster lifelong training initiatives, introduce new courses, and offer mini-
projects and internships for young students. I intend to bridge the gap be-
tween academia and industry, promoting the exchange of ideas, resources,
and expertise. Ultimately, my research plans strive to inspire and em-
power the next generation of researchers and innovators by fostering an
environment of collaboration, education, and innovation.

Keywords: Multimodal deep learning, Life science imaging, Biometric
recognition, Self-supervise learning.

1



Acknowledgment

I extend my most profound appreciation to everyone who has played a cru-
cial role in my journey, leading to this remarkable achievement. Foremost,
my sincere gratitude goes to the jury members: Laure TOUGNE RODET,
Anna KRESHUK, Daniel SAGE, Aymeric HISTACE, and Christian GER-
MAIN for their thorough manuscript and work evaluation.

I am indebted to David ROUSSEAU, my post-doctoral supervisor from
2017 to 2019. His expertise helped me refine my skills and deepen my
understanding. Our ongoing collaboration since 2019 has been rewarding,
leading to significant advancements in our shared areas of interest. David
has become a respected mentor, trusted friend, and colleague, and his
family has embraced us as their own.

I also thank Rudolf KIEFER for his Ph.D. mentorship, which laid the
foundation for my professional path, and Hasan DEMIREL for supervis-
ing my Master’s thesis, introducing me to image processing and computer
vision.

The work in this document primarily results from collaborations with
my Ph.D. students Mouad, Hadhami, Lukman, Sherif, Abderrazzaq, and
Mathis. I value the input of the interns and engineers involved in the
research.

I am grateful to ESAIP members and directors for their consistent sup-
port. The collaborative environment fostered by the ESAIP community
has contributed to my growth and provided resources and opportunities
to excel. I appreciate the camaraderie and cherish the friendships and
professional relationships built within the community.

Lastly, I am profoundly grateful to my family, particularly Salma, and
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Introduction

The revolution of deep learning is anchored in the year 2012, a pivotal
point in history, when AlexNet [1] emerged victorious in the ImageNet
Large Scale Visual Recognition Challenge [2]. This marked the onset of a
transformative era in machine learning. In the wake of AlexNet’s ground-
breaking success, a succession of established and innovative methodolo-
gies surfaced, such as ZF Net [3] and VGGNet [4] in 2014, followed by
GoogleNet [5] in 2015, and subsequently ResNet [6] in 2016, all specifi-
cally tailored for classification tasks. Concurrently, the landscape of deep
learning was being expanded to encompass other tasks such as image seg-
mentation, as exemplified by the introduction of Segnet [7] in 2015, and
object detection, as illustrated by the advent of the R-CNN family [8, 9, 10]
in 2014, 2015, and 2016. This pivotal period sparked a deluge of research
interest, predominantly directed towards natural images and databases,
particularly ImageNet [11].

However, the methodologies devised for natural images were not uni-
versally transferable to life science applications. By the year 2016, when
I redirected my research focus towards adopting deep learning methods
for life science applications, the deep learning field had already witnessed
substantial progress. However, there were still a several scientific questions
within life science applications that remained unexplored due to reliance
on traditional methods in this domain. Our goal was to adopting existing
deep learning strategies and to innovate new methodologies based on them
to tackle these scientific questions. Challenges such as handling time-series
or spatial-temporal data, common in life sciences but not typically present
in natural image databases, or repurposing models trained on in vitro data
for other environments like outdoor settings were some examples of these
scientific questions. Another interesting scientific question is how we can
leverage different data modalities during the training process to obtain
maximum benefit.

On the other hand, amid the rapid growth of deep learning methodolo-
gies, a significant bottleneck was the need for annotated data, a particular
challenge in the life science domain where data annotation is often re-
quired to be done by field experts. This necessity for expert-annotated
data became a considerable obstacle in the progression of deep learning
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methodologies for life science applications. The annotation process could
vary, for instance between genotypes or could even be influenced by the
experiential subjectivity of the expert performing the annotation. In my
works, I embarked on a mission to address this issue. My aim was to formu-
late methods that could potentially accelerate this labor-intensive process,
or optimally, provide a comprehensive solution for it.

My postdoctoral adventure commenced by developing deep learning
models for medical and microscopic imaging, an area I continue to ar-
dently engage in. As an active member of the Imhorphen research team,
I primarily concentrate on plant phenotyping through deep learning tech-
niques. Moreover, after joining ESAIP in January 2020, a cybersecurity-
focused institution, I have been able to employ my skills in deep learning
for biometric applications. My exposure to this wide range of applications
has provided me with a distinct edge in my research, as I have been actively
involved with various groups tackling diverse challenges in each field. This
intentional choice of application domains has enabled me to establish a
cohesive and interrelated set of expertise, instead of seeming disorganized
or lacking focus.

Working in these interconnected fields has granted me a comprehensive
understanding of the development of deep learning algorithms, considering
the unique limitations and challenges each application presents. This expe-
rience has equipped me to design, manage, and adapt my research to new
applications as they arise while maintaining a coherent research trajectory.
As I continue to navigate the dynamic landscape of Artificial Intelligence,
my carefully curated background will serve as a solid foundation for tack-
ling the challenges and opportunities that lie ahead.

Following the comprehensive account of my research activities since
earning my Ph.D., this synthesis report delves deeper into the specifics
of my endeavors. The report is structured into three main sections, each
dedicated to exploring different facets of my work, seamlessly connecting
the overview provided earlier with a more detailed examination of my re-
search contributions.

The first section, contained within Chapter 1, features a curriculum vi-
tae that outlines my academic and professional achievements. Additionally,
this section provides a summary of my research and teaching experiences
and an exhaustive list of my published works.

The second section, including Chapter 2 and Chapter 3, delves into the
theoretical and practical underpinnings of my research, highlighting con-
tributions made by the doctoral students I have supervised and my own
research endeavors. My primary research interests lie in the realm of Arti-
ficial Intelligence, with a particular focus on Machine Learning and Deep
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Learning. These disciplines are categorized under CNU 61 Génie informa-
tique, automatique et traitement du signal and section 27 Informatique.
Furthermore, I have explored various application domains, such as image
plant phenotyping, medical imaging, and microscopic imaging, biometric
recognition, demonstrating the versatility of my research pursuits.

Chapter 2 provides an in-depth examination of the innovative systems
that have been created and implemented to compile unique and original
databases, especially in fields where data scarcity has been an obstacle to
the progression of machine learning and deep learning algorithms.

Chapter 3 delves into the theoretical contributions of our work, tackling
machine learning challenges involving various types of data, such as im-
ages, videos, voice, and text. Our investigations in medical imaging, plant
phenotyping, and microscopic imaging further exemplify the framework.
Furthermore, we demonstrate our endeavors in creating state-of-the-art al-
gorithms and tools specifically tailored to streamline the image annotation
process, thereby boosting the overall effectiveness of associated tasks.

The report culminates with a third and final section, Chapter 4. This
section offers insights into the future directions of this report, as well as a
reflection on my academic journey and potential growth opportunities.

Finally, Appendix A features a curated selection of co-authored arti-
cles that have been referenced throughout the document, showcasing the
breadth and depth of my research collaborations.
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Chapter 1

Activities Digest

1.1 Curriculum vitae

Name: Pejman RASTI
Date of birth: 18 September 1985
Family situation: Married, 1 child
Teaching: Department of Computer Science, ESAIP
Research laboratory: CERADE and LARIS
Tel.: +33 2 41 96 65 40
Webpage: http://perso-laris.univ-angers.fr/∼rasti/
Email: prasti@esaip.org

Education

• 2014 - 2017 Ph.D. from the University of Tartu, Estonia.

Thesis Tittle: Analysis of Remote Sensing Image Super-Resolution
using Fluid Lenses.

Supervisor: Prof. Rudolf KIEFER.
Jury members:

A. Enis CETIN, Professor, UC San Diego;
Olev MARTENS, Professor, University of Tallinn;
Väino SAMMELSELG, Professor, University of Tartu;
Alvo AABLOO, Professor, University of Tartu;
Vitaly SKACHEK, Professor, University of Tartu;

• 2012 - 2014 M.Sc. in Electrical and Electronic Engineering with
a specialization in image processing and computer
vision, Eastern Mediterranean University, Cyprus.
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• 2009 - 2012 B.Sc. in Electrical and Electronic Engineering, Azad
University, Iran.

Professional activities

• 2020 - now Teacher-Researcher at ESAIP.
• 2018 - now Qualification to the MCF by section 61 of CNU.
• 2017 - 2019 Post-doc at LARIS, Université d’Angers.
• 2015 - 2017 Lecturer at the University of Tartu the same time

as my Ph.D.
• 2013 - 2014 Technical assistance in the Cisco laboratory at the

Eastern Mediterranean University, Cyprus.
• 2012 - 2013 Technical assistance in the electronic laboratory at

the Eastern Mediterranean University, Cyprus.

1.2 Teaching and administrative activities synthesis

1.2.1 Teaching duties

My teaching experiences have been diverse and rewarding, spanning various
domains and levels of education. In mathematics, I have taught founda-
tional and advanced courses for students pursuing their Master’s degrees
and those enrolled in classes préparatoire. These courses provided students
with a solid understanding of mathematical concepts and equipped them
with the necessary skills to excel in their chosen fields.

In computer science, I have taught various courses for Master’s degree
and 4th year Engineering, covering topics such as data mining, artificial
intelligence, and cloud computing. These courses emphasize practical ap-
plications and foster a deep understanding of core concepts in computer
science. In addition to my regular courses, I have contributed to long-life
training initiatives at the Université d’Angers and EMBL, focusing on deep
learning for image analysis. Furthermore, I have had the opportunity to
conduct seminars in several countries, expanding my reach and sharing my
expertise with a diverse international audience. These experiences have al-
lowed me to refine my teaching techniques and adapt to the unique needs
of various student populations. The list of my teaching hours and the level
of the participants has been shown in table (1.1).
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Table 1.1: The list of the teaching courses

Domain Level Subject Type Volume
Mathematics Courses

2018-2019 Master’s degree
(Bac+4) Advance Numerical Analysis Course + TD 36h

2019-2020 Classes préparatoire 1
(Bac+1) Numerical Analysis Course + TD 40h

2019-2020 Classes préparatoire 1
(Bac+1) Algebra 1 Course + TD 36h

2019-2020 Classes préparatoire 2
(Bac+2) Algebra 2 Course + TD 36h

2019-2020 Classes préparatoire 1
(Bac+1) Measurement techniques Course + TD 25h

2020-2021 Classes préparatoire 1
(Bac+1) Statistics methods Course + TD 21h

2020-2021 Classes préparatoire 2
(Bac+2) Algebra 2 Course + TD 18h

Computer Science Courses

2020-2022 Master’s degree
et Ing4 (Bac+4) Data Mining Course + TP 125h

2020-2022 Master’s degree
et Ing4 (Bac+4) Big Data Course + TP 150h

2020-2022 4th year Engineering
(Bac+4) Business Intelligence Course + TP 70h

2020-2022 4th year Engineering
(Bac+4) Artificial Intelligence Course + TP 80h

2020-2022 4th year Engineering
(Bac+4) Computer Vision Course + TP 28h

2020-2022 4th year Engineering
(Bac+4) Natural Language Processing Course + TP 75h

2022-2023 4th year Engineering
(Bac+4) Cloud Computing Course + TP 24h

Long-Life Training (Formation Continue)
2018 Université d’Angers Deep Learning for image analysis Course + TP 20h

2018 Université d’Angers Deep learning : introduction par
la pratique d’applications en traitement d’images Course + TP 20h

2019 Université d’Angers Deep learning : introduction par
la pratique d’applications en traitement d’images Course + TP 20h

2019 EMBL, Germany Deep Learning for image analysis TP 35h
2020 EMBL, Germany Deep Learning for image analysis TP 35h
2021 EMBL, Germany Deep Learning for image analysis TP 25h
2022 EMBL, Germany Deep Learning for image analysis TP 25h

2022 Université d’Angers
(ANF CNRS) Deep Learning for microscopy image analysis Course + TP 35h

2023 EMBL, Germany Deep Learning for image analysis TP 35h

1.2.2 Administrative duties

Since 2020, my administration has taken on a myriad of responsibilities at
ESAIP, demonstrating our commitment to providing top-quality education
in the fields of Big Data and Artificial Intelligence. As responsible for
the Big Data major within the engineering cycle, my primary focus has
been ensuring that our curriculum remains relevant and up-to-date in this
rapidly evolving field. In 2021, I expanded my responsibility role to include
the Artificial Intelligence major of the engineering cycle, which has allowed
me to provide direction and guidance to students interested in pursuing
careers in AI, machine learning, and related fields.

In addition to these roles, I have played a pivotal role in developing the
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M.Sc. CyberSecurity and Data Science program at ESAIP. I designed the
curriculum and syllabus for the courses and devised innovative pedagog-
ical strategies to ensure that the program remains at the cutting edge of
research and industry practices. This program is designed to equip stu-
dents with the skills and knowledge necessary to excel in the increasingly
important fields of data protection and information security.

Furthermore, as a member of the computer science department jury
for new student recruitments at ESAIP, I have been actively involved in
shaping the future of our institution since 2020. This role has allowed me
to participate in the selection of exceptional students who demonstrate
passion and aptitude for computer science, Big Data, and Artificial Intelli-
gence. Through this collaborative effort, we have fostered an environment
where students can thrive academically and professionally.

My administration’s responsibilities at ESAIP have focused on develop-
ing robust programs and supporting students in pursuing knowledge in Big
Data, Artificial Intelligence, CyberSecurity, and Data Science. By main-
taining a rigorous, forward-looking curriculum and participating in the
student recruitment process, we strive to create an academic environment
that prepares students for successful careers in these rapidly growing fields.

1.3 Research activities synthesis

After completing my Ph.D. at the University of Tartu in May 2017, I joined
the Imhorphen research group at the Laboratoire Angevin de Recherche
en Ingénierie des Systèmes (LARIS) within the University of Angers. Un-
der the guidance of Prof. David Rousseau, I embarked on my postdoctoral
research focused on creating and applying machine learning and deep learn-
ing algorithms to address challenges in life sciences, such as low-cost plant
phenotyping through imaging, as well as medical and microscopy imaging.

After a three-year postdoctoral tenure at the University of Angers, I
transitioned to a dual role as a teacher-researcher (enseignant-chercheur)
and head of the AI and Big Data majors at ESAIP (École d’Ingénieurs
en Informatique) in January 2020. As a teacher-researcher at ESAIP, I
initiated independent research to develop multimodal deep learning algo-
rithms for biometrics and emotion recognition. My research at the ESAIP
research center (CERADE), in close collaboration with LARIS and the
Imhorphen research group, continued to thrive.

Recently, I have successfully authored and secured funding for three
project proposals in this area, receiving support from regional institutions
such as PULSAR and Angers Loire Metropole (ALM) and the interna-
tional TUBITAK in Turkey. The total funding obtained for these projects
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amounts to 175,000 euros. Further details about these projects will be
provided in the perspective section.

Research topics

Theoretical keywords:

Machine Learning, Deep Learning, Adversarial Learning, Self-Supervised
Learning.

Application fields:

Deep Learning applied to: Image Plant Phenotyping, Medical Imaging,
Microscopic Images, Biometrics Recognition.

Production

Pulications Numbers
Journal Articles (Q1 and Q2 of scopus) 18
International peer-reviewed conferences 21
National peer-reviewed conferences 3
Book chapter 2
Book 2

Supervision

supervision Numbers
Ph.D. (defended) 2
Ph.D. (on going) 4
Master internship (Defended) 5
Master internship (on going) 2
Internship follow-up (tutor of pedagogy) 13

Ph.D. Supervision

• Defended Thesis: Mouad ZINE EL ABIDINE (September 2019 –
October 2022)

Thesis title: Contributions to computer vision and machine
learning for plant variety testing.

Constitution of the jury: J.-P. DA COSTA (Rapporteur),
A. HAFIANE (Rapporteur),
M. ZUDE-SASSE (Examinateur),
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G. BUCK SORLIN (Examinateur),
M.-J. ARANZANA (Examinateur).

Supervisors: D. ROUSSEAU (50%), P. RASTI (30%), and
H. DUTAGACI (20%).

Funding: Connect Talent.
Publication during the thesis: One journal article [12] and

one international proceeding.

• Defended Thesis: Hadhami GARBOUGE (November 2019 –
November 2022)

Thesis title: Deep learning applied to multi-component
imagery for variety testing problems.

Constitution of the jury: C. GERMAIN (Rapporteur),
F. COINTAULT (Rapporteur),
J. BUITINK (Examinateur),
P. VERMEULEN (Invited),
P. ROUMET (Invited).

Supervisors: D. ROUSSEAU (50%), P. RASTI (30%), and
N. SAPOUKHINA (20%).

Funding: H2020 INVITE European Project.
Publication during the thesis: One journal article [13] and

three proceedings [14, 15, 16].

• In progress Thesis: Lukman E. ISMAIL (The defense is scheduled
for July 2023)

Thesis title: Machine learning application in neuroscience for
neurosurgical brain tumor resection procedure.

Supervisors: D. ROUSSEAU (50%), P. RASTI (30%), and
J.-M. LEMEE (20%).

Funding: Petroleum Technology Development Fund (PTDF).
Publication during the thesis: One journal article [17] and

three proceedings [18, 19, 20].

• In progress Thesis: Sherif HAMDY (beginning of the thesis in
September 2020 - on a part-time basis)
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The provisional title of the thesis: Computer vision and
artificial intelligence applied to the analysis
of the physical quality of seeds.

Supervisors: D. ROUSSEAU (50%), P. RASTI (25%), and
A. CHARRIER (25%).

Funding: Groupe d’Etude et de contrôle des Variétés Et des
Semences (GEVES).

Current situation of the doctoral student: Registered in
the third year; one published book chapter [21].

• In progress Thesis: Abderrazzaq MOUFIDI (beginning of the thesis
in October 2021)

The provisional title of the thesis: Voice biometrics using
natural language processing.

Supervisors: D. ROUSSEAU (50%) and P. RASTI (50%).
Funding: Angers Loire Metropole.
Current situation of the doctoral student: Registered in

the second year, with one journal article [22]
and one proceeding [23].

• In progress Thesis: Mathis CORDIER (beginning of the thesis in
September 2021- CIFRE)

The provisional title of the thesis: Embedded analysis of
RGB-Depth images, application to the study
of the development of disease symptoms in plants.

Supervisors: D. ROUSSEAU (50%), P. RASTI (30%), and
Cindy TORRES (20%).

Funding: Vilmorin-Mikado.
Current situation of the doctoral student: Registered in

the second year, with one proceeding [24].

Internship in Master 2 (6 months):

• Duy Khong THANH, “Real-Time Engagement Analysis of students
based on Classroom Live Videos”, 2022-2023 (INSA Centre Val de
Loire). Responsible for the internship: P. RASTI.
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• Hugo VOYNEAU, “Real-Time Engagement Analysis of students based
on Classroom”, 2022-2023 (Université d’Angers). Responsible for the
internship: P. RASTI and Delphine GUEDAT-BITTIGHOFFER

• Amine MANGACHE, “Emotion Recognition of students based on
ClassroomVideos”, 2021-2022 (UCO, Angers). Responsible for the
internship: P. RASTI.

• Kholoud GHANMI,” Classifications des images de microscopie à bal-
ayage de foraminifères benthiques actuels”, 2021-2022(l’université de
Rennes 1). Responsible for the internship: P. RASTI and E. BICHI.

• Abderrazzaq MOUFIDI,” Voice biometrics using natural language
processing. ”, 2020-2021 (ENS Rennes). Responsible for the intern-
ship: P. RASTI and D. ROUSSEAU.

• Xareni GALINDO,” Image Segmentation and Object Recognition for
the Detection of Apples Using Low Cost Image Acquisition Equip-
ment.” , 2018-2019(l’université de Saint-Etienne). Responsible for the
internship: D. ROUSSEAU and P. RASTI

• Tõnis UIBOUPIN,” Super Resolution and Face Recognition Based
People Activity Monitoring Enhancement Using Surveillance Cam-
era.” , 2016-2017(University of Tartu, Estonia). Responsible for the
internship: P. RASTI

Other academical activities synthesis

In addition to my primary academic pursuits, I have been actively involved
in a variety of other academical activities, all of which have contributed
to developing my skills and expertise. Among my numerous roles, I have
served as a reviewer for various research funding organizations, including
Agence Nationale de la Recherche (ANR), Science Foundation
Ireland (SFI), and German Research Foundation (DFG) projects.
This experience has allowed me to evaluate and contribute to the progress
of cutting-edge research across multiple disciplines.

Moreover, I am an editor for the Journal of Environmental Science,
Frontier, specifically within the AI section. This role further enhances my
understanding of the latest advances in AI applied to environmental science
and enables me to contribute to disseminating important research in this
area.

Furthermore, I have been a reviewer for over 20 journals and conferences,
which has expanded my knowledge base and honed my critical thinking
and assessment abilities. My involvement in organizing academic events
has also been considerable, as I have been a member of the local organizing
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committee for the international SampTA 2017 conference held in Estonia.
In addition, I have volunteered at five international conferences, including
ICGIP (from 2019 to 2021) and IPRIA (2021 and 2023), showcasing my
commitment to supporting and fostering collaboration within the academic
community.

Moreover, I acted as a trainer on four separate occasions at EMBL for
the course ”Deep Learning for Image Analysis” between 2018 and 2021.
This opportunity has allowed me to share my expertise and inspire others
in the field while refining my teaching and communication skills. Lastly,
as a member of the Scientific Organisers Committee, I have contributed
to the organization of the same course twice at EMBL, in 2022 and 2023.
This role has further developed my organizational skills and my ability to
collaborate with a diverse team of professionals.

Projects in progress

• Voice biometrics using NLP
Duration: 3 years (15/10/2021 – 15/10/2024)
Funding: 96 000 EUR
Investigator: Pejman RASTI
Funder: Angers Loire metropole (ALM)

• Real-Time engagement analysis of students based on live classroom
videos

Duration: 2 years (01/09/2021 – 31/08/2023)
Funding: 46 000 EUR
Investigator: Pejman RASTI
Funder: PULSAR – Pays de la Loire

• Sentiment analysis using NLP for renewable energies
Duration: 2 years (01/09/2022 – 31/08/2024)
Funding: ∼34 000 EUR (700000 Turkish Lira)
Investigator: Ceren ÇUBUKCU (Gebze Technical University, Turkey)

and Pejman RASTI
Funder: TUBITAK (National research council of Turkey) via Gebze

Technical University
• Competence Development in Collaborative Industrial Internet of Things

(CDC-IoT)
Duration: 3 years (01/09/2020 – 31/08/2023)
Funding: 286 242,00 EUR
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Investigator: SeAMK University, ESAIP - Pejman RASTI,
TalTech University, Riga Technical University, and
Kaunas University of Technology

Funder: Erasmus+
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1.4 Publication list

JOURNAL ARTICLES (since 2017)

Q1 (SJR INDICATOR)

1. Abderrazzaq Moufidi, David Rousseau, and Pejman Rasti. “Atten-
tion based Fusion of Ultra-short Voice Utterances and Depth Videos
for Multimodal Person Identification”, Sensors (2023) – Under Re-
view.

2. Mouad Zine El Abidine, Helin Dutagaci, Pejman Rasti, Maria-Jose
Aranzana, Christian Dujak and David Rousseau. “Toward objective
variety testing score based on computer vision and unsupervised ma-
chine learning Application to Apple Shape”, Biosystems Engineering
(2023) – Under Review.

3. Mathis Cordier , Torres Cindy, Pejman Rasti, and David Rousseau.
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”Optimisation de l’échelle d’observation pour l’annotation d’images.”
In: 28ème Colloque GRETSI sur Le Traitement du Signal et des Im-
ages. 2022.

24. Hadhami Garbouge, Pejman Rasti, and David Rousseau. “Deep
learning-based detection of seedling development from indoor to out-
door”. In: International Conference On Systems, Signals And Image
Processing. IEEE. 2021.

25. Mouad Zine El Abidine, Sabine Merdinoglu-Wiedemann, Pejman
Rasti, Helin Dutagaci, and David Rousseau. “Machine learning-based
classification of powdery mildew severity on melon leaves”. In: Inter-
national Conference on Image and Signal Processing. Springer. 2020.

26. Natalia Sapoukhina, Salma Samiei, Pejman Rasti, and David Rousseau.
“Data augmentation from RGB to chlorophyll fluorescence imaging
application to leaf segmentation of Arabidopsis thaliana from top view

19



images”. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition Workshops(CVPR). 2019.

27. Salma Samiei, Pejman Rasti, François Chapeau-Blondeau, and David
Rousseau. ”Cultivons notre jardin avec Fourier.” In: 27ème Colloque
GRETSI sur Le Traitement du Signal et des Images. 2019.

28. Pejman Rasti, Didier Demilly, Landry Benoit, Etienne Belin, Sylvie
Ducournau, Francois Chapeau-Blondeau, and David Rousseau. “Low-
cost vision machine for high-throughput automated monitoring of het-
erotrophic seedling growth on wet paper support”. In: British Machine
Vision Conference (BMVC). 2018.

29. Salma Samiei, Ali Ahmad, Pejman Rasti, Etienne Belin, and David
Rousseau. ”Low-cost image annotation for supervised machine learn-
ing. Application to the detection of weeds in dense culture.” In British
Machine Vision Conference (BMVC), 2018.

30. Denis Bujoreanu, Pejman Rasti, and David Rousseau. “On the value
of graph-based segmenta- tion for the analysis of structural networks in
life sciences”. In: Proceedings of the 25th European Signal Processing
Conference (EUSIPCO). IEEE. 2017.

31. Pejman Rasti, Olga Orlova, Gert Tamberg, Cagri Ozcinar, Kamal
Nasrollahi, and Thomas B Moeslund. “Improved interpolation ker-
nels for super-resolution algorithms”. In: International Conference on
Image Processing Theory, Tools and Applications. IEEE. 2016.

32. Pejman Rasti, Gholamreza Anbarjafari, and Hasan Demirel. “Colour
image watermarking based on wavelet and QR decomposition”. In:
Signal Processing and Communications Applications Conference (SIU).
IEEE. 2017.
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Chapter 2

Materials and Databases

Over the last five years, my endeavors have extended beyond methodolog-
ical and applied research to the establishment and execution of innova-
tive systems for amassing unique and original databases. As a researcher
grounded in engineering, I have been proactive in transcending the bound-
aries of merely employing existing online databases for crafting machine
learning and deep learning algorithms. This has been particularly relevant
in domains where data paucity obstructed the progression of novel machine
learning and deep learning algorithms.

To accomplish this, I have actively engaged in collaborations with ex-
perts from diverse fields to pinpoint the specific data requisites and de-
mands for each research domain. This cross-disciplinary approach has
facilitated a deeper understanding of the challenges encountered by differ-
ent research areas and subsequently informed the design and creation of
data collection systems tailored to address those particular needs. Utiliz-
ing state-of-the-art technologies and methodologies, I have succeeded in
generating databases that are both exhaustive and precise, laying a robust
foundation for the formulation of new machine learning and deep learning
algorithms.

The databases I have devised not only cater to my research requirements
but also serve as vital assets for numerous Ph.D. students and fellow team
members. They have used the data to develop pioneering deep learning
techniques and propel their interdisciplinary projects. In this manner,
my data collection efforts have substantially contributed to our research
group’s overall accomplishments and impact.

Furthermore, developing these databases has enabled me to acquire di-
verse skills related to data procurement, management, and analysis. This
expertise has become invaluable in steering the design and implementation
of subsequent research initiatives, ensuring the collected data is of the ut-
most quality and best suited for our research objectives. As we persist in
exploring new possibilities for machine learning and deep learning appli-
cations, the capacity to efficiently and effectively gather and manage data
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will remain an essential component of our ongoing achievements.

2.1 Databases

2.1.1 Low-cost seedling growth monitoring

As a starting point, we created a network of 60 Raspberry Pi devices and
cameras in partnership with INRAE Angers, as shown in Fig. (2.1). This
infrastructure was designed to automatically gather and transfer pictures of
plant growth at different intervals, both during the day and at night [25].
The technology developed within this infrastructure was used to collect
data for two Ph.D. studies of Salma Samiei and Hadhami Garbouge. After
the success of the initial RGB imaging system (Fig. (2.1-left)), depth
cameras were added as an enhancement to enrich the system and enable it
to capture images during the night or under different lighting conditions,
providing more versatility and improving the overall performance (Fig.
(2.1-right))[13].

Figure 2.1: Left: RGB imaging system installed in a growth chamber (controlled envi-
ronment). Right: RGB + depth imaging system installed in a green house (Outdoor
enviroment) [13].

For each experiment, which lasted almost two weeks, images were cap-
tured with a time-lapse of around 15 minutes. In total, the database con-
sists of almost 42, 000 spatio-temporal sequences of RGB images, where
each temporal sequence comprises nearly 768 individual images. This ex-
tensive collection of images has been crucial for the development of our
deep learning techniques and models. Fig. (2.2) shows an example of
collected data by the imaging system.

This innovative imaging system and database, specifically tailored for
plant phenotyping, features a diverse range of seedlings at various growth
stages and under different environmental conditions. The comprehensive
nature of the database allows researchers to train deep learning algorithms
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Figure 2.2: An overview of the time-lapse collected for our works. Upper row, view of
RGB and depth of a full tray with 40 pots from the top view. Lower row, a zoom on a
single pot at each stage of development to be detected from left to right: soil, the first
appearance of the cotyledon (FA), opening the cotyledons (OC) and appearance of the
first leaf (FL) [13].

on a wide variety of plant images, ultimately improving the accuracy and
reliability of the algorithms for detecting and tracking plant growth and
development.

The technology is now being used as the focus of my current Ph.D.
student’s research, Mathis Cordier, at the company Vilmorin-Mikado for
further research and analysis of images. The Raspberry Pi devices and
cameras were designed to communicate seamlessly with one another, fa-
cilitating the acquisition of images from multiple locations. By having
access to this large and diverse dataset, we were able to train our devel-
oped deep learning techniques to accurately categorize and scrutinize the
images, which holds the potential to enhance our comprehension of plant
growth and development.

One of the key advantages of the proposed imaging system and database
is its potential for automating the seedling phenotyping process. Tra-
ditional phenotyping methods are labor-intensive, time-consuming, and
prone to subjective biases. By leveraging the power of deep learning and
the high-resolution imaging data collected by the Raspberry Pi network, a
system capable of providing rapid, objective, and accurate assessments of
seedling growth and development was developed.

Furthermore, the potential for the imaging system and database to be
applied to other areas of plant research is highlighted, such as disease
detection, stress response analysis, and genotype-phenotype mapping. The
flexibility and scalability of the system make it suitable for a wide range of
applications in plant science and agriculture, where high-throughput and
accurate phenotyping methods are critical for driving advances in crop
breeding and management [25, 13].

25



2.1.2 RoseX - 3D models of real rosebush plants

Within the scope of an internal project by the Imhorphen group, in collab-
oration with Dr. Helin Dutagaci, we introduced an open-source collection
of comprehensive 3D models of real rosebush plants, complete with ground
truth annotations at the organ level [26]. These models were obtained us-
ing a Siemens 3D X-ray imaging system with a voltage range of 10-450 kV,
employing a tungsten transmission target and a 280-mA current. For this
research, the system operated at an 80-kV voltage. With 900 projections,
each radiograph is an average of three exposures lasting 333 ms to min-
imize noise. The acquisition time for each plant was 20 minutes, and 11
rosebush plants of varying architectural complexity were imaged.

The acquired data consists of a series of X-ray images with a pixel
spacing of 0.9766 mm and a slice spacing of 0.5 mm, forming a 3D voxel
space. The intensity of each voxel corresponds to the plant shoot’s material
properties at that point. To extract the 3D voxels of the rosebushes and
their pots from the raw data, masking and thresholding methods were em-
ployed. Manually created masks helped remove unrelated materials from
the imaging platform, while thresholding differentiated plant voxels from
air.

The remaining voxels were assigned to one of the following categories:
(1) stem, (2) leaf, (3) flower, (4) pot, (5) tag. The stem category includes
main branches and petioles due to their similar geometric structures and
spatial connections. Fig. (2.3) illustrates the thresholded X-ray volume (a),
organ-level labels obtained through annotation (b), labels corresponding
to the plant shoot (c), and the stem and petiole structure (d) of a sample
rosebush model from the dataset.

Manual annotation was performed using ilastik (Interactive Learning
and Segmentation Toolkit) [27]. With ilastik’s pixel classification tool, we
manually marked several voxels in regions belonging to each class on a
rosebush model to train the classifier. We then obtained full-volume pre-
dictions for all models generated by ilastik’s trained classifier and manually
corrected any inaccurately labeled voxels.

The dataset is available online at [28] and provided in various forms:
(1) the raw X-ray image stack, (2) the binary volume mask indicating
the voxels of only the plant shoot, tag, and pot, along with corresponding
organ-level labels, (3) the binary volume mask indicating the voxels only on
the surface of the plant shoot and corresponding organ-level labels, (4) the
point cloud consisting of the points of the plant shoot, tag, and pot with
colors indicating organ-level labels, (5) the point cloud consisting of the
points on the surface of the plant shoot with colors indicating organ-level
labels. Additional file 1 contains detailed information on file formats and
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Figure 2.3: A sample rosebush model from the data set. The raw X-ray volume is thresh-
olded and masked to obtain the solid part shown in a. Each voxel in the volume is
annotated as leaf, stem, flower, pot, or tag to obtain the ground-truth segmentation as
shown in b. In c only the parts corresponding to the plant shoot are shown, excluding
the pot and the tag. The voxels corresponding only to stem class are shown in d [26].

label data. Using these resources, it is possible to convert 3D volumetric
models into labeled polygon mesh models and obtain 3D point clouds as
viewed from any position around the plant through ray casting.

2.1.3 AgTech data challenge

In 2019, we organized a worldwide online data challenge that attracted
participation from approximately 200 individuals across the globe. This
ambitious project was a collaborative effort between three institutions –
the University of Angers, ESEO, and ESA – and was generously supported
by companies such as Business and Decision and Credit Agricole bank.
The primary objective of this project was to develop machine learning or
deep learning algorithms capable of being trained on synthetic data and
then detecting weeds in challenging scenarios using real images.

To facilitate this, we created a simulation tool to generate realistic syn-
thetic weeds in densely populated environments where the weeds are sur-
rounded by plants [29] shown in Fig. (2.4). This innovative approach
allowed us to create a large and diverse dataset of synthetic images, which
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could be used to train deep learning algorithms for the task of weed de-
tection. The use of synthetic data in this context has the potential to
overcome some of the limitations of traditional data collection methods,
such as labor-intensive manual annotation and the need for large amounts
of real-world data.

Figure 2.4: Simulation pipeline for the creation of images of weeds in densely populated
environments [29].

Throughout the data challenge, we organized online and in-person train-
ing sessions to instruct trainers on deep learning methods that can be
applied to image classification for these types of images. These sessions
provided participants with the necessary knowledge and skills to develop
their own deep learning algorithms and adapt them to the specific require-
ments of the weed detection task. By sharing our expertise and fostering
collaboration among participants, we aimed to promote innovation and the
development of new techniques for image-based weed detection.

The data challenge served as a platform for researchers and practitioners
from various fields to come together, share their ideas, and work towards
a common goal. This collaborative environment facilitated the exchange
of knowledge and expertise, leading to the development of innovative solu-
tions for weed detection using synthetic data. The resulting deep learning
algorithms showcased the potential of synthetic data in training models
that can generalize well to real-world scenarios, opening up new avenues
for research and applications in the field of agriculture and beyond.

Through the organization of the data challenge and the development of
innovative solutions for weed detection, we have demonstrated the power
of collaboration and the potential of synthetic data in advancing the state
of the art in deep learning and its applications. As we continue to explore
new challenges and opportunities in this field, we remain committed to
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fostering innovation and promoting the use of cutting-edge techniques to
address real-world problems.

2.1.4 Multimodal student behavior monitoring

For my second work, which is a cross-disciplinary project aimed at utilizing
computer vision and deep learning for educational purposes, funded by the
Pulsar project, we are creating a sophisticated system network made up of
cameras as well as oximeters to record the students’ status during an in-
person course visually and by measuring their heart rate variation (HRV).
This innovative approach allows for the collection of a large dataset that
can be used to analyze the students’ moods and emotions during a single
session or multiple sessions of the course, ultimately aiming to improve the
course’s content and pedagogical strategies.

The integration of cameras and oximeters in the classroom environment
provides an opportunity for continuous monitoring of students’ facial ex-
pressions and physiological signals. The cameras capture high-resolution
images and videos of the students, while the oximeters measure their HRV,
providing valuable insights into their emotional states. By combining these
two modalities, we can obtain a more comprehensive understanding of stu-
dents’ reactions and engagement levels during the course.

The potential applications of this work extend beyond the classroom
setting, with potential use in various educational contexts such as online
learning, tutoring, and training programs. By gaining insights into stu-
dents’ emotions and engagement levels, educators can tailor their teaching
methods and course materials to better meet the needs and preferences of
their students, resulting in improved learning outcomes and overall student
satisfaction.

2.1.5 Multimodal speaker recognition database

In the context of my current project ALM, we are breaking new ground
by creating a database specifically for biometric recognition using voice
(speaker recognition) in the presence of both environmental noise and hu-
man emotions. Most existing datasets for this purpose only include one or
two modalities and do not contain any environmental noise [30, 31]. Our
innovative database is created by recording volunteers in three modalities:
voice, RGB video, and depth video. This comprehensive approach allows
for a more accurate analysis and understanding of speaker recognition un-
der various conditions.

During our data collection process, volunteers read a set of sentences
while expressing eight different emotions: anger, anticipation, joy, trust,
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fear, surprise, sadness, and disgust. We collect data in two distinct environ-
ments, starting with a controlled, noise-free environment, and then moving
to an environment with background noise, such as streets, parks, or par-
ties. This approach ensures that our database captures a diverse range
of scenarios, enabling the development of more robust speaker recognition
systems.

The comprehensive nature of our database has the potential to have a
significant impact on biometric recognition systems by including various
challenges and enhancing their performance under real-world conditions.
This database will be used by Ph.D. student Abderrazzaq Moufidi, who is
working on multimodal deep learning algorithms for speaker recognition.
By leveraging the rich information contained in our database, Moufidi aims
to develop new techniques and models that can accurately identify speakers
in the presence of noise and emotional variability.

One of the main challenges we face in this project is ensuring the quality
and consistency of the collected data. To address this issue, we have im-
plemented strict protocols for data collection, ensuring that the volunteers
follow the same guidelines regarding their emotional expressions and the
reading of sentences. Additionally, we are using high-tech equipment for
capturing voice, RGB video, and depth video, ensuring that the collected
data is of the highest quality and suitable for deep learning algorithms.

The potential applications of our database and the resulting deep learn-
ing algorithms extend beyond biometric recognition. The ability to ac-
curately identify speakers in noisy environments and under various emo-
tional states can have a significant impact on industries such as security,
customer service, and telecommunication. Furthermore, our multimodal
approach can be applied to other fields where understanding human behav-
ior and emotions is essential, including healthcare, education, and human-
computer interaction.
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Chapter 3

Methodology

My research methodology is primarily guided by a bottom-up strategy,
where I commence with a specific application and progress toward the
methodology. This approach has proven to be highly effective in developing
novel methods that can be employed across a wide range of fields. By
initiating with the application and thoroughly understanding the unique
requirements and challenges associated with it, I have been able to create
and implement algorithms that effectively address these issues and achieve
the desired outcomes.

Having established the value of this bottom-up approach, it is worth
noting that its success has not only been reflected in my scientific publi-
cations but has also opened up new opportunities for me in the realm of
teaching. As a result, I have managed to introduce new courses in machine
learning and deep learning at ESAIP, broadening the horizons for students
in these rapidly advancing fields. Additionally, this approach has allowed
me to participate in lifelong training courses as a trainer on deep learning
for image analysis at both the national and international levels.

Working in collaboration with renowned research institutes, such as
EMBL in Germany, has further enhanced my expertise and allowed me
to share my knowledge with a wider audience. These collaborations have
fostered a dynamic learning environment, enabling researchers, students,
and professionals to gain valuable insights into the latest developments in
machine learning and deep learning. Consequently, the bottom-up strat-
egy has not only contributed to the advancement of my research but also
enabled me to make a meaningful impact in the field of education by provid-
ing cutting-edge knowledge and resources to learners and fellow researchers
alike.

In this chapter, I will present a synthesis overview of the various method-
ological contributions made throughout this research. Initially, I will delve
into the realm of shallow learning, specifically focusing on my approach
to texture-based feature extraction that has significantly improved perfor-
mance in this domain. In the second section, I will shift my attention to
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the advancements made in deep learning techniques, particularly in the
area of multimodal deep learning, which has allowed for more effective fu-
sion of different data modalities. Lastly, the third section will be dedicated
to addressing the critical issue of annotation bottlenecks in deep learning.
I will discuss my proposed models and approaches that aims to mitigate
these challenges, ultimately enhancing the efficiency and applicability of
deep learning models across various domains.

3.1 Texture-based features for shallow learning

During the initial phase of my research following the completion of my
PhD, I collaborated with researchers at the University of Lyon, in the PhD
study of Mathilde GIACALONE and Noelie Debs, to delve deeper into the
use of texture-based feature extractors for machine learning algorithms.
My research on texture-based features was driven by their importance in
medical imaging, as they provide valuable information about the spatial
arrangement and patterns of pixels within an image [32]. This information
can aid in identifying and classifying various structures or regions of interest
within the image [33].

Texture-based features can encompass various structures, whether repet-
itive, completely random, or transitory, making them particularly useful
in different medical applications [34]. Some of these applications include
lesion detection in medical images [35], identifying different structures in
microscopy images [36], and even in early disease diagnosis [33]. Moreover,
texture-based features have demonstrated their robustness in a wide range
of situations and can often help improve the performance of machine learn-
ing algorithms, especially when combined with other types of features or
data [34].

Another key advantage of texture-based features is that they are insen-
sitive to small variations in the brightness or contrast of an image, making
them suitable for representing the texture of objects in images under vary-
ing lighting conditions [32]. This insensitivity is particularly valuable in
medical imaging, where capturing images in controlled lighting conditions
is often challenging, and changes in brightness or contrast can significantly
impact the visibility of various structures within the image [34].

In addition to their robustness and insensitivity to lighting variations,
texture-based features have proven to be highly versatile and adaptable.
They can be easily incorporated into a wide range of machine learning
algorithms, including both traditional methods and deep learning tech-
niques [33, 37, 38]. As a result, my research on texture-based features has
not only provided valuable insights into their utility and applicability in
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various medical imaging contexts but has also led to the development of in-
novative solutions that can address the unique challenges and requirements
of these diverse applications.

Local Binary Patterns

In my first contribution, we began by investigating feature extractors for
machine learning approaches that can represent the texture of objects in
an image for different purposes, such as image classification. Local Binary
Patterns (LBP) [39] is a commonly used method that has a wide range
of applications. One of the advantages of LBP is its robustness to vari-
ations in grayscale. This means that it is not sensitive to small changes
in the brightness or contrast of an image, making it a suitable technique
for representing the texture of objects in images under varying lighting
conditions.

Building upon this understanding, in the work presented in [40], we
proposed a new variant of LBP for encoding texture features from spatio-
temporal images, specifically focusing on the application of perfusion MRI.
The new encoding proposed for perfusion MRI is motivated by the fact that
the spatio-temporal signature of each voxel is difficult to observe due to the
3D + time nature of the data structure. We propose to encode this spatio-
temporal signature into a discriminant texture that is easily identifiable
by the human eye and useful for automatically characterizing the state
of tissues in each voxel using simple texture analysis tools from computer
vision. In order to do so, we propose to encode the information contained
in the Moore neighborhood of order 1 of each voxel, as illustrated in Fig.s
(3.1) and (3.2).

Figure 3.1: Encoding of the spatio-temporal signature of perfusion MRI signals as a patch
[40].
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Figure 3.2: Illustration of the typical patterns obtained for patches for healthy voxels
(left) and pathological voxels (right) [40].

We unfold the temporal signals along a spatial dimension and then pile
up, one on top of the other, the temporal signals of the 8 voxels in the
Moore neighborhood of order 1 of each voxel of interest, creating a patch
of size 9 by Nt, where Nt is the number of temporal acquisition points in
the perfusion imaging sequence. This encoding method allows us to create
a unique patch for each voxel, which can then be further analyzed using
texture analysis and classification tools.

After applying the LBP operator to a patch, the concatenated his-
tograms of the sub-patches separating the labeled patch into contiguous
segments can be used as a feature vector to describe the texture in the
initial patch, as shown in Fig. (3.3). We use these feature vectors to clas-
sify each voxel depending on its final state status using a support vector
machine classifier.

Figure 3.3: Illustration of the LBP labels obtained (right) from a given patch (left) [40].

By evaluating the impact of observation scale and segment width on the
precision of tissue fate prediction, we compared the predictive potential
of patches and feature vectors of various sizes, aiming to optimize the
classification process. This approach demonstrates the potential for texture
analysis and classification tools, such as LBP and SVM, to be applied
in medical imaging, particularly in perfusion MRI, to aid in tissue fate
prediction and other diagnostic tasks.

Although LBP has been widely utilized and proven effective in our works
as well as other varieties of applications, it comes with certain limitations.
One notable drawback is that LBP is not as invariant to deformations and
changes within an image as some other feature extraction methods. This
means that when it comes to changes such as scaling, rotation, or transla-
tion, LBP might not be as proficient at extracting features that are resilient
to these alterations. As a result, LBP’s performance may be compromised
in tasks where objects within the image could appear at different scales,
orientations, or positions like in plant phenotyping applications.
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Wavelet Scattering Transform

Alternative feature extraction techniques, such as the Wavelet Scattering
Transform (WST) [41], have demonstrated a higher degree of invariance
to these types of changes in signals and images. WST is based on the
principle of representing an image as a scattering transform, which en-
tails a multi-scale decomposition of the image using wavelets. Wavelets
are mathematical functions that can be employed to analyze and repre-
sent data, particularly in situations where the signal or image exhibits a
hierarchical structure.

The scattering transform effectively captures both the local and global
structure of the image, resulting in features that are invariant to deforma-
tions like scaling, rotation, and translation. This characteristic of WST
makes it particularly well-suited for applications within the life sciences,
where the presence of complex and varying structures is common. Further-
more, WST’s ability to provide a more comprehensive representation of the
image allows it to better adapt to different types of data, thus enhancing
its utility in various fields and applications.

A potential challenge when utilizing WST is determining the appro-
priate number of layers to incorporate into the transform. As the layers
increase, the energy of the transformed signal may diminish, potentially
leading to the loss of sensitivity to fine details or structures within the
image. In the initial WST paper, the authors suggested a maximum of
two layers for the transform. Nonetheless, this approach may not always
be the most suitable choice, given that the required number of layers can
vary based on the specific application and the attributes of the input im-
ages. For the first time, we have proposed an automated method for the
optimal design of the scatter transform, which is based on energy contrast.
This approach effectively tackles the issue of determining the appropriate
number of layers for different type of the data [29, 23]. Our method in-
volves examining the energy of the transformed signal at every layer of the
scatter transform and determining the number of layers by considering the
contrast between the energy at various layers. By taking into account the
energy contrast between layers, our method aims to strike a balance be-
tween capturing adequate information about the image and preventing the
vanishing energy issue that may arise with deeper layers of the transform
[29].

In the context of weed detection, our suggested approach in [29] suc-
ceeded in enhancing the algorithm’s accuracy by selectively choosing the
number of layers in the WST, resulting in a superior feature representa-
tion of the weeds in the images. In the biometric recognition application,
our proposed method in [23] was employed to extract more robust features
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from voice signals, ultimately leading to improved performance in terms of
recognition accuracy. These outcomes demonstrate the adaptability and
versatility of our suggested approach, as it can be applied across a wide
array of domains and applications, thus enhancing the performance of the
underlying algorithms.

In our research [29], we also emphasized that a key advantage of WST
is its capacity to achieve satisfactory performance even when the available
data is limited. This is attributed to the fact that WST’s performance
does not rely on the size of the training data, and increasing the training
data’s size does not result in significant performance improvements. This
is particularly valuable in circumstances where acquiring large quantities
of training data is challenging or impractical. For instance, in certain
medical imaging applications, obtaining vast amounts of labeled data may
be difficult or impossible due to ethical and privacy concerns. In such
situations, WST’s ability to function effectively with small amounts of
data renders it a useful tool.

It is important to mention that although WST can perform well with
limited data, employing deep learning algorithms, such as Convolutional
Neural Networks (CNNs), can yield even better performance when more
data is available as shown in Fig. (3.4). CNNs’ ability to learn from
vast amounts of data allows them to achieve superior generalization and
performance.

Figure 3.4: Comparison of the recognition accuracy between scatter transform and deep
learning when the number of samples increases [29].

36



3.2 Deep learning algorithms

Upon gaining insights from our study [29], I have chosen to redirect my
attention towards utilizing and advancing deep learning algorithms, specif-
ically for applications capable of producing an ample amount of data. This
is particularly relevant in areas such as microscopy imaging and plant
phenotyping, where the data is abundant in context, expressiveness, and
presents numerous challenges.

In order to gain a deeper understanding of this area, I joined forces with
the University of Lyon, where we developed CNN models for the analysis
of microscopic images [38], as well as magnetic resonance imaging (MRI)
[37]. Additionally, these models were utilized in the research carried out
by my Ph.D. student Lukman ISMAIL, focusing on MRI [19].

Microscopy imaging provides an in-depth view of internal organs and
tissues at a high resolution, but factors such as inconsistent lighting and
varying tissue structures can complicate the analysis. By implementing
deep learning algorithms, we can develop models that are better equipped
to handle these challenges and extract meaningful information from the
data.

Similarly, plant phenotyping images present a complex set of challenges
that can be addressed through deep learning techniques. Issues such as
self-occlusion, the continuous growth of the organism, and variations in
lighting, pose, and growth stage make it difficult to analyze these images
using traditional methods. By employing advanced CNN models, we can
overcome these hurdles and gain a deeper understanding of the underlying
processes and patterns.

Building upon the earlier exploration of CNN models for microscop-
ical and MRI images, our research also delved into the challenges pre-
sented by spatio-temporal images, which are frequently found in real-life
datasets in the life sciences domain. A key limitation of employing CNNs
with spatio-temporal images is their primary focus on spatial information,
which may hinder their effectiveness in identifying temporal relationships.
CNNs excel at processing images by applying convolutional filters to a
local region of the image, enabling the detection of local patterns and fea-
tures. However, they may not efficiently capture dependencies between
video frames or time series data. Alternative techniques, such as Recur-
rent Neural Networks (RNNs) such as Long Short-Term Memory (LSTM)
networks, may be more appropriate for tasks that necessitate the analy-
sis of spatio-temporal data and modeling of temporal dependencies, given
their inherent memory mechanisms. Yet, they might not be as proficient
in capturing spatial information as CNNs in computer vision tasks.
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In addressing the challenges associated with spatio-temporal data in
the plant phenotyping domain, I collaborated with Ph.D. student Salma
SAMIEI to develop an innovative model that merges the strengths of CNNs
and LSTM networks [25]. This powerful combination, as shown in Fig.
(3.5), enhances the classification performance for spatio-temporal images
by providing a more comprehensive and effective solution to handle the
intricate nature of such data.

Figure 3.5: CNN-LSTM block [25].

Our initial efforts focused on improving the naive multi-class CNN archi-
tecture by incorporating the ontology of plant growth for better discrim-
ination between different growth stages. We developed several ordinally
CNN models for binary classification of consecutive developmental stages,
training them to detect various growth stage pairs. This approach allowed
for the automatic progression through different models as each event was
detected during the analysis of a time-lapse sequence.

To further refine the model and introduce memory directly into the
CNN architecture, we embedded an LSTM network between the feature
extraction and classification blocks. The LSTM architecture, a special
RNN structure, has demonstrated stability and effectiveness for long-range
dependency modeling in previous studies [42, 43, 44, 45]. The LSTM’s
memory cell ct, acting as an accumulator of state information, is accessed,
written, and cleared by several self-parameterized controlling gates. This
control of information flow prevents the gradient from vanishing too quickly
and is one advantage of the memory cell and gate system [43]. Eq. (3.1)
provides the activations for the memory cell and the three gates.

it = σ(Wxix
t + Whih

t−1 + Wcic
t−1 + bi),

f t = σ(Wxfxt + Whfht−1 + Wcfct−1 + bf),
ct = f tct−1 + ittanh(Wxcx

t + Whch
t−1 + bc),

ot = σ(Wxox
t + Whoh

t−1 + Wcoc
t−1 + bo),

ht = ottanh(ct),

(3.1)
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where σ() is the sigmoid function, all the matrices W are the connection
weights between two units, and x = (x0, ..., xT1) represents the given input.

The proposed CNN-LSTM model combines the spatial feature extrac-
tion capabilities of CNNs with the temporal dependency modeling of LSTMs.
This architecture allows for the effective processing of spatio-temporal data
and can be applied to various vision tasks involving sequential inputs and
outputs. By harnessing the strengths of both CNNs and LSTMs, our in-
novative model contributes a powerful solution to the challenges posed by
spatio-temporal data in plant phenotyping and other domains.

Building on the advancements made with the CNN-LSTM model, my
Ph.D. student Hadhami GARBOUGE embarked on a groundbreaking en-
deavor by introducing and developing a novel vision transformer method for
spatio-temporal data. This marked the first application of such a method
to spatio-temporal images, as illustrated in Fig. (3.6) [13]. This inno-
vative approach enables the network to concentrate on key events within
time-series images, further enhancing our ability to address the inherent
challenges associated with the analysis of spatio-temporal data in plant
phenotyping and beyond.

Figure 3.6: Vision transformer method for spatio-temporal data [13].

The fusion of CNNs, LSTM networks, and vision transformer methods
provides a robust solution for managing the intricacies of spatio-temporal
images in the life sciences domain. By capitalizing on the unique strengths
of each approach, we have developed a more adaptable and effective tool for
the analysis and interpretation of this essential data. These advancements
carry significant potential for future applications and research within the
plant phenotyping field and other related areas where spatio-temporal im-
ages are of critical importance. Our work in this domain highlights the
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promise of deep learning algorithms and emphasizes the need for ongoing
exploration into their wide-ranging applications across various disciplines.

Continuing from our earlier work and delving further into the contribu-
tions of my Ph.D. student Hadhami GARBOUGE, we identified that one of
the challenges when implementing CNNs, CNN-LSTM, transformers mod-
els for tasks like classification on spatio-temporal data is that depending
exclusively on a single type of modality, such as RGB images, might not
provide enough information for accurate predictions. This issue becomes
especially pronounced under poor lighting conditions. To address this, we
explored methods that take advantage of multimodal CNN models, which
combine multiple sources of information to enhance the accuracy and per-
formance of the model.

Multimodal CNNs and transformers can harness various information
sources, enabling a more comprehensive and precise representation of the
data [13]. When developing multimodal CNN models, it is essential to
consider different ways that modalities can be integrated. We examined
several fusion approaches, including early fusion, hybrid fusion, feature
fusion, and late fusion. Each method has its advantages and drawbacks,
and it is crucial to weigh the task requirements and the data characteristics
when selecting the most suitable approach. Fig. (3.7) shows an example
of the fusion models tested in our work at [13].

Figure 3.7: (Left) Two fusion techniques for combining RGB-Depth data in the TD-CNN-
GRU architecture. (Right) Transformer-based fusion strategy for merging RGB-Depth
information in image analysis [13].
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Another prime example of effectively merging modalities can be found
in the work of my two Ph.D. students, Mathis CORDIER and Abderraz-
zaq MOUFIDI. They developed multimodal CNN models that incorpo-
rate spatio-temporal RGB and depth images, as well as voice signals and
depth images. These multimodal models have shown superior performance
in classification tasks when compared to single-modality models, such as
those using only RGB images or voice signals.

In Abderrazaaq Moufidi’s research, a late fusion architecture was em-
ployed, utilizing separate networks designed to handle the distinct infor-
mation types inherent in each modality. This approach ensures that the
unique characteristics of each modality are properly addressed as shown in
Fig. (3.8).

Figure 3.8: Fusion model of depth video and audio signal by using a self-attention model
[22].

For the audio modality, it is processed using an Time Delay Neural Net-
work architecture [46], with mean normalization applied to word duration
rather than the duration mentioned in the reference article. This step gen-
erates a feature vector Xa ∈ R512. Subsequently, the vector undergoes a
1D-convolution with a kernel size of 1, combined with batch normalization
and a Tanh activation function.

For depth video, after mean normalization, the depth video input is fed
into the novel architecture outlined in Fig. (3.9). This process results in
a feature vector Xd ∈ R512, which encompasses both visual and dynamic
information related to lip movements.

Following the processing of the various modalities, the resulting vec-
tor representations are directed through the self-attention module. This
specific module calculates the weighted sum of the paired vectors, in accor-
dance with the method detailed in our study [22]. Employing this approach
effectively reduces possible redundancy or ambiguity stemming from each
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Figure 3.9: Multi-view Video CNN architecture used on lips depth videos (The red dashed
line represent the extraction of the features vector from the view projection of the video)
[22].

individual modality. Consequently, this leads to the resolution of any con-
tradictions and notably improves the overall performance of the model.

Subsequent to the processing of these modalities, the resulting vectors
are channeled through the self-attention module. This module computes
the weighted sum of the two vectors, as described in [22]. By the use of
this technique, potential redundancy or uncertainty originating from each
modality is minimized, thereby mitigating contradictions and significantly
enhancing the model’s overall performance.

The integration of multimodal data can significantly enhance the perfor-
mance of deep learning models, especially when confronted with intricate
data sources commonly encountered in life sciences applications. By skill-
fully merging the advantages of diverse modalities, we can attain a more
precise and resilient comprehension of the inherent patterns and associ-
ations present in the data. This, in turn, enriches the decision-making
process across numerous applications.
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As we continue to explore the potential of multimodal data and its im-
plications in deep learning, it is crucial to address the challenges associated
with image annotation. The upcoming section will delve into the various
obstacles faced in the realm of image annotation and present innovative
strategies to overcome these challenges. By focusing on these aspects, we
aim to further optimize the efficiency and accuracy of deep learning mod-
els, paving the way for more effective utilization of multimodal data in life
sciences applications and beyond.

3.3 Image annotation challenges

In our prior research, we have established that deep learning can deliver
high-performance outcomes for a variety of issues across multiple domains,
provided that extensive annotated databases are accessible. As the de-
velopment of new deep learning models relies on considerable annotated
datasets, image annotation becomes a critical bottleneck. This is at-
tributable to the labor-intensive and time-consuming nature of manual
image annotation. Furthermore, the high cost and resources needed for
annotation can also impede the acquisition of the necessary volume of data
for deep learning models. Consequently, it is essential to discover effective
and efficient image annotation methods to overcome this bottleneck and
enable the development of novel deep learning models.

In order to tackle the challenges associated with annotation and enhance
the performance of deep learning models, we have devised innovative anno-
tation techniques or tools, established more efficient annotation processes,
and investigated methods to increase the availability of annotated data.
We have begun exploring and proposing new approaches to accelerate the
annotation process [47, 48]. For the first time, we examined the utilization
of egocentric vision techniques for joint image acquisition and automatic
annotation, as opposed to the conventional two-step process of acquisition
followed by manual annotation for applications like apple segmentation and
counting in the field as shown in Fig. (3.10) [47]. We highlighted the time-
saving advantages of employing egocentric vision methods for joint image
acquisition and annotation, showcasing a gain of over 10-fold in comparison
to the traditional approach [47].

In our study [47], we demonstrated that the most outstanding aver-
age performance in apple segmentation accuracy was achieved using eye-
tracking-based methods. Examples of challenging images and their result-
ing annotations with these methods can be seen in Fig. (3.11) for qual-
itative assessment. Despite significant shift errors, the embedded glasses
eye-tracker proved to be highly beneficial, as it enabled simultaneous image
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Figure 3.10: The red dotted-line encapsulates the conventional two steps of the acquisition
and annotation process. We jointly perform image acquisition and image annotation by
the use of a head-mounted egocentric device, which simultaneously captures images and
the gaze of the person who wears the device and reaps benefits from both factors to
annotate images automatically [47].

acquisition and annotation.
Interestingly, these results were consistent for all three tasks evaluated:

segmentation, counting, and localization. This highlights the robustness
and usefulness of eye-tracker devices for annotation purposes. Although
eye-tracking systems may be considered expensive (typically ranging from
10,000 to 20,000 euros), it is worth noting that the egocentric prior ap-
proach can be accessible with any camera embedded on glasses, which
could cost between 10 and 100 euros.

Exploring innovative annotation techniques, such as egocentric vision
approaches, has paved the way for enhancing the annotation process by
automating parts of it, reducing manual intervention, and increasing ef-
ficiency. These advancements have made it more feasible to collect the
annotated data needed for deep learning models while also potentially ex-
tending their impact to various applications and domains. In line with
this spirit, we have continued to develop novel solutions for image anno-
tation challenges. Although significant strides have been made to lessen
the time and effort required, expert domain knowledge remains essential
to guarantee the accuracy of annotations.

Building upon these advancements, we have turned to the application
of transfer learning and data augmentation as promising avenues for miti-
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Figure 3.11: Qualitative assessment of results. From left to right, an example of the
attention area captured by eye-tracking, automatic annotation obtained from the proposed
image processing pipeline, ground-truth manually recorded, and comparison of manual
ground-truth and automatic segmentation. (a) Examples of good performance; (b) Some
challenging conditions wherein more errors were found (missed detection, false detection)
[47].

gating the difficulties associated with annotation. Specifically, we have in-
vestigated the use of transfer learning techniques to facilitate the training
of models using synthetic or augmented data [29, 37, 14], thereby lever-
aging knowledge gained from one modality to improve the performance of
models in another modality [17, 14, 49]. Our works has demonstrated the
potential of transfer learning approaches to reduce the amount of annota-
tion required while maintaining high levels of accuracy and performance.
For instance, in our study [37], we have illustrated the use of hemodynamic
signal simulations to increase the amount of data and improve the perfor-
mance of our CNN model for predicting lesion progression in acute ischemic
stroke using DSC-PWI as shown in Fig. (3.12). This novel demonstration
of the value of simulation in training machine learning techniques for med-
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ical imaging has led to performance levels comparable to those found in
the literature for this crucial stroke issue.

Figure 3.12: (a) The initial images are contrast-agent concentration images. In experiment
1, the training dataset consists in patches from real concentration images, whereas in
experiment 2 and 3, the training dataset consists in synthetic patches obtained from
the simulator. In experiment 2, AIF input parameter is set to a default value, and in
experiment 3, AIF input parameter are the ones of the tested patient. (b) Concentration
images are encoded into spatio-temporal patches. (c) A CNN model is trained from
patches of the concentration images. (d) Each voxel from the tested concentration images
is classified as healthy or infarcted [37].

In another study we conducted [17], we utilized functional MRI (fMRI)
images of healthy volunteer subjects to train a model, which was then
transferred to another model to detect functional brain networks on fMRI
images of individuals with brain tumors.

Another example of transfer learning can be found in our research that
demonstrates the use of annotated RGB datasets for segmenting leaves
in fluorescence images [49]. By utilizing synthetic datasets with physical
modeling of noise in fluorescence and real images in the training process,
we achieved good segmentation performance. This instance further high-
lights the versatility and applicability of transfer learning in addressing the
challenges posed by limited data in specific domains, thereby expanding
its impact across various fields.

In our another study [14], where we used both transfer khowlege and
data augumentation, we expand on our earlier findings presented in [25], in-
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vestigating the feasibility of transferring knowledge gained from controlled
indoor settings (in vitro) to outdoor environments with variable lighting
conditions and potential shadows created by the sun or drifting clouds.
The goal of this research is to transfer knowledge from a model trained on
the initial dataset from a controlled environment to a second dataset from
an outdoor environment, as depicted in Fig. (3.13). The challenge in the
proposed experiment therefore lay in the presence of shadows which occurs
in the green house environment only.

Figure 3.13: Left panel illustrates the imaging system in controlled environment associ-
ated with the large database of [25]. Right panel illustrates the imaging system in an
outdoor environment with a smaller database. We investigate the possibility of transfer
of knowledge from left to right panels [14].

To simulate images acquired in the outdoor environment from indoor
images, we propose an automatic shadow generator in [14]. The shadows
are randomly positioned by using a thresholded speckle generator [50, 51].
All sizes of shadow can be present in greenhouses. However, only shadows
larger than the typical size of seedling organs and smaller than a single
plant are expected to impact the detection of seedling development. This
information was used to adjust the value of the threshold in the algo-
rithm. Each image in the indoor database is then spatially modulated by
the generated shadow with a simple multiplication as shown in Fig. (3.14).

We have explored a range of knowledge transfer methods to facilitate
the transition from indoor to outdoor environments [14], encompassing
brute transfer (where models trained indoors were directly employed to
predict outdoor images), data augmentation (involving the generation of
shadows), and model fine-tuning, which incorporated a limited amount of
real outdoor data in the training process. Intriguingly, the model’s perfor-
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Figure 3.14: Example of original indoor images (left), generated shadows (middle) and,
indoor images with simulated shadows (right) [14].

mance saw a marked enhancement when fine-tuning the network trained
on data-augmented indoor images with shadows. This approach converged
to an elevated level of performance using only a small number of outdoor
plants, highlighting the effectiveness of these techniques in adapting to di-
verse conditions.
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Chapter 4

Conclusion and Future directions

4.1 Achievements

Throughout my research career, my primary aim was to investigate and
address the scientific questions that persisted within the realm of life sci-
ence applications, particularly those that could benefit from the integra-
tion of deep learning methodologies. The pursuit of this goal led to the
proposition of numerous novel methodologies, several of which were first-of-
their-kind at the time. Specifically, we investigated the detection of plant
growth stages by the use of spatio-temporal data through our proposed
CNN-LSTM and spatio-temporal transformers methodologies [25, 13]. Fur-
thermore, the research also addressed the topic of model adaptation and
transfer knowledge, focusing on the utilization of models trained on specific
data types and repurposing them for different data types or environments.
This was particularly evident in our work involving the application of mod-
els trained on in vitro data for various environmental settings [13, 14, 19].
Lastly, we explored the potential of exploiting other data modalities to
enhance the learning process by our works at [13, 22]

I initially focused on plant phenotyping and medical imaging, which
frequently entail multiple visual modalities. Over time, I have consis-
tently broadened the scope of my independent research endeavors, main-
taining a bottom-up approach that transitions from practical applications
to methodological advancements. This evolution has allowed me to tackle
other demanding multimodal fields, including emotion recognition in ed-
ucational settings, voice signal analysis for biometric identification, and
sentiment analysis, all of which are intricate and necessitate the integra-
tion of multiple modalities and interdisciplinary elements.

My prior research and project engagements have significantly influenced
and shaped my future research objectives and trajectory. This progression
is exemplified by my involvement in leading several multi-disciplinary na-
tional and international initiatives, such as those funded by the Angers
Loire Metropole (ALM) for biometric recognition, PULSAR for emotion
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recognition in pedagogical environments, TUBITAC for sentiment analysis
in renewable energy, and the Erasmus+ program for machine vision in the
realm of industrial Internet of Things (IIoT). These collaborations have
been facilitated through partnerships with esteemed institutions, such as
the University of Angers’ French language center, the pedagogical research
group at ESAIP, and Gebze Technical University.

In each of these projects, I am vigorously dedicated to the development
of novel and cutting-edge deep learning techniques, aiming to enhance the
capabilities of artificial intelligence in solving complex, real-world prob-
lems. As I continue to refine and expand my research, my ultimate goal
is to contribute to the advancement of machine learning and deep learning
methodologies in various domains, fostering innovation, and positively im-
pacting the way we approach challenges in multiple sectors. By cultivating
interdisciplinary collaborations and fostering a spirit of discovery, I strive
to pave the way for more sophisticated and efficient solutions to problems
in fields as diverse as healthcare, education, security, and sustainability.

Building upon my comprehensive experience in multidisciplinary re-
search, I have devised an innovative strategic plan that adheres to my es-
tablished approach of beginning with practical applications and progressing
toward methodological advancements. This plan encompasses the devel-
opment of multimodal deep learning models for biometric identification,
emotion recognition, and sentiment analysis.

As we continue to develop these models, our research has the potential
to revolutionize various industries, including cybersecurity, education, and
energy. By bridging the gap between applications and methodologies, we
hope to foster a more comprehensive understanding of the challenges and
opportunities that lie ahead in these fields. Additionally, by embracing
the power of multimodal deep learning, we can create more robust and
accurate models that account for the complexity and nuance inherent in
human behavior and emotions.

4.2 Future directions

4.2.1 Research

Recent breakthroughs in deep learning, such as generative models and
multimodal data analysis, have paved the way for the development of ro-
bust and accurate models for a wide range of applications. A primary fo-
cus of our research is to minimize the dependency on manual annotation,
thereby enhancing the efficiency and effectiveness of various applications.
To achieve our goal, we are actively investigating innovative techniques
that can decrease the reliance on manual annotation within our individual
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and internal projects. As we make progress in this area, it opens up op-
portunities to participate in ANR and European projects in collaboration
with academic institutions. Furthermore, we are mentoring new Ph.D. stu-
dents and postdoctoral researchers to help advance these efforts. Our aim
is to improve the performance of projects in areas like life science imaging,
emotion recognition, and biometric recognition while reducing the burden
of annotation.

A key objective in achieving this goal is the development and refinement
of self-supervised learning representation (SSLR) methods to decrease an-
notation requirements. We have recently proposed a SSLR technique for
situations where only limited annotated data is available, as demonstrated
in our work on fMRI images of unhealthy subjects within the context of
my current Ph.D. student’s work [18]. This approach leverages abundant
unannotated data to improve the performance of deep learning models
when labeled data is scarce. By utilizing unannotated data for pretext
tasks and annotated data for downstream tasks, we can capitalize on the
wealth of unannotated data, ultimately enhancing deep learning model
performance.

In the literature, various technologies and models, such as generative
models and SSLR models, have been developed. Popular SSLR pretext
tasks include rotation, jigsaw, and instance discrimination [52, 53]. How-
ever, traditional SSLR pretext tasks can be challenging for certain domains,
like life sciences, which encompass computational biology, medicine, and
digital plant phenotyping. These challenges arise due to the absence of
canonical orientation and the textural nature of the problems.

The work proposed in [54] were among the first to explore image gener-
ation as an SSLR pretext task with biological images, focusing on the mor-
phological profiling of human cultured cells with fluorescence microscopy.
Although they speculated that adversarially learned representations might
be superior to autoencoder-based ones, their generative approach was found
to be not yet competitive with traditional transfer learning-based method-
ologies. More recent studies have investigated and improved generative-
based SSLR methods [55]. However, these works typically rely on side
information to construct their generative pretext task by the use of Gen-
erative Adversarial Networks (GANs), tailoring it to specific applications
[56].

The concept of utilizing GAN’s discriminator as a feature extractor was
initially introduced and employed in various studies [57, 58, 59]. The re-
search conducted in [60] demonstrated that the efficiency and robustness of
discriminator features are strongly dependent on preventing mode collapse
within the network. Wasserstein GANs, which include the StyleGAN2
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family, are known for their notable resistance to mode collapse [59, 61].
However, GANs can be computationally demanding during training and
may occasionally produce images with artifacts or unrealistic features.
Additionally, achieving precise control over generated outputs can be a
challenging task.

In contrast, diffusion models, which are based on denoising score match-
ing and contrastive divergence, have surfaced as a viable alternative for
image synthesis. These models offer several advantages, such as a more
stable training process, reduced sensitivity to hyperparameter selection,
and generally lower requirements for training data and computational re-
sources compared to GANs. In lieu of this, diffusion models hold significant
promise for various image synthesis tasks due to their inherent benefits. As
advancements in the field continue to unfold, it is expected that the perfor-
mance of diffusion models will improve, thereby increasing their versatility
and applicability across a wide range of domains and applications.

Nonetheless, the majority of these methods concentrate on a single
modality, while multimodal models have the potential to perform better.
Building on my previous research, I plan to develop a collaborative ap-
proach called multimodal generative self-supervised representative learning
that integrates self-supervised learning with generative models like diffu-
sion and autoencoder models.

My aim in merging these two model types is to enhance image anal-
ysis efficiency and accuracy while minimizing the need for annotation. I
intend to employ the self-representations acquired by diffusion models as
a replacement for the traditional pretext task in SSLR models. This will
guide the generation process in autoencoder models, increasing their ro-
bustness to changes in data distribution. Furthermore, integrating multiple
modalities or domains into the training process will improve the models’
generalization capabilities. Ultimately, I aim to create a method that can
effectively transform images between various modalities or domains with
minimal human intervention, making it a valuable resource for researchers
and practitioners across different fields.

In order to accomplish this, I will develop a novel technique called Multi-
Modal Diffusion Self-Supervised Learning (MMDSSL). This method will
seek to extract meaningful and high-quality features from multimodal data,
taking advantage of the distinct characteristics of each modality to enrich
the overall understanding of the data. The conceptual illustration of the
MMDSSL model can be seen in Fig. (4.1), which provides a preliminary
visual representation of the proposed idea. By concentrating on the de-
velopment and improvement of self-supervised learning methods, I aspire
to reduce manual annotation requirements, leading to more efficient and
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effective deep learning models. In turn, this will advance my work in fields
such as emotion recognition, sentiment analysis, and biometric recognition,
ultimately contributing to the broader domain of artificial intelligence and
its real-world applications.

Few labeled data

Unlabeled 

multimodal data
Stage2: Fine-tune network for downstream task

Stage1: Train ConvNet on generated data using a large unlabeld dataset

Learned 
Representation Encoding 

Encoding 

Input Noise
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Diffusion 
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Diffusion 
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Encoding 

Encoding 

Model

Fusion

Figure 4.1: Preliminary visual representation of the MMDSSL

In the context of MMDSSL, I plan to represent the multimodal data as a
set of observations with multiple modalities. The objective will be to learn
a joint feature representation that effectively captures the relationships
between the modalities.

The MMDSSL method will involve two main components: a diffusion
model and a self-supervised learning task. The diffusion model will be re-
sponsible for learning the data representation and generating new samples
for each modality in the dataset. This will be achieved by incorporating a
noise schedule function and an isotropic Gaussian noise.

In MMDSSL, the self-supervised learning task will aim to learn useful
features by using diffusion models that do not require any specific anno-
tation. I will design a loss function to encourage the model to understand
the relationships and dependencies between modalities.
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By optimizing the joint objective function with a hyperparameter con-
trolling the trade-off between the generative and self-supervised learning
objectives, I aim to learn a robust and informative feature representation
that effectively captures the underlying structure and relationships in the
multimodal data.

To seamlessly incorporate the attention mechanism into the MMDSSL
framework, I plan to introduce a transition that highlights its importance
in learning complex relationships between modalities. This can be achieved
by emphasizing the role of attention in effectively capturing the underlying
structure and dependencies across different data modalities.

In order to improve the multimodal feature learning process, I suggest
incorporating attention mechanisms into the MMDSSL method. By inte-
grating the attention mechanism into both the encoder and the diffusion
model, the models can learn more intricate relationships between modali-
ties, ultimately enhancing the MMDSSL method’s performance across var-
ious tasks and applications.

The attention mechanism allows the model to dynamically concentrate
on the most relevant portions of the input data across modalities, resulting
in more robust and discriminative features. This approach can be partic-
ularly beneficial in situations where different modalities provide comple-
mentary information for a more comprehensive understanding of the data.

The MMDSSL method has the potential to be applied to various do-
mains in life science and biometric recognition, due to its ability to effec-
tively learn high-quality representations from multimodal data with mini-
mal annotation. Some possible application domains include:

In microscopy imaging, MMDSSL can be applied to study cellular struc-
tures and molecular interactions using different imaging techniques, such
as fluorescence, phase contrast, and electron microscopy. By learning joint
representations from these diverse modalities with minimum annotation
data, MMDSSL can facilitate the analysis of complex biological processes
and enable researchers to gain a better understanding of cellular and sub-
cellular structures.

For medical imaging, MMDSSL can be used to fuse and analyze infor-
mation from multiple imaging modalities, such as MRI, CT, PET, and
ultrasound, with limited annotation requirements. By learning a shared
representation of the data, MMDSSL can help improve the diagnosis and
treatment of various medical conditions. For example, it can be employed
to better identify and localize tumors, assess tissue damage in stroke pa-
tients, or monitor the progression of neurodegenerative diseases.

In plant phenotyping, MMDSSL can be applied to analyze multimodal
data from various imaging techniques, such as visible, infrared, and hy-
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perspectral imaging, to assess plant traits and growth patterns. With
minimum annotation data, MMDSSL can help researchers identify criti-
cal features related to plant health, stress responses, and yield potential,
ultimately contributing to more efficient breeding strategies and improved
crop management.

Lastly, in biometric recognition, MMDSSL can be employed to learn
robust and discriminative features from multimodal data, such as face,
fingerprint, iris, and voice data, with minimal annotation needs. By effec-
tively capturing the relationships between different modalities, MMDSSL
can enhance the performance of biometric recognition systems, making
them more accurate and reliable for various security applications.

4.2.2 Pedagogy

My research endeavors not only strive to advance machine learning and
deep learning methodologies but also hold the potential to pave the way
for new lifelong training initiatives and the introduction of new courses at
both the national and international levels through collaborations like Eras-
mus+ projects. These research pursuits also enable me to propose cutting-
edge mini-projects and internship opportunities for young students with
aspirations to work in the realm of machine learning and deep learning.

Moreover, I intend to present these projects to the industry as services
or innovative product technologies, thereby fostering strong connections
between academic research and the industrial sector, encouraging knowl-
edge exchange and collaboration. These efforts can lead to the creation of
practical technologies with real-world applications that ultimately benefit
society as a whole.

By bridging the gap between academia and industry, I believe we can
create a dynamic environment where the exchange of ideas, resources, and
expertise leads to the rapid development and implementation of advanced
technologies in various sectors. These interdisciplinary collaborations can
drive innovation and efficiency, promoting economic growth and improving
the overall quality of life for individuals and communities.

In addition to offering training programs and courses, I envision cre-
ating a comprehensive platform that provides resources, mentorship, and
networking opportunities for students and professionals alike. This plat-
form would facilitate knowledge sharing, skill development, and collabo-
ration among individuals and organizations working in machine learning,
deep learning, and related fields.

Ultimately, my research plans aim to not only push the boundaries of
what is possible in the field of machine learning and deep learning but also
to inspire and empower the next generation of researchers and innovators.
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By fostering an environment of collaboration, education, and innovation,
we can work together to tackle the complex challenges that lie ahead and
drive meaningful change in the world.
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Appendix

In this appendix, I provide a selection of my highlighted published articles
based on the various databases and methodology that have been discussed
in Chapters 2 and 3. The purpose of including these articles is to showcase
the depth and breadth of research conducted in the development and uti-
lization of the described databases and methodologies, and to demonstrate
how these resources have enabled the advancement of novel techniques in
the realm of machine learning and deep learning. By highlighting the con-
tributions made through the development of these databases and the ex-
ploration of innovative methodologies, this appendix serves as a testament
to the interdisciplinary nature of the work and its potential for driving
innovation and addressing real-world challenges.

The list begins with works conducted on installing low-cost RGB and
Depth imaging platforms to monitor seedling growth [25] and [13]. These
articles highlight the innovative imaging system and database specifically
tailored for plant phenotyping, featuring a diverse range of seedlings at
various growth stages and under different environmental conditions. Ad-
ditionally, I have included the article [26], which outlines the acquisition
and reconstruction process of our 3D images of rosebush plants. This work
demonstrates the significance of 3D imaging techniques for capturing de-
tailed plant architecture and their potential in advancing the understanding
of plant growth and development.

In the data simulation domain, I have added the article [29], which de-
scribes the simulation of weeds surrounded by plants and its application in
our global data challenge. This article emphasizes the importance of syn-
thetic data in training deep learning models and showcases the potential of
such models in addressing real-world challenges in agriculture and beyond.

For the methodology section explained in chapter 3, I have incorporated
our works on texture-based feature extraction for medical and plant phe-
notyping, as seen in the articles [40] and [29]. These articles illustrate how
machine learning approaches have been used to solve problems in the life
science domain, highlighting the versatility of such techniques.

I also added our works on deep learning methods, where we proposed
new models to be used on a variety of problems in life science applications
[25, 13, 38]. These articles showcase the power of deep learning techniques
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in addressing complex challenges and the potential of these models to rev-
olutionize the field of life sciences.

To complete this section, I added our works on proposing approaches to
solve annotation problems, introducing an egocentric vision technique [62]
as well as transfer learning approaches [13, 37, 49]. These articles demon-
strate methods that facilitate speeding up the image annotation process
and utilizing knowledge transfer from one environment or modality to an-
other, which substantially reduces the time and effort needed for manual
annotation.

By presenting this selection of my highlighted published articles, I aim
to emphasize the substantial contributions made to the field of machine
learning and deep learning through the development and application of
the described databases and methodologies. These works not only demon-
strate the significance of high-quality data in advancing research but also
showcase the potential of interdisciplinary collaboration in driving innova-
tion and addressing real-world challenges.
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Abstract 

Background:  Monitoring the timing of seedling emergence and early development via high-throughput pheno-
typing with computer vision is a challenging topic of high interest in plant science. While most studies focus on the 
measurements of leaf area index or detection of specific events such as emergence, little attention has been put on 
the identification of kinetics of events of early seedling development on a seed to seed basis.

Result:  Imaging systems screened the whole seedling growth process from the top view. Precise annotation of 
emergence out of the soil, cotyledon opening, and appearance of first leaf was conducted. This annotated data set 
served to train deep neural networks. Various strategies to incorporate in neural networks, the prior knowledge of the 
order of the developmental stages were investigated. Best results were obtained with a deep neural network followed 
with a long short term memory cell, which achieves more than 90% accuracy of correct detection.

Conclusion:  This work provides a full pipeline of image processing and machine learning to classify three stages of 
plant growth plus soil on the different accessions of two species of red clover and alfalfa but which could easily be 
extended to other crops and other stages of development.
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Background
A specificity of plants is their continuous capability to 
metamorphose during their lifetime. This process is 
characterized by the kinetics of ontological development 
stages, i.e., stages that occur in a definite order. In this 
article, we focus on some of these connected steps of a 
plant’s life at the seedling level. The period from seed ger-
mination in the soil to the development of the first true 
leaf is crucial for the plant. During this time, the seed-
ling must determine the appropriate mode of action 
based on its environment to best achieve photosynthetic 
success and enable the plant to complete its life cycle. 
Once the seedling emerges out the soil, it initiates pho-
tomorphogenesis, a complex sequence of light-induced 

developmental and growth events leading to a fully func-
tional leaf. This sequence includes severe reduction of 
hypocotyl growth, the opening of cotyledons, initiation 
of photosynthesis, and activation of the meristem at the 
shoot apex, a reservoir of undifferentiated cells that will 
lead to the formation of the first leaf [1]. The molecular 
mechanisms regulating these time-based events involves 
profound reprogramming of the genome that is challeng-
ing to study in field situation because the heterogeneity 
of the seedling population must be taken into account. 
It is essential to understand this seedling development 
process from an agronomic point of view because the 
seedling establishment is critical to crop yield. Uneven 
emergence timing, for instance, is associated with lower 
yields and poor farmer acceptance.

In this context, time-lapse imaging is a valuable tool, 
accessible at a rather low-cost [2–5], for documenting 
plant development and can reveal differences that would 
not be apparent from a sole endpoint analysis. At the 
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seedling level where plants have simple architectures, 
such time-lapse imaging can be done from top view to 
provide an efficient solution for seedling vigor assess-
ments and monitoring of seedling growth. While some 
statistical tools transferred from developmental biology 
exists to perform time-to-event analysis [6], a current 
bottleneck [7] lay in the automation of the image analysis. 
A recent revolution occurred in the field of automated 
image analysis with deep neural networks [8], which have 
shown their universal capability to address almost any 
image processing challenges with high accuracy. This rev-
olution also benefits plant imaging [9], and it is currently 
a timely topic to adapt these tools, which came from the 
artificial intelligence community to specific topics of 
interest in plant sciences. In this article, we propose an 
entire pipeline based on deep learning dedicated to the 
monitoring of seedling growth.

Seedling growth monitoring with computer vision has 
received considerable attention in the literature including 
[10–24]. It is therefore important to locate our proposi-
tion with these related works. While each article of this 
literature deals with the quantification of some aspects of 
the early stages of plant development, it includes a large 
variety of approaches behind the word seedling. Sev-
eral studies consider germination and seedling growth 
measurements in  vitro, using plastic boxes or paper 
towel [10–17, 21], which enable the monitoring of radi-
cle emergence (germination) or organ growth (seedling 
growth). Others, like in this article, used soil-based sow-
ing systems, where seedling emergence and early devel-
opmental events of the aerial part can be determined 
under more realistic agronomical conditions [19, 22–
26]. Reported approaches to monitor seedling from the 
top view in the soil are effective for a large set of crops, 
mainly at the emergence level, i.e., seedling counting to 
determine stand establishment [19, 23–26], or estimating 
early plant vigor by spectral imaging or measuring the 
leaf area index of the small plants [19, 22, 26]. As most 
related work, deep learning has been applied to the prob-
lem of seedling detection and segmentation [24]. By con-
trast with our work, this has been performed at a fixed 
stage of development. Here we propose to push forward 
the detection of the early seedling developmental stages 
to be able to monitor the kinetics of early seedling devel-
opment in the soil from cotyledon emergence until the 
development of the first real leaf. We propose to tackle 
this task of seedling kinetics monitoring, for the first time 
to the best of our knowledge, with a deep learning-based 
approach.

Spatio-temporal approaches in deep-learning have 
been extensively developed in computer vision for video 
processing [27] but has so far been very rarely applied 
in plant imaging [28] (for growth prediction). As most 

related work in spatio-temporal processing [2] proposed 
a graph-based method for detection and tracking of 
tobacco leaves at the late stage of the plant growth from 
infrared image sequences. This study was not based on 
deep learning and was applied on later stage of develop-
ment than seedling. In the last similar approach [20], a 
feature-based machine learning algorithm distinct from 
deep learning was developed to detect two stages of 
heading and flowering of wheat growth.

In this article, we investigate, for the first time to the 
best of our knowledge in plant imaging, how the exist-
ing methods of spatio-temporal deep learning, can incor-
porate time-dependency in sequences of images to solve 
the problem of monitoring the developmental kinetics. 
While the proposed method is of general value for devel-
opmental biology, its performance is assessed on the spe-
cific use case of seedlings of red clover and alfalfa imaged 
from top view.

Materials and method
The proposed plant method includes four main items: (i) 
The imaging system developed to create (ii) the dataset, 
which needs to benefit from (iii) pre-processing before 
investigating (iv) various approaches for the detection of 
developmental stages of seedling growth based on deep 
learning methods.

Imaging system
A set of minicomputers (as described in [3]) connected 
to RGB cameras with a spatial resolution of 3280 by 2464 
pixels was used to image seedlings from the top view as 
illustrated in Fig. 1. The distance of 50 cm was chosen to 
allow the observation of 2 trays of 200 pots per camera.

Fig. 1  Imaging system installed in a growth chamber
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Dataset
Seedling establishment was recorded for 3 experiments 
using seed lots from different accessions of red clover 
(Trifolium pratense) (experiment 1) and alfalfa (Med-
icago sativa) (experiments 2 and 3). Each experiment 
consisted of 70 trays with 200 pots in which 50 seeds of 
four accessions were sown. Soil pots were hydrated to 
saturation for 24h after which excess water was removed. 
After 24h, seeds were sown at a depth of 2 cm, and trays 
were placed in a growth chamber at 20◦C/16◦C , with 16 
h for photoperiod at 200µMm−2s−2 . The soil was kept 
humid throughout the experiment.

Each experiment took two weeks with a time-lapse of 
15 minutes. In total, the database consists of 42000 tem-
poral sequences of RGB images of size 89 × 89 × 3 pixels 
where each temporal sequence consists of 768 individual 
images. During day time, images were captured while 
images during night times were automatically discarded 
due to the absence of illumination. An example of images 
from the database is shown in Fig. 2. Among all tempo-
ral sequences, images of 3 randomly selected trays were 
manually annotated by a plant expert from the first 
experiment (red clover species) and 2 trays from the 

second experiment (alfalfa species). This ground-truth 
annotation consisted of four classes: soil, the first appear-
ance of the cotyledon (FA), the opening of the cotyledon 
(OC), and the appearance of the first leaf (FL). The algo-
rithms proposed in this article for timing detection of 
seedling emergence following these four stages of devel-
opment were trained, validated and tested against this 
human-annotated ground-truth. In order to avoid cross 
sampling, we considered images of the trays of the red 
clover for training (two trays) and validation (one tray) 
datasets. The testing dataset consisted of images of the 
remaining two trays from the alfalfa. Table 1 provides a 
synthetic view of the data set used for training and test-
ing of the models.

Raw images were then sent to pre-processing before 
being applied to the deep learning method investigated in 
this study. A filtered variant of the raw images was also 
created where the soil background was removed from 
images. This filter was produced by applying a color fil-
ter on images in the HSV color domain to keep the green 
range of images in the Hue channel. This strategy was 
found robust because the soil used during the experi-
ment was the same, and that lighting was kept constant. 

Fig. 2  An overview of the time-lapse collected for this work. Upper row, view of a full tray with 200 pots from the top view. Lower row, a zoom on 
a single pot at each stage of development to be detected from left to right: soil, the first appearance of the cotyledon (FA), opening the cotyledons 
(OC) and appearance of the first leaf (FL)

Table 1  Description of the split of the annotated data set for training models

Species No. of trays No. of pots in each 
tray

No. of temporal 
sequences

Total No. of images

Training dataset Red clover 2 200 400 307,200

Validation dataset Red clover 1 200 200 153.600

Testing dataset alfaalfa 2 200 400 307,200
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Figure  3 shows an example of images with and without 
background.

Pre‑processing
Since deep learning methods have to predict the seed-
ling developmental stage on an individual basis, the raw 
images of Fig. 2 could not be directly applied to the neu-
ral networks. Thus, the first step of pre-processing was to 
extract produced crops of each pot. In order to extract 
them, we needed first to detect, extract, and adjust trays; 
then, pots were extracted from trays. Figure  4 shows a 
workflow of the pot extraction from trays, which includes 
three steps described here below.

Landmark detection
In this experiment, trays used included five white land-
marks located at the center and four corners of the trays. 
Because of the constant control of lighting conditions, 

these five landmarks were detected with a fixed thresh-
old. Then, the five most prominent objects were kept, 
and the possible remaining small objects were removed. 
Among the five significant landmarks, the most central 
object in the images was considered as the central land-
mark. At the next steps, the four other landmarks were 
detected based on their minimum angle corresponding 
to the central landmark with horizontal and vertical axes.

Tray detection and extraction
In this step, coordinates of the trays were detected using 
to the landmarks. Then, based on the coordinates of these 
landmarks, trays could be extracted from the image. 
Since trays may not be positioned precisely along the axis 
of the vertical and horizontal axis sensor of the camera, 
the trays need to be rotated. The orientation of the trays 
was found after the computation of the angle of the first 
eigenvector in the principal component analysis of the 
modulus of the Fourier transform [29]. Finally, a geomet-
ric transformation algorithm [30] was implemented to 
project the rotated trays to make them straight.

Pot extraction
In the last step, all 200 pots of each tray were extracted as 
an independent temporal sequence of images by using a 
sliding window with a stride of one pot. The size of these 
sliding windows was made adjustable by the user to fit 
with the size of the pot.

This pre-processing pipeline of Fig. 4 has some generic 
value. Since we did not find something equivalent in 
the literature for our purpose, we decided to make it 

Fig. 3  Two different types of data used in training and testing. Up: 
Original images, Down: Images without background

Fig. 4  Pot extraction workflow
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available as supplementary material under the form of 
a free executable (https​://uabox​.univ-anger​s.fr/index​
.php/s/HJAHp​0bhZv​1zy1j​). We believe that despite the 
simplicity of principle this can be used as a useful tool for 
any imaging of traits.

Deep learning methods
The three plant events plus soil (Soil, FA, OC, and FL) to 
be detected were expected to occur in a definite order. 
Different supervised strategies to take benefit from this 
ontological prior-knowledge on the development were 
tested against the manually established ground-truth as 
described in the following subsection.

Baseline multi‑class CNN
As a naive baseline approach, we designed a convolu-
tional neural network (CNN) architecture to predict 
the classes of each event of Soil, FA, OC, and FL of each 
frame of the time-lapses independently and without any 
additional information regarding the temporal order in 
which they should occur. Given a training set including 
K pairs of images xi and labels ŷi , we trained the param-
eters θ of the network f using stochastic gradient descent 
to minimize empirical risk

where L denotes the loss function, which was chosen as 
cross-entropy in our case. The minimization was carried 
out using the ADAM optimizer [31] with a learning rate 
of 0.001.

Our proposed architecture f (·, ·) , shown in Fig.  5, 
consisted of two main blocks, the feature extrac-
tion block, followed by classification block. In a CNN 
model, the feature extraction block takes care of 

(1)θ∗ = arg min
θ

K∑

i=1

L(ŷi, f (xi, θ))

extracting features from input images by convolutional 
layers, and the classification block decides classes. Sev-
eral CNN architectures have been deployed. First, we 
designed a small AlexNet [32] like CNN structure to 
keep the number of parameters to be learned low. This 
AlexNet like CNN is illustrated in Fig.  5 and reads as 
follows: four convolutional layers with filters of size 3×3 
and respective numbers of filters 64, 128, 256, and 256 
each followed by rectified linear unit (RelU) activations 
and 2×2 max-pooling; a fully connected layer with 512 
units, ReLU activation and dropout (p = 0.5) and a fully 
connected output layer for four classes corresponding 
to each event with a softmax activation. We also tested 
some other well-known larger CNN architectures such 
as VGG16 [33], Resnet50 [34], and DenseNet121 [35] 
on our data and choose the one with the highest per-
formance as the base line for a naive memoryless mul-
ticlass architecture. These proposed CNN architectures 
have been optimized on a hold-out set.

2‑class CNN’s
The baseline multi-class CNN architecture of Fig.  5 is 
naive because it does not incorporate the prior knowl-
edge of the ontology of plant growth to decide between 
different growth steps of plants plus soil (Soil, FA, OC, 
and FL). As a first improvement of the previous naive 
baseline, we implemented a variant of the CNN model 
of Fig.  5 dedicated to the binary classification of two 
consecutive stages of development. We thus trained 3 
models detecting between M1(Soil, FA), M2(FA,OC) 
and M3(OC,FL). At the beginning of the analysis of an 
entire time-lapse sequence M1 is used. Then when a 
first FA is detected M2 is applied, and so on until the 
first FL detection is reached.

Fig. 5  Proposed Muti-class CNN architecture designed to serve as baseline method for the independent classification of each frame of the 
time-lapses into one of the three stages of plant growth plus soil (Soil, FA, OC, and FL) without any prior temporal order information
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CNN followed by Long short‑term memory
The 2-class CNN’s includes the prior knowledge of the 
ordered development of the seedling along with a given 
ontology. However, this prior knowledge is added on 
top of the CNN. In order to bring a memory directly 
inside the CNN model, the Long-Short Term Memory 
(LSTM) architecture was embedded between the fea-
ture extraction block and the classification block of 
the proposed CNN model. LSTM has been proposed 
[36, 37]. LSTM as a special RNN structure has proven 
stable and powerful for long-range modeling depend-
encies in various previous studies [37–39]. The major 
innovation of LSTM is its memory cell ct , which essen-
tially acts as an accumulator of the state information. 
The cell is accessed, written, and cleared by several 
self-parameterized controlling gates. Every time a new 
input comes, its information will be accumulated to the 
cell if the input gate it is activated. Also, the prior cell 
status ct−1 could be “forgotten” in this process if the 
forget gate f t is on. Whether the latest cell output ct 
will be propagated to the final state ht is further con-
trolled by the output gate ot . One advantage of using 
the memory cell and gates to control information flow 
is that the gradient will be trapped in the cell [37] and 
be prevented from vanishing too quickly. In a multivar-
iate LSTM structure, the input, cell output, and states 
are all 1D vectors features from the feature extraction 
block of the proposed CNN model. The activations of 
the memory cell and three gates are given as

where σ() is the sigmoid function, all the matrices W 
are the connection weights between two units, and 
x = (x0, ..., xT−1) represents the given input.

The CNN-LSTM architecture is an integration of a 
CNN (Convolutional layers) with an LSTM. First, the 
CNN part of the model process the data and extract 
features then the one-dimensional feature vectors feed 
to an LSTM model to support sequence prediction. 
CNN-LSTMs are a class of models that is both spa-
tially and temporally deep and has the flexibility to be 
applied to a variety of vision tasks involving sequential 
inputs and outputs. Fig. 6 shows a schematic of a CNN-
LSTM model.

The proposed CNN-LSTM model consisted of the 
same convolutional layers as the multi-class CNN 
model of Fig.4 and an LSTM layer with 128 units.

(2)

it = σ(Wxix
t + Whih

t−1 + Wcic
t−1 + bi)

f t = σ(Wxf x
t + Whf h

t−1 + Wcf c
t−1 + bf )

ct = f t ct−1 + it tanh(Wxcx
t + Whch

t−1 + bc)

ot = σ(Wxox
t + Whoh

t−1 + Wcoc
t−1 + bo)

ht = ottanh(ct)

Convolutional LSTM (ConvLSTM)
As an alternative to CNN-LSTM, we use ConvLSTM [40] 
which has convolutional structures in both the input-to-
state and state-to-state transitions. In ConvLSTM all the 
inputs X1; · · ·;Xt , cell outputs C1; · · ·;Ct , hidden states 
H1; · · ·;Ht , and gates it ; f t ; ot of the ConvLSTM are 3D 
tensors whose last two dimensions are spatial dimen-
sions (rows and columns). The ConvLSTM determines 
the future state of a certain cell in the grid by the inputs 
and past states of its local neighbors. This can easily be 
achieved by using a convolution operator in the state-to-
state and input-to-state transitions. The key equations of 
ConvLSTM are shown in 3 below, where ‘ ⊛ ’ denotes the 
convolution operator.

Figure  7 shows a schematic of the ConvLSTM method 
adopted for our purposes.

Post‑processing
The passing from one developmental stage to another 
can consist of very tiny details. This was, for instance, the 
case for FA and FL in our case. To address this problem, 
a post-processing smoothing filter can be designed to 
reduce the fluctuations that may appear when the seed-
ling shift from one developmental stage to another. Also, 
post-processing can be of help when the first leaf moves 
out of the frame after a period of time and just cotyle-
dons remain in the frame in each individual pot. In this 
case, the model just sees cotyledons and without post-
processing would predict a label corresponding to the 
OC stage. Post-processing can be designed to prevent 
some switches forbidden by the developmental ontology 
and in this case keep the stage of the growth at FL.

(3)

it = σ(Wxi ⊛ xt + Whi ⊛ ht−1 + Wcic
t−1 + bi)

f t = σ(Wxf ⊛ xt + Whf ⊛ ht−1 + Wcf c
t−1 + bf )

ct = f t ct−1 + it tanh(Wxc ⊛ xt + Whc ⊛ ht−1 + bc)

ot = σ(Wxo ⊛ xt + Who ⊛ ht−1 + Wcoc
t−1 + bo)

ht = ottanh(ct)

Fig. 6  CNN-LSTM block
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The designed post-processing smoothing filter illus-
trated in Fig. 8 was based on a sliding window computing 
a majority voting by finding the median of classes (4)

where c and n represent predicted class and window size, 
respectively. Additionally, this window replaced the cur-
rent stage of all neighbors to all labels that detected as the 
previous stage.

The size of the sliding window was optimized on the 
CNN-LSTM and multi-class CNN architecture. As 
shown in Fig.  9, performances were found optimal for 
both architectures on the training data set for a size of 4 
frames, corresponding to an observation of 1 hour in our 
case.

Results and discussion
First, we compared the performance of the tested CNN 
multi-class structures as shown in Table  2. As expected 
the performance of deeper architectures like ResnNet50 

(4)c = ⌊ ∗ ⌋

{(

n + 1

2

)}th

and DenseNet121 is less than smaller deep models such 
as our proposed model or VGG16. Indeed, increasing 
parameters in a CNN model lead to over-fitting due to 
low image dimensions and limited variability in the data-
base [41]. For the following, we keep the best multi-class 
structure (our proposed CNN of Fig. 5) as baseline model 
to be compared with other architectures including tem-
poral information.

The proposed deep learning methods multi-class 
CNN, 2-class CNN’s, CNN-LSTM, and ConvLSTM were 
applied to the dataset produced by our imaging system 
after pre-processing and post-processing as described 
in the previous section. We now present and discuss 
the associated results. The performances of the differ-
ent deep learning methods tested on our dataset were 
assessed with classical metrics such as accuracy, error, 
sensitivity, specificity, precision, and false alarm positive 
rate. They are provided in Tables 3 and 4, respectively, for 
images with and without soil background.

Tables 3 and 4 show that all methods performed bet-
ter than the naive multi-class CNN architecture, which 
was processing the temporal frames independently of 
any prior knowledge on the order of the ontological 
development of seedling. The best strategy to incorpo-
rate this knowledge among the ones tested was found to 

Fig. 7  ConvLSTM block with one cell [40]

Fig. 8  An example of the post-processing step on predicted classes where the sliding window size is four images

Fig. 9  Classification accuracy as a function of denoising windows 
size
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be the CNN-LSTM architecture, which outperforms all 
other models for all tested metrics. Removing the soil 
numerically, clearly improves all methods while keep-
ing the CNN-LSTM architecture as the best approach.

Our experimental results show that a reasonable rec-
ognition rate of plant growth stages detection (approxi-
mately 90% ) can be achievable by the CNN-LSTM 
model. Additionally, we measured the performance 
of our best model (CNN-LSTM) and on worst model 
(multi-class CNN) on test data before and after post-
processing. Table  5 shows that the metrics of perfor-
mance are systematically improved by a significant 5 to 
8%.

It is possible to have a more in-depth analysis of the 
remaining errors by looking at the confusion matrix of 
this CNN-LSTM model, as given in Table 6. This confu-
sion matrix shows that most of the errors, almost 98%, 
happen between the most complicated classes of OC 
and FL while the remaining 2% of errors appear on bor-
ders of the first two classes of soil and FA. The confu-
sion matrix helps us to analyse the performance of the 
trained model on each individual class. The F1-score of 
Eq. (5) is considered as one of the common metrics to 
analyse confusion matrices for each class by calculat-
ing the harmonic mean of precision and recall (Table 6 
right) where TP, FP, and FN stands for True Positive, 

Table 2  The average performance of  baseline multi-class CNN models with  different evaluation metrics on  images 
without soil background

Model Accuracy Error Sensitivity Specificity Precision False positive rate

Proposed CNN 0.80 ± 0.19 0.20 ± 0.19 0.85 ± 0.13 0.93 ± 0.07 0.85 ± 0.14 0.07 ± 0.07

VGG16 0.80 ± 0.24 0.2 ± 0.24 0.84 ± 0.18 0.93 ± 0.12 0.85 ± 0.07 0.07 ± 0.11

ResNet50 0.78 ± 0.18 0.22 ± 0.18 0.77 ± 0.21 0.89 ± 0.09 0.85 ± 0.11 0.08 ± 0.05

DenseNet121 0.79 ± 0.09 0.21 ±  0.09 0.78 ±  0.08 0.90 ±  0.14 0.86 ±  0.09 0.07 ±  0.10

Table 3  The average performance of models with different evaluation metrics on images with soil background

Model Accuracy Error Sensitivity Specificity Precision False positive rate

Multi-class CNN 0.63 ± 0.20 0.37 ± 0.20 0.63 ± 0.2 0.94 ± 0.05 0.88 ± 0.1 0.06 ± 0.05

2-class CNN’s 0.72 ± 0.25 0.28 ± 0.26 0.72 ± 0.24 0.95 ± 0.06 0.90 ± 0.11 0.08 ± 0.05

CNN-LSTM 0.83 ± 0.10 0.15 ± 0.10 0.82 ± 0.10 0.93 ± 0.06 0.85 ± 0.10 0.06 ± 0.06

ConvLSTM 0.62 ± 0.2 0.33 ± 0.2 0.68 ± 0.2 0.93 ± 0.07 0.84 ± 0.1 0.06 ± 0.06

Table 4  Average performance of models on images without soil background

Model Accuracy Error Sensitivity Specificity Precision False positive rate

Multi-class CNN 0.80 ± 0.19 0.20 ± 0.19 0.85 ± 0.13 0.93 ± 0.07 0.85 ± 0.14 0.07 ± 0.07

2-class CNN’s 0.88 ± 0.18 0.12 ± 0.18 0.86 ± 0.10 0.95 ± 0.05 0.86 ± 0.11 0.05 ± 0.05

CNN-LSTM 0.90 ± 0.08 0.10 ± 0.07 0.87 ± 0.11 0.96 ± 0.03 0.88 ± 0.15 0.04 ± 0.04

ConvLSTM 0.81 ± 0.11 0.21 ± 0.09 0.85 ± 0.03 0.92 ± 0.09 0.85 ± 0.12 0.07 ± 0.10

Table 5  Average performance of  the  baseline multi-class CNN and  best trained models (CNN-LSTM) on  test data 
before and after post-processing step

Model Accuracy Error Sensitivity Specificity Precision False positive rate

Multi-class CNN (Before) 0.72 ± 0.29 0.28 ± 0.29 0.73  ± 0.19 0.94 ± 0.21 0.91 ± 0.13 0.8 ± 0.08

Multi-class CNN (After) 00.80 ± 0.19 0.20 ± 0.19 0.85 ± 0.13 0.93 ± 0.07 0.85 ± 0.14 0.07 ± 0.07

CNN-LSTM (Before) 0.84 ± 0.04 0.16 ± 0.04 0.83  ± 0.05 0.93 ± 0.06 0.86 ± 0.09 0.05 ± 0.05

CNN-LSTM (After) 0.90 ± 0.08 0.10 ± 0.07 0.87 ± 0.11 0.96 ± 0.03 0.88 ± 0.15 0.04 ± 0.04
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False Positive, and False Negative respectively. It shows 
that the trained model can perform better on the first 
two classes of Soil and FA with the highest scores of 
0.98 and 0.90 on predicted data while the class of OC is 
the most challenging class.

In order to evaluate the robustness and transferabil-
ity of the best trained model (CNN-LSTM), an addi-
tional test was done on images of 50 pots of another 
genotypes of the red clove species which were captured 
from a new experiment. Table 7 shows that the average 
classification accuracy on the new genotype are very 
close to the one obtained with alfalfa. This confirms the 
transferability and robustness of the model from one 
genotype to another.

One may wonder where the classification errors in 
this experiment can come from. In our error analyses, 
we found four different sources of errors in the experi-
ment. The first source of errors can come from the dif-
ferent cotyledons and leaf sizes of the two species, as 
the cotyledons and leaf size of a species can be much 
bigger or smaller compared with other species. Usually, 
this type of error happens in the borders of two classes 
of OC and FL. Figure 10 shows an example of these dif-
ferences in the size of two plant species. Data augmen-
tation with a variation on the zoom could be a solution 
to help with these errors.

The second source of errors can be due to the circa-
dian cycle of plants during the growth. The circadian 

(5)
F1 − score = ×

Precision × Recall

Precision + Recall
=

2 × TP

2 × TP + FP + FN

cycle of plants makes some movements on cotyledon 
and leaves during day and nights [42]. This type of 
error can happen at the border of FA and OC, where 
these movements make a delay for the detection of fully 
opening cotyledon. Also, this type of error can happen 
at the border of two classes of OC and FL, where the 
circadian cycle does not allow the system to recognize 
the appearance of the first leaf from the middle of the 
cotyledon. The third source of errors happens due to 
the overlapping of plants in a tray. Plants grow at differ-
ent speeds and directions in a tray, and it makes over-
lapping on plants of neighbor pots at some points. This 
type of error usually happens in the last two classes of 
OC and FL. The last source of the errors can come from 
annotation errors. In general, the annotation of plant 
growth stages is challenging since plants grow continu-
ously; it means there are no striking events of growth. 
In this case, a class represents a period of growth. 
For instance, the FA class is assigned to images which 
were captured in the period of the first appearance of 
the cotyledon till the time of the fully opening of the 

Table 6  Confusion matrix and  F1-score of  cross-subject performance where  the  best deep learning method, the  CNN-
LSTM architecture is used

True classes Predicted

Soil FA OC FL F1-Score

Soil 97531 0 0 0 Soil 0.98

FA 2591 26855 2915 0 FA 0.90

OC 0 0 58668 19556 OC 0.79

FL 0 0 8219 90610 FL 0.87

Table 7  Average performance of  the  trained models on  images of  new genotype of  red cloves as  well as  the  species 
of alfaalfa

Model Accuracy Error Sensitivity Specificity Precision False positive rate

CNN-LSTM(red cloves) 0.91 ± 0.01 0.09 ± 0.01 0.88 ± 0.05 0.96 ± 0.02 0.86 ±  0.08 0.04 ± 0.03

CNN-LSTM (alfalfa) 0.90 ± 0.08 0.10 ± 0.07 0.87 ± 0.11 0.96 ± 0.03 0.88 ± 0.15 0.04 ± 0.04

Fig. 10  A sample of images from two plant species used for training 
(left) and testing (right) dataset
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cotyledon. In this case of annotation, different anno-
tators may define the ending of a stage period with an 
approximate delay of 15 images. Also, there is a period 
of formation of the first leaf before its unfolding during 
plant growth. This period is considered to be a part of 
the FL class in this experiment. This consideration may 
bring an additional error for annotation of stages as dif-
ferent annotators may recognize the beginning of the 
leaf formation with a delay.

Conclusion and perspectives
In this paper, we have presented a complete image pro-
cessing and machine learning pipeline to classify three 
stages of plantlet growth plus soil on the different acces-
sions of two species of red clover and alfalfa.

Different strategies were compared in order to incor-
porate the prior information of the order in which the 
different stages of the development occur. The best classi-
fication performance on these types of images was found 
with our proposed CNN-LSTM model, which achieved 
90% accuracy of detection with the help of a denois-
ing algorithm incorporating the ontological order in the 
development stages.

In our experiments all models were trained and tested 
on several genotypes of two species of red clover and 
alfaalfa. Presented results shows that trained model is 
robust on some genotypes but it does not guaranty the 
robustness of the model an all genotypes or other spe-
cies. In order to increase the robustness of models one 
could either add more real data from several genotypes 
or use data augmentation to synthetically increase the 
data variability in the training database [43–45] based on 
possible priors on the expected morphological plasticity 
of the species.

These results can now be extended in various direc-
tions. It will be interesting to extend the approach to a 
range of species of agricultural interest in order to pro-
vide a library of trained networks. From this perspective, 
it could be interesting to investigate quantitatively how, 
by their similarity in shape, the knowledge learned on 
some species could be transferred to others via transfer 
learning, domain adaptation, or hierarchical multi-label 
classification [46]. More events of the development of 
plants could also be added to extend the investigation of 
seedling kinetics. This includes for instance the instant 
where cotyledons are out of soil fully or rise of the first 
leaf before unfolding. These extensions could be tested 
easily following the global methodology presented in this 
article to assess the deep learning models. For even more 
advanced stages of development and yet still accessible 
from top view, the issue of plant overlapping each other 
would arise and become a limitation. Solving this would 
require to switch to tracking algorithms in order follow 

and label the trajectory of each plant despite ambiguity 
created by partial occlusion and overlapping. Other deep 
learning architectures would have to be tested in this per-
spective [47]. As another possible direction, in this study, 
since we used classical standard RGB images, plants were 
not measured during nights, and some missed events 
could shift the estimation of the developmental stages 
of the seedlings. Lidar cameras, accessible at low-cost 
[48], could be used to access to night events. Also, Bayes-
ian approaches [6], such as Gaussian processes, could 
be used to estimate the time for the possibly missing 
information.
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Abstract: The use of high-throughput phenotyping with imaging and machine learning to monitor
seedling growth is a tough yet intriguing subject in plant research. This has been recently addressed
with low-cost RGB imaging sensors and deep learning during day time. RGB-Depth imaging devices
are also accessible at low-cost and this opens opportunities to extend the monitoring of seedling
during days and nights. In this article, we investigate the added value to fuse RGB imaging with
depth imaging for this task of seedling growth stage monitoring. We propose a deep learning
architecture along with RGB-Depth fusion to categorize the three first stages of seedling growth.
Results show an average performance improvement of 5% correct recognition rate by comparison
with the sole use of RGB images during the day. The best performances are obtained with the early
fusion of RGB and Depth. Also, Depth is shown to enable the detection of growth stage in the absence
of the light.

Keywords: deep learning; plant growth; CNN; RGB-Depth; image fusion; feature fusion; transformers

1. Introduction

The detection of the seedling growth stages is a fundamental problem in plant sci-
ence. This covers the emergence of seedling from the soil, the opening of cotyledons and
appearance of the first leave which correspond to the earliest stages of development of
plant. The success or failure of these developmental stages and their kinetics have a huge
impact on the evolution of the future plant. Recently, seedling growth monitoring has
received attention from the computer vision community [1–16]. Among these works, the
state-of-the-art approach based on deep learning proposed in [16] has shown the possibility
to automatically classify the stages of development of seedling with RGB sequences of
images from top view with an accuracy higher than 90%.

One of the limitations of the work proposed in [16] is that the monitoring was done
only during daylight with RGB images. Consequently, any events happening during the
night would be missed and/or possibly estimated with a temporal bias. In this article, we
propose an extension of the work of [16] and investigate the possibility to push forward
the monitoring of the seedling growth during the day and the night. To this purpose,
RGB-Depth camera were used. These technologies have been demonstrated of wide value
in plant phenotyping [17–24]. The depth images are computed by an active LIDAR camera
operating in infrared (IR). This camera can be activated during day and night without
impact on the development of the plants. As in [16] we selected low-cost versions of
these RGB-Depth cameras. These low-cost constraints are specially important in plant
phenotyping [25] when moving the plants or the camera is not an option and that replication
of cohorts of cameras is to be chosen to monitor large populations of plants. Low-cost
RGB-Depth cameras are also logically coming with artifacts and noise. Such artifacts and
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metrological limitations of low-cost RGB-Depth cameras have been extensively studied
(see [26] for a recent survey). In our case, we rather work at an informational level. We
focus on a classification task, i.e., a nonlinear decision, which is by nature more robust to
noise since it does not have to provide a high-fidelity, metrological, linear estimation. The
hypothesis investigated in this article is that these low-cost RGB-Depth sensors despite
their limited spatial resolution and the presence of artifacts may be of enough value to
enhance the tracking of seedling growth during day and night.

We demonstrate, for the first time, to the best of our knowledge the value of these
RGB-Depth images to monitor the early stages of seedling growth. We investigate fusion
strategies between RGB and depth with several neural networks architecture. The un-
derlying motivation to use multimodal data is that complementary information give a
richer representation that may be utilized to create better results than a single modality.
The multimodal fusion research community has made significant progress in the past
decade [27]. Different fusion strategies have been reviewed [28,29]. Specifically for RGB
and Depth with deep learning architectures, fusion has been extensively studied in the
literature [30–41]. Mainly two types of fusion can be distinguished. First, images can be
stacked at the input: this is the early fusion [30–34], that we call image fusion. Second,
deep features can be independently extracted and then fused before a classification stage:
this is the feature fusion [35–38]. In this work, we investigate these fusions scenarios
that we applied to the important problem of seedling growth stage monitoring. Since we
process sequences of images we considered time-dependent neural network architectures.
As in [16], we included a base line convolutional neural network (CNN) and LSTM [42].
We also added TD-CNN GRU [43] and transformer [44] which were not included in [16].

2. Materials and Methods
2.1. Imaging System and Data Set

We have conducted similar experiments as the ones described in detail in [16] and
shortly recalled here. A set of minicomputers, connected to RGB-Depth cameras [45], was
used to image seedlings from the top view as illustrated in Figure 1. We used, instead of the
RGB cameras of [16], Intel real sense cameras [46] (model D435) which natively produces
registered RGB-Depth pairs of images and calibrated Depth maps. We installed 8 of these
RGB-Depth cameras in a growth chamber where cameras followed the growth of seedlings
from top view. During experiment, soil pots were hydrated to saturation for 24 h after which
excess water was removed. After 24 h, seeds were sown at a depth of 2 cm, and trays were
placed in a growth chamber at 20 ◦C/16 ◦C, with 16 h for photoperiod at 200 µMm−2 s−2.
The soil was kept wet throughout the experiments. Each experiment took one week with a
frame rate of 15 min. The time lapse program (made in Python) was implemented on a
central minicomputer controlling, via ethernet wires, the 8 minicomputers connected to
the RGB-Depth cameras.

Concerning the biological material, seedling growth was recorded for 2 experiments
using seed lots from different accessions of beans such as Flavert, Red Hawk, Linex, Caprice,
Deezer and Vanilla. Each experiment consisted of 3 trays with 40 pots in which 120 seeds of
accessions were sown. There is a similarity between the species in this experiment and the
two species which were used in [16] as all of them consist in dicotyledon species. The main
difference between them comes from the number of varieties in this experiment which is
three times higher than the one in [16].

In total, the database consists of 72 temporal sequences of RGB and depth images
of size 66× 66 pixels where each temporal sequence consists of 616 individual images.
Example of images from the database is shown in Figure 1. RGB-Depth temporal sequences
acquired during daylight were annotated by expert in biology while looking at RGB
images. This ground-truth annotation consisted of four classes: soil, first appearance of the
cotyledon (FA), opening of the cotyledon (OC), and appearance of the first leaf (FL). The
algorithms presented in this paper for seedling emergence identification following these
four phases of growth were trained, validated, and tested against this human-annotated
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ground-truth. In order to train robust models, we used the cross-validation approach by
considering image sequences of bean varieties in three split of train, validation, and test
dataset. Table 1 provides a synthetic view of the data set used for training and testing of the
models. For the training dataset, we applied data augmentation using a simple horizontal
flip on each temporal sequence.

Table 1. Description of the RGB-Depth dataset used in this study.

Species No. of Temporal
Sequences

Totale No. of Images
during Days

Totale No. of Images
during Nights

Totale No. of All
Images

Training dataset

Flavert 10 4240 1920

36,960

Red Hawk 10 4240 1920
Linex 10 4240 1920

Caprice 10 4240 1920
Deezer 10 4240 1920
Vanilla 10 4240 1920

Validation dataset

Flavert 1 424 192

3696

Red Hawk 1 424 192
Linex 1 424 192

Caprice 1 424 192
Deezer 1 424 192
Vanilla 1 424 192

Testing dataset

Flavert 1 424 192

3696

Red Hawk 1 424 192
Linex 1 424 192

Caprice 1 424 192
Deezer 1 424 192
Vanilla 1 424 192

Depth images can contain artifacts with missing values. This can happen on part of
the scene where not enough light is reflected or for objects that are too close or too far from
the camera. While neural networks should be able to cope with such noise, it is better
to correct them to use the capability of these networks on clean data. In order to correct
these artifacts, we applied a classical inpainting technique [47] of depth images to reduce
the noise.

Figure 1. Overview of the time-lapse collected for this work. Upper row, view of a full tray with 72 pots from top view.
Lower row, a zoom on a single pot at each stage of development to be detected from left to right: soil, first appearance of the
cotyledon (FA), opening the cotyledons (OC) and appearance of the first leaf (FL).
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2.2. RGB-Depth Deep Learning Fusion Strategies

We describe here the different neural network architectures tested in this study to fuse
the RGB and Depth for the classification of seedling growth stages as depicted in Figure 2.

Figure 2. Different types of RGB-Depth fusion architectures tested in this article for image classification. (a) Image-based
RGB-Depth fusion, (b) Feature-based RGB-Depth fusion.

2.2.1. CNN-Based Image Early Fusion Learning Structure

We first integrated, as in [48], RGB and Depth data stacked in a four-channel as input
to a CNN (see Figure 3a). The feature extraction block from four-channel input images
is followed by the classification block (shown in Figure 3a). The CNN architecture is
the one of [16,43] that we shortly recall. The feature extraction block of a CNN model is
responsible for extracting features from input images using convolutional layers, whereas
the classification block determines classes. To keep the amount of train parameters low,
we created an AlexNet [49] like CNN structure. This architecture reads as follows: four
convolutional layers with filters of size 3× 3 and respective numbers of filters 64, 128,
256, and 256 each followed by rectified linear unit (RelU) activations and 2 × 2 max-
pooling; a fully connected layer with 512 units, ReLU activation and dropout (p = 0.5)
and a fully connected output layer for four classes corresponding to each event with a
softmax activation. This proposed CNN architecture has been optimized on a hold-out set
and was demonstrated in [16] to be optimal by comparison with other standard classical
architectures (VGG16, ResNet, DenseNet). The network was trained from scratch since
the size of the input tensor (4 channels and small spatial resolution) was different from
existing pre-trained networks on large RGB data sets.



Sensors 2021, 21, 8425 5 of 16

Figure 3. (a) CNN architecture of image fusion for RGB-Depth, (b) CNN architecture of features fusion for RGB-Depth.

2.2.2. CNN-Based Feature Fusion Learning Structure

Our architecture, shown in Figure 3b, is made up of two convolutional network
streams that operate on RGB and Depth data, respectively. The same structure of image
fusion CNN has been developed for each stream of the feature fusion CNN. The feature
extractor part of the CNN architectures of RGB and Depth images consists of four convolu-
tional layers which have 64, 128, 256, and 256 filters, respectively (similar to the AlexNet
like structure of the previous subsection). The ReLU activation function is considered for
each convolutional layer followed by a max-pooling layer. On the classification part of the
CNN architectures, a fully connected layer with 512 units, and an output layer with four
neurons corresponding to each event with a softmax activation function.

2.2.3. TD-CNN-GRU-Based Image and Feature Fusion Learning Structure

We demonstrated in [16,43] the possible added value to embed in controlled envi-
ronment a memory in the process of the sequence of images. We demonstrated in [43],
the superiority of Time dependent CNN with gated recurrent units (TD-CNN-GRU) by
comparison with other memory based methods such as long short term memory (LSTM)
and CNN-LSTM architectures. GRU uses two gates: the update gate and the reset gate
while there are three gates in LSTM. This difference makes GRU faster to train and with
better performance than LSTMs on less training data [50]. The same CNN architecture of
our model in [16] was embedded in our TD-CNN-GRU model where the optimal duration
of the memory was found to be 4 images in [16,43] corresponding to 1 hour of recording.
Figure 4 shows a schematic view of the proposed TD-CNN-GRU for images and feature
fusion respectively.
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Figure 4. (a) TD-CNN-GRU architecture of image fusion for RGB-Depth, (b) TD-CNN-GRU architec-
ture of features fusion for RGB-Depth.

2.2.4. Transformers-Based Image and Feature Fusion Learning Structure

A last class of neural network dedicated to time series are the transformers. Since
their introduction in [44] they have been shown to outperform recurrent neural networks
such as LSTM and GRU specially in the field of natural language processing as they do
not require that the sequential data be processed in order. Transformers have been shown
suitable to process temporal information carried by single pixels in satellite images time
series [51–53]. Transformers have recently been extended to the process of images [54]
where images were analysed as a mosaic of subparts of the original images creating artificial
time series. In our case, we directly have meaningful original images which corresponds
to the field of view of the pots. We, therefore, provide the transformer of [54] with time
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series of consecutive images of the same pot (we used the same time slot as in the other
spatio-temporal methods). We used 32 transformer layers with batch size 64, feed forward
layer as classification head layer and the size of our patch size was equal to 66× 66 pixels
for both architectures of Figure 5.

Figure 5. (a) Transformer architecture of image fusion for RGB-Depth, (b) Transformer architecture
of features fusion for RGB-Depth.
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For all our training, we used the NVDIA DGX station. This station is composed of
4 GPUs and each one of them have a RAM memory of 32 Gb. We used Python version
3.7.8, Tensor-flow version 2.7.0 and Keras library version 2.3.1.

2.3. Accuracy

The performances of the different fusion strategies tested on our dataset were classi-
cally assessed with Accuracy

Accuracy =
TP + TN

TP + TN + FP + FN
, (1)

where TP, TN, FP, and FN stands for true positive, true negative, false positive, and false
negative).

3. Results
3.1. Fusion Strategies

The proposed deep learning methods CNN, TD-CNN-GRU, and Transformers with
image or feature RGB-Depth fusion were applied to the produced dataset as described in
the Section 2. The performances are provided in Tables 2–4 and Figure 6.

Table 2. Seedling growth stage classification average accuracy and standard deviation when per-
formed over 10 repetitions of CNN model.

Training Validation Test

RGB 0.95± 0.02 0.91± 0.03 0.88± 0.05

Image fusion RGB-Depth 0.97± 0.02 0.95± 0.02 0.94± 0.04

Features fusion RGB-Depth 0.97± 0.01 0.96± 0.01 0.94± 0.01

Table 3. Seedling growth stage classification average accuracy and standard deviation when per-
formed over 10 repetitions of TD-CNN-GRU model.

Training Validation Test

RGB 0.87± 0.02 0.85± 0.01 0.80± 0.01

Image fusion RGB-Depth 0.91± 0.01 0.87± 0.02 0.82± 0.01

Features fusion RGB-Depth 0.90± 0.01 0.86± 0.02 0.81± 0.01

Table 4. Seedling growth stage classification average accuracy and standard deviation when per-
formed over 10 repetitions of transformer model.

Training Validation Test

RGB 0.90± 0.02 0.86± 0.01 0.82± 0.01

Image fusion RGB-Depth 0.96± 0.02 0.91± 0.01 0.88± 0.03

Features fusion RGB-Depth 0.92± 0.03 0.89± 0.02 0.84± 0.01

Tables 2–4 show that all methods performed better when RGB and Depth data are
fused by comparison with the sole use of RGB data. This improvement is obtained both
with image fusion and with feature fusion. This demonstrate the value of RGB-Depth
fusion with a gain of 5% (on average) compared to the use of the sole RGB images. This is
obtained at a reasonable training time of around 1 to 3 h as detailed in Table 5. The best
results are obtained with the CNN method, i.e., the spatial method by comparison with the
spatio-temporal method. This CNN is showing the best absolute performance, the smallest
training time and also minimum decrease of performance between training, validation and
test. This is in agreement with our previous results found in [16,43], where spatio-temporal
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methods outperformed memoryless spatial ones only when the kinetic of growth were
homogeneous among the dataset. This was not the case in this study.

Table 5. Training time of the different deep learning architectures.

Model Training Time

RGB

CNN 1 h 00 min

Transformer 1 h 30 min

TD-CNN-GRU 3 h 00 min

Image fusion RGB-Depth

CNN 1 h 15 min

Transformer 1 h 35 min

TD-CNN-GRU 3 h 30 min

Features fusion RGB-Depth

CNN 1 h 20 min

Transformer 1 h 30 min

TD-CNN-GRU 3 h 20 min

The confusion matrix of the CNN method is displayed in Figure 6 for RGB images
and RGB-Depth images. Interestingly errors with both RGB and RGB-Depth only occur on
adjacent classes along the developmental order. These are situations where even the human
eye can have uncertainty to decide the exact time of switching from one class to the next
one. Remaining errors can thus be considered as reasonable errors. The confusion matrices
also clearly demonstrate that the main gain brought by the Depth channel is on the stage of
opening the cotyledons for which the error are divided by a factor two. First appearance
out of the soil, or the appearance of the first leave produce very limited variations on
the depth. By contrast, the opening of the cotyledons produces an abrupt variation of
the Depth. Therefore, the impact of Depth on the improvement of the performance of
classification on this developmental stage is consistent with this rationale. Following also
this rationale, one can notice that the errors on opening the cotyledon slightly increase
when Depth is added but the overall impact of Depth is on average beneficial to the global
accuracy.

Figure 6. Confusion matrices for the best method found in Table 2, i.e., CNN. (a) for the RGB images
and (b) for the RGB-Depth images.

3.2. Detection of Event Changes at Night Using Depth Information

The advantage of using the depth is not limited to enhance the performance during
the day as shown in the previous subsection. Depth is also expected to be specifically
useful during the night since the RGB cameras are then non operating while the Depth
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images can still be acquired. If the growth stage switches during the night the RGB imaging
devices detect the switch only on the first frame of the next day time as illustrated in
Figure 7. It is possible to screen for Depth alone during these nights and observe the start
of a growth pattern actually occurring before the beginning of the day. We demonstrate in
this subsection how to take benefit quantitatively of the sole Depth channel during these
nights.

We analyzed the number of switches from one growth stage to another happening
on the first image acquired during the day in the data set of [16] and found out that it
represented 35 percent of the events (see Figure 8). This is similar to what we found with
the dataset of this article where we had 100 sets of pots from different varieties. In these
frames, we have 115 switches of growth stages with 43 happening during night time. While
some could be triggered by the action of light others could also happen earlier during
the night. To detect a possible change during the night, we quantitatively used Depth.
We designed Algorithm 1 which acts as follows. We first detects nights where a switch
between a growth stage to another growth stage is found in RGB images. During these
nights, the algorithm then detects the depth frame on which the switch is the most likely to
occur. In short, this is obtained by choosing the time where the average spatial depth is
permanently (computed over a sliding window of 4 images = 1 h) closer to the average
spatial depth of the next growth stage.

Figure 7. First row: the detection of switch from growth stage A to growth stage B using only daytime RGB images. Second
row: the more precise detection of switch from growth stage A to growth stage B using the Depth pattern during the night
time as proposed by Algorithm 1.
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Figure 8. Histogram of detection of growth stage change during day and night from 4000 plants.

Algorithm 1: Detection of night events using depth information.
Input:
Snight = Sequences of depth images of a night during which a switch a growth
stage is observed in RGB images.
Sa = Sequences of depth images from the last day before the switch of growth
stage A to B.
Sb = Sequences of depth images from the first day after the switch of growth stage
A to B.
Output: Pt = Precise time of switch of growth stage.

1 DA←mean(Sa); . Spatial average of Sa

2 DB←mean(Sb); . Spatial average of Sb

3 DNk ←mean(Snight); . Spatial average of Snight

4 < MDA >←mean( DA); . Temporal average of DA
5 < MDB >←mean( DB); . Temporal average of DB
6 GA← DN - < MDA >; . Difference between DN and < MDA >

7 GB← DN - < MDB >; . Difference between DN and < MDB >
8 bin← sign (GA - GB); . Binary vector of the sign for the difference between GA

and GB
9 Idx← find(bin==1111);. Get the index of first pattern (1111) in the binary vector.

10 Pt ← Length(Sa) + Idx; . Add the length of Sa to the index of the first pattern
(1111) to get the precise time

To validate Algorithm 1, we could not establish ground truth during the night.
As a workaround, we used daylight events and applied the depth channel only to the
Algorithm 1. Then, we used the annotated ground truth obtained from the RGB images to
compute the performance of Algorithm 1. We found 80% of these 115 switches with a shift
of less than 4 frames on average (standard deviation of 2 frames) by comparison with the
manually annotated ground truth. This corresponds to an uncertainty (bias here) of 1 h
which is very reasonable and much lower than the error duration of the night itself (8 h) if
no Depth were used.
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4. Discussion

We analyzed the remaining errors of the proposed algorithms and discuss them in
this section together with some open perspectives of the work.

Two main sources of errors can be attached to the acquisition protocol and instrumen-
tation itself. These are illustrated in Figure 9. First, some seedlings growth so fast that their
leaves or cotyledons go out of the observation window (Figure 9a). This causes drop in
depth and change in the RGB pattern. With our current approach, we do focus on individ-
ual pots. For such seedlings growing at early stages outside of their pot, we would need to
either use larger pots or develop tracking algorithms. This falls outside of the scope of this
study which focused on the added value of Depth when fused to RGB for the detection
of early growth stages of seedlings. Another source of errors happens due to noise on the
Depth channel (Figure 9b). Such noises were observed when too much or too low amount
of IR light was reflected on pots. This happens for instance when the plastic material of
the pots has a high reflectance or when some remaining water(absorbing IR) is present.
These noises can be reduced by carefully choosing the material used for the pot and the
watering process. Another type of error comes from the inherent large heterogeneity of
shapes and sizes of the bean varieties considered in this study and illustrated in Figure 10.
This affects specially the detection of growth stage which shows the tiniest changes, i.e.,
the opening of the cotyledons. To solve these errors, one could simply add more data or
use more advanced data augmentation techniques such as zoom, stretch, color jitter, . . . We
wanted to provide basic results here which already happen to be of rather high quality
without the use of such approach to robustify the model since the main goal was the fusion
of the RGB and Depth for seedling growth monitoring.

Figure 9. Sources of errors due to the acquisition protocol (a) and instrumentation (b).
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Figure 10. Heterogeneity of shape and size in the two events OC and FL for the different bean varieties used in the training.

One may wonder about the robustness of the model proposed given the relatively
small size of the plant population considered. First, the overfit measured with the best
method was found to be limited together with the difference of performance between
cultivars. It is important to recall here that the point of the work is to quantify the added
value of RGB-Depth images by comparison with sole RGB. This is what we do on the same
data sets. Interestingly, the performance with RGB images obtained with only 72 samples
are similar to the larger data set used in [16] (90% against 88% here). However, we cannot
ensure a perfect robustness to large change of phenotypic shapes. If such variability in
scale was expected, larger data sets would have to be constituted. The comparison between
RGB and RGB-Depth would remain unchanged.

In this work, we focused on early fusion and feature fusion of RGB and Depth. One
may also consider decision fusion where the classification from the RGB image and the
Depth image would be made. We performed this analysis and found a pure random
decision when the classification was made on Depth alone. Therefore, at the decision level,
no added value of Depth was to be expected on average. Fusion between RGB and Depth
for such small images and low-cost sensors as the one considered in this study is found
to be beneficial on average at earlier stages of processing (image or features). However,
after analysing the confusion matrix in detail, one could imagine to selectively using the
added value of Depth at the stages of growth where it is expected to be the most significant.
This was found to be between the FA and OC in our case and more generally when large
contrast in Depth happens. On the contrary, one could discard the use of Depth when
the growth process is estimated to lay at stages where no contrast in Depth is expected
(between Soil and FA in our case).

This work could be developed in several other future directions. First, we could revisit
this study with higher resolution Depth sensors [26] to investigate how the reduction of
noise and improvement of resolution in Depth could help to further improve the classifica-
tion results. More advanced stages of development yet still accessible from the top view,
could be investigated without targeting 3D reconstruction [55]. An issue comes with the
possible overlapping between plants. One solution would be to decrease the density of
plants but this would come with a lower throughput for the experiments. Another solution
would be to investigate the possibility to track leaves during their growth in order to deci-
pher partial occlusions. Here again, RGB depth sensors coupled with advanced machine
learning approaches could be tested to further extend the capability to monitor seedling
growth [56]. Last but not least, we can now directly apply the developed algorithms to
analyze biologically in detail the statistical distribution of seedling growth events at night



Sensors 2021, 21, 8425 14 of 16

on large datasets. This may unravel new knowledge on the physiological impact of light
on these growth kinetics in addition to their links with circadian rhythms [57].

5. Conclusions

In this article, we have demonstrated the added value of Depth when fused with
RGB images for the important problem of detection of seedling growth stage development.
During day time, Depth was shown to improve by 5% the classification performances
on average. Also Depth was shown of value to refine the estimation of switch of growth
stage during the night period. These results were established on different fusion strategies
including CNN, TD-CNN-GRU and transformers. These methods were compared in
order to incorporate the prior information of the order in which the different stages of the
development occur. The best classification performance on these types of images was found
with our optimized CNN, which achieved 94% accuracy of detection. In our experiments
all models and fusion strategies were trained and tested on several genotypes of beans.
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ROSE‑X: an annotated data set for evaluation 
of 3D plant organ segmentation methods
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Abstract 

Background:  The production and availability of annotated data sets are indispensable for training and evaluation of 
automatic phenotyping methods. The need for complete 3D models of real plants with organ-level labeling is even 
more pronounced due to the advances in 3D vision-based phenotyping techniques and the difficulty of full annota-
tion of the intricate 3D plant structure.

Results:  We introduce the ROSE-X data set of 11 annotated 3D models of real rosebush plants acquired through 
X-ray tomography and presented both in volumetric form and as point clouds. The annotation is performed manu-
ally to provide ground truth data in the form of organ labels for the voxels corresponding to the plant shoot. This data 
set is constructed to serve both as training data for supervised learning methods performing organ-level segmenta-
tion and as a benchmark to evaluate their performance. The rosebush models in the data set are of high quality and 
complex architecture with organs frequently touching each other posing a challenge for the current plant organ 
segmentation methods. We report leaf/stem segmentation results obtained using four baseline methods. The best 
performance is achieved by the volumetric approach where local features are trained with a random forest classifier, 
giving Intersection of Union (IoU) values of 97.93% and 86.23% for leaf and stem classes, respectively.

Conclusion:  We provided an annotated 3D data set of 11 rosebush plants for training and evaluation of organ 
segmentation methods. We also reported leaf/stem segmentation results of baseline methods, which are open to 
improvement. The data set, together with the baseline results, has the potential of becoming a significant resource for 
future studies on automatic plant phenotyping.

Keywords:  X-ray, Rosebush, Segmentation, Database, Machine learning
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Background
Recent agricultural and genetic technologies require high 
throughput phenotyping systems which can benefit sig-
nificantly from the automation of inspection and meas-
urement. Automatic plant phenotyping through 3D data 
has been a recent research topic in computer vision; how-
ever, the scarcity of labeled and complete models of real 
plants is a roadblock for applying recent machine learn-
ing techniques that rely on a vast amount of annotated 
data. Also, benchmarking data sets are indispensable 

for proper comparison of current and future phenotyp-
ing methods that operate on 3D data such as volumetric 
models or point clouds.

The production of annotated data sets has become 
even more important since the recent bloom of deep 
learning [1], performance of which was shown to be 
notably boosted by the availability of large annotated 
data sets [2]. The success of deep learning methods has 
triggered the interest in data collection and labeling in 
specific applications of computer vision such as plant 
imaging [3]. Most of the freely available annotated plant 
shoot data sets so far have been in the form of collec-
tions of 2D images acquired in the visible spectrum 
from top or side view. Among the available 2D data 

Open Access

Plant Methods

*Correspondence:  david.rousseau@univ‑angers.fr
2 INRA, UMR1345 Institut de Recherche en Horticulture et Semences, 42 
Georges Morel CS 60057, 49071 Beaucouze, France
Full list of author information is available at the end of the article



Page 2 of 14Dutagaci et al. Plant Methods           (2020) 16:28 

sets reported in [3] some are provided with annotated 
ground truth [4, 5], which is very valuable for pheno-
typing through computer vision and machine learning. 
In this article, we are interested in providing 3D anno-
tated models of plants.

Among the most related data sets, some provide multi-
ple images of plants that would allow 3D reconstruction; 
however, they do not include complete 3D plant models 
[6–9]. Uchiyama et  al. [7] provided a data set contain-
ing multiple RGB and depth images of Komatsuna plant 
together with the manually annotated leaf labels. The 
data set contains calibration images to be used for esti-
mating 3D geometry from the plant images. Cruz et  al. 
[8] constructed a database named “MSU-PID” contain-
ing fluorescence, IR, RGB, and top view depth images 
of Arabidopsis and bean plants. 3D reconstructions of 
plants are not available in the database. Bernotas et  al. 
[9] provided an annotated Arabidopsis data set with 3D 
information acquired using the photometric stereo tech-
nique. The data set includes 221 manually annotated 
Arabidopsis rosettes, which are partially reconstructed 
using only top-down views of the plants, providing 2.5D 
information rather than full 3D models. Wen at al. [10] 
introduced a database of the 3D models of plants and 
organs from different species, cultivars, and multiple 
growth periods, however, at present, the majority of the 
models in the data set correspond to isolated organs, 
such as models of single leaves or fruits, rather than full 
plants.

Due to the improvement of the sensitivity of the sen-
sors and the democratization of the technology, X-ray 
Computer Tomography (CT) is now widely used for plant 
imaging [11]. While X-ray imaging is the most adopted 
tool to monitor roots in real soil conditions [12], it is 
also being employed for the characterization of the aer-
ial parts of plants [13–19]. The use of X-ray imaging has 
focused on the acquisition of very thin parts enhanced 
with dye [13, 17, 18] or the internal 3D analysis of the 
aerial part [14–16, 19].

Rosebushes have been studied with computer vision 
techniques applied on LiDAR and RGB image data [20, 
21] to produce global characterization of the shoot and 
from there estimate its ornamental value. In contrast to 
these optics-based methods, X-ray CT imaging, although 
more expensive, provides complete and occlusion-free 
volumetric information of the 3D geometric structure of 
the shoot. Such accurate imaging that is able to capture 
internal structures provides a means to construct full 
3D models of real plants. These models can later be used 
to guide computer vision and pattern recognition tech-
niques that can operate on data acquired with low-cost 
imaging devices to inspect a large number of plants used 
in typical phenotyping experiments.

We provide the ROSE-X data set of 11 complete 3D 
models of real potted rosebush plants with complex 
architecture acquired through X-ray computed tomog-
raphy. The rosebushes we captured through X-ray CT 
imaging have complex architecture and show significantly 
high amounts of self-occlusion from all viewpoints, i.e., 
they possess major challenges for optics-based 3D plant 
reconstruction methods. These models are suitable to be 
transformed to other data structures, e.g., full or partial 
point clouds corresponding to the visible surface of the 
shoot, similar to what would be obtained with optical 
systems used for 3D reconstruction of plant shoot such 
as LiDAR or Time-of-Flight (ToF) cameras [22]. This 
conversion will make it possible to train and evaluate 
algorithms that operate on point clouds originating from 
the visible surface. In addition, with the data available for 
the occluded parts, these models will make it possible to 
design algorithms that predict complex plant architec-
tural structure from incomplete input.

The 3D voxel space of each rosebush in the data set is 
fully annotated through labeling each voxel with its cor-
responding botanical organ class; “organ” referring to the 
plant units such as leaves, branches, and flowers. Such 
ground truth data facilitate the detailed description of 
the architecture and morphology of the plant, and can 
be used to train automatic phenotyping algorithms aim-
ing to extract both architectural and organ-level traits. 
Architectural and organ-level trait analysis of 3D data 
requires an initial stage of classification of points into 
their respective categories. Current practice is to seg-
ment the acquired data of the plant shoot into branches 
and leaves. In this paper, we focus on leaf-stem segmen-
tation algorithms as one of the phenotyping applications 
where our data set can serve both as training data and 
as a benchmark. We chose four representative methods 
for stem-leaf segmentation: (1) unsupervised classifica-
tion using local features from point clouds, (2) support 
vector machine (SVM) classification using local features 
from point clouds, (3) random forest-based classification 
of local features from volumetric data, and (4) 3D U-Net 
applied on volumetric data. The later two were not previ-
ously applied to 3D plant organ segmentation problem. 
We trained and evaluated the methods on the new ROSE-
X data set, and provided baseline performance results.

Methods
The ROSE‑X data set
We introduce an open repository of complete 3D mod-
els of real rosebush plants with ground truth annotations 
at organ-level. The acquisition was performed through a 
3D Siemens X-ray imaging system with a voltage range 
of 10–450 kV, using a tungsten transmission target and a 
280-mA current. For this study, the system was operated 
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with an 80-kV voltage. The number of projections was 
900, and each radiograph was an average of three expo-
sures of 333 ms each to reduce the noise. The acquisition 
time per plant was 20 min. A total number of 11 rose-
bush plants with varying architectural complexity were 
imaged. The output data obtained from each acquisition 
session is a stack of X-ray images with a pixel spacing of 
0.9766 mm and slice spacing of 0.5 mm. The data is rep-
resented in a 3D voxel space, where the intensity of each 
voxel reflected the material properties of the plant shoot 
at that voxel.

From the raw volume data, the 3D voxels belonging 
to the rosebushes and their pots were extracted through 
masking and thresholding. The masks were manually 
constructed to separate unrelated material coming from 
the imaging platform, and thresholding was performed to 
separate the plant voxels from the air. Table  1 gives the 
number of thresholded voxels, the number of voxels cor-
responding to the plant shoot, and the number of vox-
els on the surface of the plant shoot. The pot contains a 
significant portion of the voxels of the models; the large 
difference in the number of the voxels between models is 
due to different sizes of the pots. The plant shoot corre-
sponds to the plant parts above the soil. Most of the vox-
els of the plant shoot are on the surface since leaves and 
petals and sepals of the flowers are very thin structures.

After the X-ray intensity values of the voxels corre-
sponding to air and background material are set to zero, 
the remaining voxels are assigned to one of the following 
classes: (1) stem, (2) leaf, (3) flower, (4) pot, (5) tag. The 
background voxels corresponding to air were assigned 
“zero” values. The stem class includes both the main 
branches and the petioles since they have similar geo-
metrical structures and are spatially connected. The plant 
shoot is composed of the stem, leaf, and flower classes. 

Figure  1 displays the thresholded X-ray volume (a), the 
organ-level labels obtained through annotation (b), the 
labels corresponding to the plant shoot (c), and the stem 
and petiole structure (d) of a sample rosebush model 
from the data set. Table 2 gives the percentages of voxels 
of organ classes on the plant shoot and the surface of the 
plant shoot.

The manual annotation was carried out with the 
help of ilastik (Interactive Learning and Segmentation 
Toolkit) [23]: Using pixel classification tool of ilastik, on 
a rosebush model, we manually marked several voxels 
in regions belonging to each class to train the classifier. 
Then, we obtained full-volume predictions on all mod-
els generated by the trained classifier of ilastik. Through 
detailed inspection, we manually corrected the labels of 
all voxels incorrectly labeled by ilastik.

The data set is available online at [24]. We provide the 
3D data in the following forms: (1) the raw X-ray image 
stack, (2) the binary volume mask indicating the voxels 
of only the shoot of the plant, the tag, and the pot, and 
the corresponding organ-level labels, (3) the binary vol-
ume mask indicating the voxels only on the surface of the 
plant shoot, and the corresponding organ-level labels, 
(4) the point cloud composed of the points of the shoot 
of the plant, the tag, and the pot with colors indicating 
organ-level labels, (5) the point cloud composed of the 
points on the surface of the plant shoot with colors indi-
cating organ-level labels. The details of the file formats 
and label information are explained in the Additional 
file 1. Through these forms, it is possible to convert the 
3D volumetric models to a labeled polygon mesh model 
and obtain 3D point clouds as viewed from any position 
around the plant through ray casting.

Baseline methods for leaf‑stem segmentation
Vision-based plant phenotyping has been traditionally 
performed through analysis of 2D color images from 
which 3D characteristics of the plants (stem length, 
volume, leaf area, etc.) have been estimated. With the 
advance of 3D imaging technologies, phenotyping 
through the 3D capture and reconstruction of plants have 
gained considerable attention. In Table 3, characteristics 
of some of the 3D vision-based phenotyping methods 
that involve a segmentation stage to separate leaves from 
branches are summarized. 3D data was captured from 
various species of plants by structured light depth sen-
sors [25, 26], laser scanners [27–31], ToF cameras [32], or 
from a set of color images through structure from motion 
[33, 34].

One of the disadvantages of these optics-based acqui-
sition techniques is that they suffer from a high degree 
of self-occlusion of plants. As the architecture becomes 
more complex, more parts of the plants become heavily 

Table 1  Number of voxels in the models (also the number 
of points in the corresponding point cloud)

Model ID # Thresholded 
voxels

# Plant shoot 
voxels

# Plant shoot 
surface voxels

S268650 794,618 312,212 275,954

S268660 588,101 157,029 127,158

S270230 657,195 205,686 175,800

S270240 642,192 169,276 142,474

S270250 818,568 347,013 301,786

S271780 2,091,739 305,534 264,634

S271790 2,072,313 200,346 171,963

S271800 2,011,882 164,108 138,065

S273080 1,153,337 176,155 145,284

S273090 1,909,986 192,755 166,246

S273110 1,254,316 294,528 257,992
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Fig. 1  A sample rosebush model from the data set. The raw X-ray volume is thresholded and masked to obtain the solid part shown in a. Each 
voxel in the volume is annotated as leaf, stem, flower, pot, or tag to obtain the ground-truth segmentation as shown in b. In c only the parts 
corresponding to the plant shoot are shown, excluding the pot and the tag. The voxels corresponding only to stem class are shown in d 

Table 2  Percentages of voxels (points) for organ classes in the plant shoot

Model ID Leaf Stem Flower Leaf on surface Stem on surface Flower 
on surface

S268650 79.06 13.08 7.86 83.99 9.43 6.58

S268660 70.53 17.06 12.41 77.37 12.66 9.97

S270230 77.07 14.36 8.57 83.44 10.40 6.17

S270240 71.30 16.60 12.10 79.92 11.70 8.38

S270250 75.22 12.33 12.45 80.64 8.93 10.43

S271780 80.97 13.46 5.57 86.35 9.79 3.86

S271790 75.76 13.96 10.28 81.26 10.12 8.62

S271800 73.84 17.09 9.07 81.70 12.57 5.73

S273080 69.20 21.72 9.08 77.50 15.99 6.51

S273090 75.08 19.20 5.72 82.64 13.97 3.39

S273110 79.91 17.07 6.02 83.78 12.27 3.95



Page 5 of 14Dutagaci et al. Plant Methods           (2020) 16:28 	

Ta
bl

e 
3 

3D
 v

is
io

n 
ba

se
d 

ph
en

ot
yp

in
g 

m
et

ho
ds

Im
ag

in
g

Pl
an

t t
yp

e
A

pp
lic

at
io

n/
tr

ai
ts

Se
gm

en
ta

tio
n 

ap
pr

oa
ch

Lo
ca

l s
ur

fa
ce

 fe
at

ur
es

 o
n 

po
in

t c
lo

ud
s

D
ey

 e
t a

l. 
[3

3]
St

ru
ct

ur
e 

fro
m

 m
ot

io
n

G
ra

pe
vi

ne
C

la
ss

ifi
ca

tio
n 

of
 3

D
 p

oi
nt

s 
in

to
 le

av
es

, b
ra

nc
he

s, 
an

d 
fru

it 
(re

d)
Ei

ge
nv

al
ue

s 
of

 lo
ca

l c
ov

ar
ia

nc
e 

m
at

rix
, S

VM
, C

RF

Li
 e

t a
l. 

[2
5]

St
ru

ct
ur

ed
 li

gh
t s

ca
nn

er
A

nt
hu

riu
m

, D
is

hl
ia

, D
an

ci
ng

 b
ea

n
Le

af
/s

te
m

 s
eg

m
en

ta
tio

n 
fo

r t
ra

ck
in

g 
ev

en
ts

 in
 ti

m
e 

lik
e 

bu
dd

in
g 

an
d 

bi
fu

rc
at

io
n

Lo
ca

l p
oi

nt
 fe

at
ur

es
, M

RF

Pa
ul

us
 e

t a
l. 

[2
8]

3D
 la

se
r s

ca
nn

er
G

ra
pe

vi
ne

, W
he

at
Le

af
/s

te
m

 s
eg

m
en

ta
tio

n 
fo

r g
ra

pe
vi

ne
Lo

ca
l p

oi
nt

 fe
at

ur
es

 (F
PF

H
), 

SV
M

, R
eg

io
n 

gr
ow

in
g

Pa
ul

us
 e

t a
l. 

[3
5]

3D
 la

se
r s

ca
nn

er
Ba

rle
y

Le
af

/s
te

m
 s

eg
m

en
ta

tio
n 

fo
r l

ea
f a

re
a 

an
d 

st
em

 
he

ig
ht

 e
st

im
at

io
n

Lo
ca

l p
oi

nt
 fe

at
ur

es
 (F

PF
H

), 
SV

M
, R

eg
io

n 
gr

ow
in

g

W
ah

ab
za

da
 e

t a
l. 

[3
0]

3D
 la

se
r s

ca
nn

er
G

ra
pe

vi
ne

, W
he

at
, B

ar
le

y
Se

gm
en

ta
tio

n 
of

 le
af

, s
te

m
, e

ar
, a

nd
 fr

ui
t p

ar
ts

Lo
ca

l p
oi

nt
 fe

at
ur

es
 (F

PF
H

), 
cl

us
te

rin
g,

 R
eg

io
n 

gr
ow

-
in

g

So
dh

i e
t a

l. 
[2

6]
M

ul
ti-

vi
ew

 s
te

re
o 

& 
Ki

ne
ct

So
rg

hu
m

Le
af

/s
te

m
 s

eg
m

en
ta

tio
n

Lo
ca

l p
oi

nt
 fe

at
ur

es
 (F

PF
H

), 
SV

M
, C

RF

El
na

sh
ef

 e
t a

l. 
[3

6]
M

ul
ti-

vi
ew

 s
te

re
o

Co
rn

, C
ot

to
n,

 W
he

at
Le

af
/s

te
m

 s
eg

m
en

ta
tio

n
Ei

ge
nv

al
ue

s 
of

 th
e 

se
co

nd
 te

ns
or

Lo
ca

l f
ea

tu
re

s o
n 

vo
lu

m
et

ric
 m

od
el

s

Kl
od

t e
t a

l. 
[3

7]
M

ul
ti-

vi
ew

 s
te

re
o

Ba
rle

y
Le

af
/s

te
m

 s
eg

m
en

ta
tio

n 
fo

r t
he

 e
st

im
at

io
n 

of
 

vo
lu

m
e 

an
d 

su
rf

ac
e 

ar
ea

 o
f t

he
 p

la
nt

 a
nd

 th
e 

nu
m

be
r o

f l
ea

ve
s

Ei
ge

nv
al

ue
s 

of
 th

e 
se

co
nd

-m
om

en
ts

 te
ns

or

G
ol

db
ac

h 
et

 a
l. 

[3
8]

Sh
ap

e-
fro

m
-s

ilh
ou

et
te

To
m

at
o 

se
ed

lin
g

Le
af

/s
te

m
 s

eg
m

en
ta

tio
n 

fo
r l

ea
f l

en
gt

h,
 w

id
th

 a
nd

 
ar

ea
 e

st
im

at
io

n
Br

ea
th

-fi
rs

t fl
oo

d-
fil

l a
lg

or
ith

m
 w

ith
 a

 2
6-

co
nn

ec
te

d 
ne

ig
hb

ou
rh

oo
d

Sp
ec

tr
al

 c
lu

st
er

in
g

H
ét

ro
y-

W
he

el
er

 e
t a

l. 
[3

9]
La

se
r s

ca
nn

er
Tr

ee
 s

ee
dl

in
gs

Se
gm

en
ta

tio
n 

of
 s

te
m

s, 
le

av
es

, a
nd

 p
et

io
le

s 
fo

r l
ea

f 
su

rf
ac

e 
ar

ea
 e

st
im

at
io

n
G

ra
ph

 c
on

st
ru

ct
io

n,
 s

pe
ct

ra
l e

m
be

dd
in

g 
an

d 
cl

us
te

r-
in

g

Sa
nt

os
 e

t a
l. 

[4
0]

St
ru

ct
ur

e 
fro

m
 m

ot
io

n
Su

nfl
ow

er
, s

oy
be

an
Le

af
/s

te
m

 s
eg

m
en

ta
tio

n 
fo

r l
ea

f s
ur

fa
ce

 a
re

a 
es

tim
at

io
n

G
ra

ph
 c

on
st

ru
ct

io
n,

 s
pe

ct
ra

l e
m

be
dd

in
g 

an
d 

cl
us

te
r-

in
g

G
eo

m
et

ric
 p

rim
iti

ve
s

Bi
nn

ey
 a

nd
 S

uk
ha

tm
e 

[3
1]

2D
 la

se
r s

ca
nn

er
Tr

ee
 b

ra
nc

h
Se

gm
en

ta
tio

n 
of

 le
av

es
 a

nd
 b

ra
nc

he
s 

fo
r e

st
im

a-
tio

n 
of

 b
ra

nc
h 

lo
ca

tio
ns

, a
ng

le
s, 

ra
di

i, 
an

d 
le

ng
th

s, 
an

d 
co

nn
ec

tiv
ity

 in
fo

rm
at

io
n 

be
tw

ee
n 

br
an

ch
es

G
en

er
at

iv
e 

m
od

el
s 

fo
r b

ra
nc

he
s 

an
d 

br
an

ch
po

in
ts

Pa
pr

ok
i e

t a
l. 

[4
1]

M
ul

ti-
vi

ew
 s

te
re

o
Co

tt
on

St
em

, p
et

io
le

 a
nd

 le
af

 s
eg

m
en

ta
tio

n 
fo

r e
st

im
at

io
n 

of
 g

eo
m

et
ric

 p
ro

pe
rt

ie
s 

su
ch

 a
s 

st
em

 h
ei

gh
t, 

le
af

 
he

ig
ht

 a
nd

 in
cl

in
at

io
n 

an
gl

e

Re
gi

on
 g

ro
w

in
g,

 tu
bu

la
r s

ha
pe

-fi
tt

in
g,

 c
lu

st
er

in
g

C
ha

iv
iv

at
ra

ku
l e

t a
l. 

[3
2]

Ti
m

e 
of

 F
lig

ht
Co

rn
Le

af
/s

te
m

 s
eg

m
en

ta
tio

n 
fo

r s
te

m
 d

ia
m

et
er

, l
ea

f 
le

ng
th

, a
re

a,
 a

nd
 a

ng
le

 e
st

im
at

io
n

St
em

 e
xt

ra
ct

io
n 

by
 e

lli
ps

e 
fit

tin
g 

an
d 

lin
ki

ng
, a

nd
 

el
lip

tic
al

 c
yl

in
de

r e
xt

ru
si

on

G
él

ar
d 

et
 a

l. 
[3

4]
St

ru
ct

ur
e 

fro
m

 m
ot

io
n

Su
nfl

ow
er

St
em

, p
et

io
le

 a
nd

 le
af

 s
eg

m
en

ta
tio

n 
fo

r l
ea

f a
re

a 
es

tim
at

io
n

Ri
ng

 c
lim

bi
ng

 fo
r e

xt
ra

ct
io

n 
of

 s
te

m
s 

an
d 

pe
tio

le
s, 

cl
us

te
rin

g 
fo

r s
eg

m
en

tin
g 

le
av

es



Page 6 of 14Dutagaci et al. Plant Methods           (2020) 16:28 

occluded, making it impossible to capture some regions 
from any viewpoint. That disadvantage forced most auto-
matic part segmentation and phenotyping research to be 
conducted on plants with relatively simple architectural 
and geometrical structure, such as plants with a single 
stem and well-separated leaves. With X-ray imaging, 3D 
information of the entire plant material can be captured. 
However, many phenotyping activities, such as growth 
monitoring, require the plants not to be moved, which 
makes X-ray imaging impractical. The bulk of the auto-
matic phenotyping activities is bound to rely on optics-
based acquisition devices. Although X-ray imaging will 
remain as an appropriate tool for applications such as 
root growth analysis, we envision that the ROSE-X data 
set will be mainly a resource for algorithms that operate 
on point clouds acquired with optics-based methods. The 
availability of complete models of real plants with high 
architectural complexity and full annotation will serve as 
a guiding resource for processing occluded point clouds 
of highly complicated plants acquired by RGB or depth 
cameras, or laser scanners.

Whether the data is in 3D volumetric form or is in 
the form of a 3D point cloud, semantic segmentation is 
required for particular phenotyping objectives, such as 
organ-level phenotyping, extraction of the architecture 
and event detection such as leaf growth and decay. Leaf-
stem segmentation is the most commonly addressed 
problem in organ-level phenotyping. We can categorize 
leaf/stem segmentation methods for 3D phenotyping 
into the following groups: (1) segmentation using local 
surface features on point clouds [25, 26, 28, 30, 33, 35], 
(2) segmentation using local features on volumetric data 
[37, 38], (3) segmentation through spectral clustering [39, 
40, 42], (4) segmentation by fitting geometric primitives 
[31, 32, 34, 41, 43]. Table  3 is organized using this cat-
egorization. In this work, instead of an exhaustive evalu-
ation of all the available methods on our labeled data set, 
we selected four representative approaches as baseline 
methods for segmenting the shoot of the rosebush data 
into its branches and leaves. Two of these methods are 
based on local features extracted from the point cloud. 
The other two methods assume volumetric data as input, 
and have not been previously applied to the plant organ 
segmentation problem. For all methods, it is assumed 
that the plant shoot is already separated from the pot. 
In the following subsections, the baseline methods are 
described in detail.

Segmentation using local surface features on point clouds
One of the most common approaches to segment point 
clouds of plants is to use local features. Point neighbor-
hoods on leaves and branches exhibit distinguishing 
distributions, which can be attributed to their sheet-like 

or line-like structures, respectively. One of the sim-
plest approaches is to represent such characteristics by 
the eigenvalues of the covariance matrix of the neigh-
borhood. Researchers have devised the use of more 
sophisticated point features such as Fast Point Feature 
Histograms (FPFH) ([28, 35]) that provide a rich descrip-
tion of the local structure around a point. In this work, we 
opted to use the simplest point neighborhood descriptors 
for the baseline methods. For more information on 3D 
local features, we refer to the book [44] of Laga et al.

For a point x in the point cloud, the neighborhood can 
be defined as the set N§ = {xi : �x − xi� < d} , where d is 
the radius of the neighborhood. The covariance matrix of 
the neighborhood is calculated as 
C = 1

|N§|−1

∑
xi∈N§ (xi − x̄)(xi − x̄)T , where x̄ = 1

|Nx|

∑
xi∈N§

xi 
is the mean of the points.

The relative magnitudes of the eigenvalues {�1, �2, �3} 
of the covariance matrix with �1 ≤ �2 ≤ �3 can serve as 
local descriptors to discriminate leaf and stem points. 
For a thin flat structure, we expect �1 to be much smaller 
than both �2 and �3 . We also expect �2 and �3 to be close 
to each other. For a line-like structure we have a pre-
dominantly large value of �3 , with �1 and �2 being much 
smaller.

We used the eigenvalues of the local covariance matrix 
in two baseline stem/leaf segmentation methods. The 
first is an unsupervised method based on the Markov 
Random Fields (MRF) formulation given in [25]. The sec-
ond is a supervised method where a classifier is trained 
with local features derived from the eigenvalues. This 
second approach aligns with the methods proposed in 
[26, 33].

Local features on point clouds—unsupervised (LFPC-
u) : For this baseline method, we followed a simplified 
version of the stem/leaf classification method given in 
[25]. The eigenvalues are used to define local surface fea-
tures on the point clouds and to search for a mapping fB 
from a point x to one of the two labels for leaf (L) and 
stem (S) categories. The point cloud can be organized in 
a graph where the points x ∈ X  correspond to the nodes 
and pairs of locally connected points (xi, xj) ∈ E con-
stitute the edges. In our implementation, a pair (xi, xj) 
was considered to be an edge if the Euclidean distance 
between them is less than 1.4mm. The energy associated 
with a particular label mapping is defined as

The weight factors wD and wV  determine a compromise 
between the class likelihoods of individual nodes and the 
coherence across the edges. Dx(fB(x)) corresponds to the 
data term (the unary potential) which gives the cost of 

(1)

E(fB) = wD

∑

x∈X

Dx(fB(x)) + wV

∑

(xi ,xj)∈E

V (fB(xi), fB(xj)) .
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classifying a point x into a leaf or stem category. The term 
V (fB(xi), fB(xj)) gives the smoothness term (the pair-
wise potential) and is used to encourage labeling coher-
ence between neighboring points. The energy function is 
minimized through min-cut algorithm [45] to obtain the 
optimum labels for the point cloud.

To determine the data and smoothness terms, an esti-
mate of the curvature at point x is computed using the 
eigenvalues of the covariance matrix as C(x) =

�1
�1+�2+�3

 . 
The range of the curvature values is [0,  1/3], and leaf 
points are expected to have lower curvature val-
ues than stem points. A flatness feature is defined as 
R(x) = log(max(C(x)), cǫ) , where cǫ is set to 0.015. R(x) is 
in the range [RL,RS] with RL = log(cǫ) and RS = log(1/3) . 
Then, the data term is calculated as

The smoothness term also depends on the curvature 
C(x), which is used as a measure of the discontinuity of 
the surface. The pairwise potential is set to be inversely 
proportional to the curvature since a high curvature 
value indicates a discontinuity which can be considered 
as the boundary of a plant part. The smoothness term is 
defined as

Notice that this method is an unsupervised method in 
the sense that it does not require labeled training data to 
transform or organize features to boost their discriminat-
ing power. However, the weight factors wD and wV  in Eq. 
(1) need to be fixed. Through experimentation on one 
rosebush reserved to train the methods, we found that 
wD = 0.9 and wN = 0.1 yielded the best results.

Local features on point clouds—supervised (LFPC-s): 
For the second baseline method, we selected to derive 
local features from the eigenvalues of the local covariance 
matrix, and used SVM as the classifier as in the work of 
Dey et al. ([33]). We defined the local features as follows:

The size of the neighborhood from which the eigenval-
ues are computed determines the scale at which the local 
structures will be analyzed. The stem and the petioles of 
the plant shoot have varying widths, likewise the leaves 
exhibit a large size variability. Instead of fixing the radius, 
we extracted the features {F1, F2, F3, F4} at various scales 
and concatenate them into a single feature vector. In our 

(2)Dx(fB(x)) =

{
R(x) − RL, if fB(x) = L.
RS − R(x), if fB(x) = S.

(3)

V (fB(xi), fB(xj)) =

{
max

(
1

C(xi)
, 1
C(xj)

)
, if fB(xi) �= fB(xj).

0, if fB(xi) = fB(xj).

(4)

F1 =
�1

√
�2�3

F2 =
�2

�3
F3 =

�1
√

�1�2�3

F4 =
�1

�2

tests, we used six scales, corresponding to neighbor-
hoods of radii 2, 3, 4, 5, 6, and 7 mm. Using one of the 
rosebush models with ground truth labels, we trained a 
two-class linear SVM classifier.

Segmentation using local features on volumetric data (LFVD)
The point cloud data acquired from optic-based sensors 
such as RGB cameras or laser scanners can be converted 
to binary volumetric data using a 3D occupancy grid. The 
regular structure of 3D volume allows to apply standard 
filtering and feature extraction tools such as smoothing 
and estimation of first and second order derivatives. The 
software ilastik [23] can extract various types of features 
from 3D volume data: the color features correspond to 
the raw intensity values smoothed by a Gaussian filter. 
The edge features are the eigenvalues of the structure ten-
sor, eigenvalues of the Hessian matrix, the gradient mag-
nitude of the difference of Gaussians and Laplacian of 
Gaussian. The texture features correspond to eigenvalues 
of the structure tensor, eigenvalues of the Hessian matrix, 
and orientation features are the raw structure tensor and 
Hessian matrix entries. In our tests, the mentioned fea-
tures are extracted from data smoothed by Gaussian fil-
ters with scales 0.7, 1.0, 1.6, 3.5, 5.0, and 10.0 mm.

The voxels of the original X-ray data possess inten-
sity values which are determined by the intensity of the 
X-rays passing through the voxels and the material prop-
erties. X-ray intensity values in our models depend on the 
material properties of plant parts; e.g., leaves have very 
low intensity values compared to branches. In order to 
have comparable results between the volume-based and 
surface-based baseline methods, we used the binary vol-
ume mask, indicating the voxels of only the shoot of the 
plant. We further set the values of the voxels which are 
not on the surface of the plant-shoot, i.e., interior voxels, 
to zero, so that only the voxels on the surface of the plant-
shoot will remain.

We employed ilastik [23] to extract intensity, edge, and 
texture features from one binary plant model and to train 
a random forest classifier [46] using the ground-truth 
labels. Once the classifier is trained on one model; it is 
tested on all the other models on the data set.

CNN on volume data (3D U‑Net)
As a representative of deep learning methods, we 
selected 3D U-Net [47], which is originally proposed to 
provide dense volumetric segmentation maps for bio-
medical images. It is an extension of the 2D U-net archi-
tecture developed by Ronneberger et al. [48]; all the 2D 
operations in the 2D u-net are replaced with their 3D 
counterparts. The input volume is first passed through 
an analysis path with four resolution layers, each of 
which is composed of two 3 × 3 × 3 convolutions with 
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Rectified Linear Units (reLU) and one 3 × 3 × 3 max 
pooling operation. Max pooling corresponds to down-
sampling by using the maximum value from each of 
a cluster of neurons at the prior layer. Then a synthesis 
path is applied with four resolution layers each consisting 
of one 2 × 2 × 2 upconvolution operator followed by two 
2 × 2 × 2 convolutions with reLU. The high-resolution 
features obtained at the analysis path are also provided to 
the synthesis path through shortcut connections between 
layers of equal resolution. The size of the input voxel grid 
to the network is 144 × 144 × 144 , and the output is a 
volumetric data of the same size giving the label of each 
voxel. The architecture graph can be found in [47]. For 
more information on deep learning and the definitions of 
the classical layers that constitute the basis of deep neural 
networks, we refer to the book [49] of Goodfellow et al.

As we did with the baseline method based on local vol-
umetric features, we only used the thresholded voxels on 
the surface of the shoot, so the input is binary devoid of 
the intensity information. We used one rosebush model 
to train the network. We extracted 25 subvolumes of size 
144 × 144 × 144 from various locations of the full vol-
ume of the model such that each subvolume contained 
leaf and stem instances. 20 of the subvolumes were used 
for training and 5 of them were used for validation. For 
a test model, we regularly partitioned the volume to 
non-overlapping subvolumes and provided the subvol-
umes to the network as inputs to get the corresponding 
segmentation.

Results
In this paper, we concentrated on the problem of parti-
tioning the plant models into its leaf and stem (branch) 
parts; so the training and evaluation of the baseline meth-
ods are performed using the ground truth labels corre-
sponding to the leaves and stems only. In our evaluation, 
we ignored the predictions generated on the flower parts.

There are many metrics for segmentation evaluation, 
such as Matthews Correlation Coefficient [50], Cohen’s 
κ coefficient [51], Dice Similarity Coefficient [52], all 
with their advantages and all applicable in the frame-
work of our benchmark. In this paper, we used preci-
sion (also known as Positive Predictive Value), recall 
(also known as sensitivity), and Intersection over Union 

(IoU) to evaluate the baseline methods. Recall for the 
leaf class ( Rleaf  ) is the ratio of the number of correctly 
labeled leaves (true positives) to the total number of leaf 
points in the ground truth (true positives + false nega-
tives). Precision for the leaf class ( Pleaf  ) is the ratio of 
the number of correctly labeled leaves (true positives) to 
the total number of points classified as leaf points by the 
algorithm (true positives + false positives). Recall ( Rstem ) 
and precision ( Pstem ) for the stem class are defined in the 
same way. Intersection over Union (IoU) metric for each 
class (IoUleaf  and IoUstem ) is defined as the ratio of all the 
true positives to the sum of true positives, false negatives 
and false positives.

For a single fold of the experimental evaluation, we 
selected one rosebush model for training and tested the 
algorithms on the remaining 10 models. For the unsu-
pervised method based on local features on point clouds, 
we used the training model to optimize the weights of 
the data and smoothness terms. The results were aver-
aged over the test models and over 5-fold experiments. A 
different rosebush model is reserved as training data for 
each fold. Table 4 gives the performances of the baseline 
leaf/stem segmentation methods. The visual results for 
a sample test rosebush are given in Fig. 2. The predicted 
labels of the rosebush model are displayed as a volume 
or as a point cloud depending on the type of the data 
the corresponding method processes. Figure 3 gives the 
stem points predicted by each baseline method. Correct 
predictions of the stem points with their connectivity 
maintained are especially important for establishing the 
architectural structure of the plant.

We can observe from Table 4 and Fig. 2 that the voxel 
classification method through local features (LFVD) 
gives the best overall performance for leaf/stem classifi-
cation. It is a supervised method combining multi-scale 
volumetric local features with the random forest clas-
sifier. For this particular data set, it can model well the 
scale variations of leaf and stem points as well as their 
geometrical variations due to their locations on the organ 
(in the middle or at the border). The recall rate for the 
stem class is around 90%, meaning that 10% of the points 
on the branches are missed. Most missed stem points 
are on the petioles, which are in between close leaflets 
and possess an almost planar structure (Fig.  4c). The 

Table 4  Performances of the baseline leaf/stem segmentation methods (%)

Method Rleaf Rstem Pleaf Pstem IoUleaf IoUstem

LFPC-u 95.74 ± 1.74 88.03 ± 1.82 98.23 ± 0.33 75.01 ± 9.76 94.10 ± 1.54 67.96 ± 8.18

LFPC-s 97.79 ± 0.46 80.50 ± 1.29 97.19 ± 0.48 83.67 ± 4.88 95.10 ± 0.46 69.57 ± 3.87

LFVD 99.38 ± 0.13 90.01 ± 1.17 98.53 ± 0.43 95.38 ± 1.02 97.93 ± 0.47 86.23 ± 0.31

3D U-Net 81.06 ± 1.68 97.41 ± 1.43 99.63 ± 0.29 54.0 ± 5.77 81.72 ± 1.71 53.58 ± 5.54
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discontinuities in the stem-branch structure predicted by 
LFVD (Fig.  3c) generally correspond to the petiole por-
tions just in between opposite leaflets. 

The classification results obtained by LFPC-u are 
smooth (Fig.  2a) and the stem structure is mostly con-
nected (Fig. 3a) due to the regularization imposed by the 
MRF formulation. However, smoothing labels of adja-
cent points in regions of low curvature leads to an entire 
leaf or a portion of it to be classified as stem if there is 
a smooth transition of normals at the boundary as seen 
in Fig.  4a. This propagation of labels through bounda-
ries with low curvature causes a relatively low stem pre-
cision rate (Table  4). Likewise, smooth petiole and leaf 
boundaries lead to the classification of petiole points as 

leaves affecting the stem recall rate negatively. Although 
this method is unsupervised in the sense that it does not 
involve a classifier that learns feature transformations 
through labeled training data, the weights of the data and 
smoothness terms in Eq. 1 should be optimized for differ-
ent plant species.

The performance of LFPC-s is slightly higher than that 
of LFPC-u in terms of the IoU metric (Table  4). Notice 
that we did not incorporate the MRF formulation for the 
baseline method LFPC-s, although it is completely appli-
cable through setting the data term using SVM scores. 
Since no smoothness constraint is imposed on the labels, 
we can observe isolated noisy predictions along the stem 
and on the leaves (Fig. 2b). The predicted stem structure 

Fig. 2  Leaf and stem labels predicted by the baseline methods for a sample test rosebush. The rendering is in volumetric form for LFVD and 3D 
U-Net and in point cloud for LFPC-u and LFPC-s. The methods LFPC-u (a) and LFVD (c) produced smooth results, while the labels predicted by 
LFPC-s (b) are slightly noisy. 3D U-Net (d) wrongly classifies leaf borders as stems
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has unconnected small regions due to some leaf points 
classified as stems (Fig.  4b). Most of these errors occur 
at the midribs which are usually the thickest parts of the 
leaves.

3D U-net gives the lowest performance as compared 
to the other methods. Boundaries and thick portions of 
leaves are classified as stems as can be observed from 
Fig. 4d. We give in Fig. 5 the evolution of the training and 

validation loss. The dice coefficient function is used as the 
loss function in 3D U-Net algorithm, which shows a value 
in a range of 0 to 1. In this case, a negative is multiplied 
to values for optimization purposes. The curves in this 
figure show that the model can converge fast after about 
50 epochs with the minimum overfitting between train-
ing and validation. However, the CNN network did not 
model the variations of leaves since we used sub-volumes 

Fig. 3  Stem labels predicted by the baseline methods for a sample test rosebush. The rendering is in volumetric form for LFVD and 3D U-Net and 
in point cloud for LFPC-u and LFPC-s. With the methods LFPC-u (a) and LFVD (c) the predicted stem structure is mostly connected, while LFVD (c) 
misses some petiole portions. The noisy predictions produced by the method LFPC-s (b) are more visible here. 3D U-Net (d) classifies large portions 
of leaves as stems
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from a single rosebush model for training to have a fair 
comparison with other baseline supervised methods. The 
3D U-net has far more parameters to learn than the other 

methods; therefore, more training data is required for it 
to be properly trained. Besides, we directly applied the 
original 3D U-net architecture [47], which was designed 
for bio-medical data, without modification. In order to 
improve the results with deep learning, one can either 
increase the training data by using more than one rose-
bush model, employ data augmentation strategies, alter 
the 3D U-Net architecture or propose a new architecture 
suitable for 3D segmentation of plants. However, detailed 
analysis of the modifications on these lines is beyond the 
main objective of this work. We leave the design of 3D 
CNN architectures specific to plant organ segmentation 
as an open research problem, to the solution of which our 
entire labeled data set can contribute.

The methods LFPC-u, LFPC-s, and LFVD were run on 
a computer with an Intel processor of 3.5 GHz and 128 
GB RAM. LFPC-u and LFPC-s were coded with MAT-
LAB, while LFVD was implemented with Python. The 
average processing time for segmentation of a single 
model with LFPC-u is 4.2 min. The training time of the 
SVM classifier for LFPC-s is 5.1 min on average. The seg-
mentation time for a test model with LFPC-s is 1.6 min. 

Fig. 4  Examples to erroneous predictions of the baseline methods highlighted with red ellipses. The LFPC-u method (a) can classify an entire leaf 
or a portion of a leaf, especially at leaf borders with low curvature. With the LFPC-s method (b) we can observe isolated noisy predictions along 
the stem and on the leaves. Most of the errors occur at the midribs. The LFVD method (c) misclassifies the stem points on the petioles, which are in 
between close leaflets. The 3D U-Net (d) classifies boundaries and thick portions of leaves as stems

Fig. 5  Evolution of loss for training and validation data with training 
epochs for 3D U-Net
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The training time of the Random Forest classifier for 
LFVD is 13.4 min, and the testing time is 3.3 min. The 
3D U-Net was trained using Python on a computer with 
an Intel processor of 2.2GHz and 8 GPUs of 64 GB. The 
training time is 3 h, while segmentation time for a new 
test model is 4.3 min on average.

Discussion
The ROSE-X data set includes high resolution 3D mod-
els of real rosebush plants, each of which was annotated 
at the voxel level with the corresponding botanical organ 
class. In this article, we focused on the step of segmen-
tation of leaves and stems of automatic phenotyping 
pipelines. We provided a benchmark for proper com-
parison of current and future approaches for leaf/stem 
segmentation.

In this article, the focus has been on leaf segmentation 
from the stem. This is the first essential step in analyzing 
the shape and the architecture of the plant. Other ques-
tions can be addressed with the ROSE-X data set includ-
ing issues raised by breeders, producers or consumers 
such as the study of interactions between genotype and 
environment on the one hand and phenotype and visual 
perception on the other. Such issues require the analysis 
of the growth and morphogenesis of the plant through 
effective phenotyping. With this objective in mind, it is 
possible to consider petiole segmentation, the distinc-
tion between leaflet and leaves, the detection of meristem 
along the stem, the analysis of the different part of the 
flower and the stage of development.

Also, the extraction and encoding of the architectural 
structure of the plant in the form of an organized collec-
tion of the main stem, second and higher order branches, 
and the branching locations is an important phenotyping 
task. Another task would be to extract geometrical char-
acteristics of the individual architectural components 
and their spatial relationships, such as the length and 
width of the branch segments, petioles and their branch-
ing angles, leaf length, width, and area, together with the 
leaf inclination angles. These advanced botanical traits 
would be accessible with the spatial resolution of the 3D 
images of the proposed data set ROSE-X.

In order to evaluate the accuracy of phenotyping meth-
ods that aim to extract such more advanced botanical 
traits, we will release a forthcoming extension of the data 
set, with extended ground truth data in the form of geo-
metrical properties of individual organs such as leaves, 
leaflets, petioles, stem segments, branching locations, 
and the spatial relationship between them.

We present the rosebush models in volumetric form, 
however, our main concern is to provide labeled data of 
plants with complex architecture for phenotyping meth-
ods that use the visible surface points of the plants as 

input. The conversion of the volumetric form to a point 
cloud via sampling or via ray casting from an arbitrary 
viewpoint is straightforward. As part of the future work, 
we will generate partial point clouds from the models 
as seen from around the plant, and apply phenotyping 
methods that rely on partial data.

Another important issue is the applicability of leaf/
stem classification methods trained with the rosebush 
data set to other plant species. Future work will involve 
the expansion of the data set with 3D models of different 
species, and the adaptation of the classifiers learned from 
one species to others.

Conclusion
This paper introduces a data set composed of 11 com-
plete 3D models acquired through X-ray scanning of real 
rosebush plants. The models are stored in a voxel grid 
structure. We also provide the ground truth data, where 
each voxel stores the corresponding organ class label. 
The plant models are free from self-occlusion, however 
they posses complex architectural structure. As a sam-
ple application where the data set can be of use, we chose 
leaf-stem segmentation and compared the classification 
performances of four baseline methods. We observed 
that the volumetric approach (LFVD), where a random 
forest classifier is trained with local features, yielded 
the best performance. However, other baseline methods 
tested in this work are also open to further improvement, 
and there are yet the state-of-the-art techniques (Table 3) 
to be evaluated on our dataset. The data set is suitable to 
be annotated with more advanced traits and can be used 
as a benchmark for evaluation of automatic phenotyping 
methods that go beyond classifying plant points as leaves 
and stems.
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Abstract: In this article, we assess the interest of the recently introduced multiscale scattering
transform for texture classification applied for the first time in plant science. Scattering transform is
shown to outperform monoscale approaches (gray-level co-occurrence matrix, local binary patterns)
but also multiscale approaches (wavelet decomposition) which do not include combinatory steps.
The regime in which scatter transform also outperforms a standard CNN architecture in terms
of data-set size is evaluated (104 instances). An approach on how to optimally design the scatter
transform based on energy contrast is provided. This is illustrated on the hard and open problem of
weed detection in culture crops of high density from the top view in intensity images. An annotated
synthetic data-set available under the form of a data challenge and a simulator are proposed for
reproducible science. Scatter transform only trained on synthetic data shows an accuracy of 85%
when tested on real data.

Keywords: weed detection; scatter transform; deep learning; machine-learning classification;
annotation; synthetic data; local binary pattern

1. Introduction

Deep learning is currently tested world-wide in almost all application domains of computer
vision as an alternative to purely handcrafted image analysis [1]. When inspecting the convolutional
coefficients in the first layers of deep neural networks, these are very similar to Gabor wavelets.
While promoting a universal framework, deep neural networks seem to systematically converge
toward tools that humans have been studying for decades. This empirical fact is used by computer
scientists in the so-called transfer learning where the first layers of an already trained network are
re-used [2]. This has also triggered interest by mathematicians to revisit the use of wavelets to produce
universal machine-learning architectures. This interdisciplinary cross-talk resulted in the proposal of
the so-called scatter transform [3], which is roughly a cascade of wavelet decomposition followed by
non-linear and pooling operators. If this deep architecture bares some similarity with the standard
deep learning, it does not include the time-consuming feed-forward propagation algorithm. However,
it proved its comparable efficiency to deep learning while offering a very rational way of choosing the
parameters of the network compared to the rather empirical current art of tuning neural networks.

Despite its intrinsic interest to address multiple scales problems compared to deep learning, scatter
transform since its introduction in 2013 has been applied only on a relatively small variety of pattern
recognition computer vision problems notably including iris recognition [4], rainfall classification in
radar images [5], cell-scale characterization [6,7], or face recognition, [8]. Also, in these applications
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scatter transform has shown its efficiency, but it was not systematically compared with other techniques
in a comprehensible way. We propose to extend the scope of investigation of the applicability of scatter
transform algorithm to plant science with a problem of weed detection in a background of culture
crops of high density. This plant science problem is important for field robotics where the mechanical
extraction of weed is a current challenge to be addressed to avoid the use of phytochemical products.
From a methodological point of view, this classification problem here will also serve as a use case
to assess the potential of the scatter transform when compared with other single scale and multiple
scales techniques.

A large variety of platforms, sensors, and data process already exist to monitor weeds at various
temporal and spatial scales. From remote sensing supported by satellites to cameras located on
unmanned aerial vehicles (UAVs) or on ground-based platforms, many systems have been described
and compared for the weed monitoring in arable culture crops [9–11]. Related to the observation scale
of our use case, by focusing on the imaging scales of UAVs and ground-based platforms, some studies
exploiting RGB data have addressed crop weed classification with a large variety of machine-learning
approaches. The problem of segmentation of crop fields from typical weeds, performing vegetation
detection, plant-tailored feature extraction, and classification to estimate the distribution of crops
and weeds has recently been solved with convolutional neural networks in the field [12,13] and
in real-time [14]. Earlier, Aitkenhead, M. et al. [15] evaluated weed detection in fields of crop
seedlings using simple morphological shape characteristic extraction and self-organizing neural
network. Bayesian classifier was used in [16] for plant and weed discrimination. Shape, texture
features [12,17–19] or wavelet transform [20,21] coupled with various classifiers including support
vector machine (SVM), relevance vector machine (RVM), fuzzy classifier, or random forests were also
shown to provide successful pipelines to discriminate between plant and weeds.

The above list of reference is of course not exhaustive and new pipelines will continue to appear
because of the large variety of crops shape and imaging platform. In this context, scatter transform
constitutes a candidate of possible interest worth to be assessed on a plant–weed classification problem.
Also, by comparison with the existing work on weed detection, the computer vision community has
focused on the relatively low density of crops and weed where the soil constitutes a background to be
classified in addition to crop and weed. In this paper, we consider the case of culture crops of high
density, i.e., where the soil is not visible from the top view. In this case, the culture is the background
and the object to be detected are weeds of wild type. The contrast in color between the background
and the weed, in this case, is obviously here very low by comparison with lower density culture.

2. Material and Methods

We start by introducing the computer vision problem considered, the data-set, the expected
scales included in these images and the algorithms tested for comparison with the multiscale scatter
transform algorithm.

2.1. Images and Challenges

We consider the situation of a culture crops of a high density of plants (mache salad) with the
undesired presence of some weeds. Images were acquired with the imaging system fixed on a robot
as displayed in Figure 1. Acquisition trials, as visible in Figure 1, were done under plastic tunnels
without additional light. Some sample images are given in Figure 2. Examples of weed detected in
such images are shown in Figure 3 to illustrate the variability of shapes among these wild types of
weeds. The computer vision task considered in this article consists in detecting the weeds from the top
view as shown in the ten real-world images of Figure 2. This is challenging indeed since the intensity
or color contrast between weed and crop is very weak. Also, due to the lighting conditions during
acquisition, the global intensity may vary from one image to another. The contrast between weeds and
plants rather stands in terms of texture since the shape of the plant considered is rather round while
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the weeds included in the data-set Figure 3 are much more indented. Therefore, this computer vision
problem is well adapted to test scatter transform which is a texture-based technique.

Camera

High density crop

Figure 1. Global view of the imaging system fixed on a robot moving above mache salads of high density.
RGB images are captured by a JAI manufactured camera of 20 M pixels with a spatial resolution of
5120 × 3840 pixels, mounted with a 35 mm objective. The typical distance of plants to camera is of 1 m.

Figure 2. Set of 10 RGB images from top view for the detection of weed out of plant used as testing
data-set in this study.
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Figure 3. Illustration of different types of weeds used for the experiment.

A ground truth of the position of the weed in the ten images of Figure 2 was produced under the
form of finely segmented weed and bounding box patches including these weeds. The total number
of weeds being relatively low (21), we decided to generate a larger data-set with synthetic images.
To simulate images similar to the real images acquired, we created a simulator which places weeds
(among the 21 found in real images) from the annotated weed data-set in images of plants originally
free from any weed along the pipeline shown in Figure 4.

Figure 4. Simulation pipeline for the creation of images of plant with weed of Figure 3 similar to the
one presented in Figure 2.

2.2. Scales

With a spatial resolution of 5120 by 3840 pixels included in the images of our data-set, and as
illustrated in Figure 5, multiple anatomical structures of the dense weed/plant culture are accessible
in our images. From tiny to coarse sizes, i.e., scales, this includes texture in the limb, the veins, and the
leaf. There are possibly discriminant features between the two classes (weed/plant) to be found in
these three scales either taken individually or combined with each other. To offer the possibility of a
multiple scale analysis, together with a reasonably small computation time, classification is done at the
scale of patches chosen as double size of the typical size of leaves, 2×max{Sw, Sp}, with rectangles
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of 250 by 325 pixels where Sw = 163 pixels and Sw = 157 on average. With this constraint, we also
keep for the patch the same ratio between height and width as in the original image for a periodic
patch grid.

Figure 5. Anatomical scales where (Wi,Pi) presents the scales of weeds and plants respectively; (W1, P1)

points toward the texture of the limb, (W2, P2) indicates the typical size of leaflet and (W3, P3) stands
for the width of the veins. Sw and Sp show the size of a leaf of weed and plant, respectively. The
classification of weed and plant is done at the scale of a patch taken as 2×max(Sp, Sw) in agreement
with a Shannon-like criteria.

2.3. Data-Set

With the simulator of Figure 4, we produced a total amount of 3292 patches containing weed
and 3292 patches only with plants. The binary classification (weed/plant) is realized on these
patches. This balanced data-set serves both for the training and the testing stages to assess the
performance of different machine-learning tools. The data sets together with the simulator are
proposed as supplementary material under the form of a free executable and a set of images
(https://uabox.univ-angers.fr/index.php/s/iuj0knyzOUgsUV9).

2.4. Classifiers

In this section, we describe how we apply the scatter transform [3] on the weed detection
problem introduced in the previous section. For comparison, we then propose a set of alternative
techniques. This paper uses independent k-fold cross-validation to measure the performance of the
scatter transform coupled to the classifier depicted in Figure 6 and compare other feature extractors
coupled to the same classifier. The performances of these classifiers are measured by the metric of the
accuracy of correct classification by

accuracy =
TP + TN

TP + TN + FN + FP
(1)

where TP indicates that the prediction is positive, and the actual value is positive. FP indicates that
the prediction value is positive, but the actual value is negative. TN indicates that the prediction value
is negative, and the actual value is negative. FN indicates that the prediction value is negative, but the
actual value is positive.
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2.4.1. Scatter Transform

A scattering transform defines a signal representation which is invariant to translations and
potentially to other groups of transformations such as rotations or scaling. It is also stable to
deformations and is thus well adapted to image and audio signal classification. A scattering transform
is implemented with a convolutional network architecture, iterating over wavelet decompositions
and complex modulus. Figure 6 shows a schematic view of a scatter transform network working as a
feature extractor and coupled to a classifier after dimension reduction.
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Figure 6. Schematic layout of the weed/plant classifier based on the scattering transform with three
layers. The feature vector transmitted to the principal component analysis (PCA) step consists in the
scatter vector Zm f of the last layer of Equation (2) after transposition.

The scatter vectors Zm at the output of the first three layers m = 1, 2, 3 for an input image f are
defined by

Z1 f = {| f | ? φ}
Z2 f =

{
. . . ,

∣∣ f ? ψj,θ
∣∣ ? φ, . . .

}

Z3 f =
{

. . . ,
∣∣∣
∣∣ f ? ψj,θ

∣∣ψk,ϕ

∣∣∣ ? φ, . . .
}

,
(2)

where the symbol ? denotes the spatial convolution, |.| stands for the L1 norm, φ is an averaging
operator, ψj,θ is a wavelet dilated by 2j and rotated by θ. The range of scales j = {0, 1, . . . , J} and
the number of orientations θ = {0, π/L, . . . , π(L− 1)/L} are fixed by integers J and L. The number
of layers is between m = 1 to m = M. In our case, we considered as mother wavelet the Gabor
filter with implementation provided under MATLAB in (https://www.di.ens.fr/data/scattering/) for
scatter transform.

Scatter transform differs from a pure wavelet decomposition because of the non-linear modulus
operator. With this nonlinearity, decomposition of the image is not done on a pure orthogonal basis
(whether wavelet basis is orthogonal or not) and this opens the way of a possible benefit in the
concatenation of several layers with a combination of wavelet decompositions at different scales.
Interestingly, these specific properties of the scatter transform match the intrinsic multiscale textural
nature of our weed detection problem which therefore constitutes an appropriate use case to assess
the potential of the scatter transform in practice. A visualization of output images for various filter
scale j at m = 2 for a given orientation is shown in Figure 7. It clearly appears in Figure 7 that the
various scales (texture of the limb and veins at j = 3, border shape at j = 4 and global leaf shape at j = 8)
presented in Section 2.2 can be captured with the different scaling factor applied on the wavelet. In our
study, we empirically picked L = 8 orientations and investigated up to J = 8 scales since there are
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no other anatomical items larger than the leaf itself. The number of layers tested was up to M = 4 as
proposed in [3] since the energy after some layers although none zero is logically vanishing.
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In the application of scatter transform to classification found in the literature so far, the
optimization of the architecture was done a posteriori after supervised learning. This is rather
time-consuming. We investigated the possibility to select a priori the best architecture by analyzing
the distribution of relative energy Em at the output of each layer as given by

Em = ||Zm f | |2/ || f | |2 . (3)

We computed these energies for the whole data set as given in Table 1. As noticed in [3], the relative
energy is progressively vanishing when the number of layers increases. This observation advocates for
the use of a limited number of layers. However, these energies are computed on the whole population
of patches including both plants and weeds and therefore it tells nothing about where to find the
discriminant energy between each class throughout the feature space produced by the scatter transform.
Tables 2 and 3 show the average relative energy for the weeds’ patches data-set, Ewm , and plants’
patches data-set,Epm , for different layers m and various maximum scale J.
In order to show this discriminant energy between each class, various criterion could be proposed. We
tested the percentage of energy similarity, Qm, between the two classes defined by

Qm =
argmin(Ewm , Epm)

argmax(Ewm , Epm)
× 100. (4)

Figure 7. Output images for each class (weed on left and plant on right) and for each layer m of the
scatter transform.

In the application of scatter transform to classification found in the literature so far, the
optimization of the architecture was done a posteriori after supervised learning. This is rather
time-consuming. We investigated the possibility to select a priori the best architecture by analyzing
the distribution of relative energy Em at the output of each layer as given by

Em = ||Zm f | |2/ || f | |2 . (3)

We computed these energies for the whole data-set as given in Table 1. As noticed in [3], the
relative energy is progressively vanishing when the number of layers increases. This observation
advocates for the use of a limited number of layers. However, these energies are computed on the
whole population of patches including both plants and weeds and therefore it tells nothing about
where to find the discriminant energy between each class throughout the feature space produced by
the scatter transform. Tables 2 and 3 show the average relative energy for the weeds’ patches data-set,
Ewm , and plants’ patches data-set, Epm , for different layers m and various maximum scale J.

To show this discriminant energy between each class, various criterion could be proposed. We
tested the percentage of energy similarity, Qm, between the two classes defined by

Qm =
argmin(Ewm , Epm)

argmax(Ewm , Epm)
× 100. (4)

According to this criterion, the best architecture of the scatter transform can be chosen at the point
of η where the minimum Qm between each class is found as a function of J by η = argminJ(Qm(J)).
The energy similarity Qm(J) are represented in Figure 8 and this clearly demonstrates that the contrast
between classes is more pronounced on coefficient with small relative energy. This observation, not
stressed in the original work of [3], indicates that it should be possible to draw benefit from the
contribution of these small discriminative coefficients and thus this demonstrates the interest of the
combinatory step of the scatter transform.
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Table 1. Average percentage of energy of scattering coefficients Em on frequency-decreasing paths of
length m (scatter layers), with L = 8 orientations and various filter scale range, J, for the whole database
of plants and weeds patches.

m = 0 m = 1 m = 2 m = 3 m = 4

J = 1 96.18 2.35 - - -
J = 2 91.81 4.61 0.28 - -
J = 3 85.81 8.46 0.89 0.03 -
J = 4 85.81 13.15 1.97 0.17 0.006
J = 5 81.46 15.36 3 0.36 0.024
J = 6 79.04 16.81 3.44 0.53 0.048
J = 7 80.74 17.05 3.49 0.63 0.071

Table 2. Average percentage of energy of scattering coefficients Em on frequency-decreasing paths of
length m (scatter layers), depending upon the maximum scale J and L = 8 filter orientations for the
weed class patches.

m = 0 m = 1 m = 2 m = 3 m = 4

J = 1 99.90 0.0985 - - -
J = 2 99.71 0.2798 0.0098 - -
J = 3 99.07 0.8832 0.0443 0.0016 -
J = 4 97.55 2.2669 0.1663 0.0080 0.0003
J = 5 95.10 4.3892 0.4667 0.0343 0.0020
J = 6 92.07 6.8696 0.9522 0.0983 0.0076
J = 7 89.26 9.0102 1.5049 0.1979 0.0196

Table 3. Average percentage of energy of scattering coefficients on frequency-decreasing paths of
length m (scatter layers), depending upon the maximum scale J and L = 8 filter orientations for the
plant class patches.

m = 0 m = 1 m = 2 m = 3 m = 4

J = 1 99.92 0.0711 - - -
J = 2 99.76 0.2339 0.0040 - -
J = 3 99.17 0.7984 0.0281 0.0003 -
J = 4 97.75 2.0899 0.1380 0.0041 0.00003
J = 5 95.41 4.1411 0.4215 0.0254 0.0006
J = 6 92.34 6.6553 0.9078 0.0892 0.005
J = 7 89.37 8.9341 1.4817 0.1944 0.0171

Figure 8. Energy similarity, Qm(J), between energy of weeds and plants data sets based on Tables 2 and 3.
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Also, from the observation of Figure 8, our approach indicates that a priori the best discriminant
energy between each class is to be expected with a scatter architecture corresponding to M = 4 and
J = 4 which provides the minimum energy similarity, η, between the energy of images of the weeds’
class and the plants’ class.

2.4.2. Other Methods

To assess the possible interest of the scatter transform in our weed detection problem, we consider
several alternative feature extractor algorithms. First, since the scatter transform by construction works
on a feature space which includes multiple scales, it is expected to perform better than any state of
the art monoscale method, i.e., working on a feature space tuned on a single size, when applied on a
multiple scales problem (such as the one we have here with veins, limb, leaf). Second, since the scatter
transform works on a combination of wavelet decomposition between scales it should perform slightly
better than a pure wavelet decomposition chosen on the same wavelet basis but without the use of
the non-linear operator nor the scales combination. Finally, because scatter transform shares some
similarities with convolutional neural networks it should also be compared with the performance
obtained with a deep learning algorithm. Based on this rationale, we propose the following alternative
feature extractor for comparison with the feature extractor of the scatter transform where the same
PCA followed by a linear SVM is used for the classification.

Local binary pattern: Under the original form of [22] and as used in this article, for a pixel
positioned at (x, y), local binary pattern (LBP) indicates a sequential set of the binary comparison of its
value with the eight neighbors. In other words, the LBP value assigned to each neighbor is either 0
or 1, if its value is smaller or greater than the pixel placed at the center of the mask, respectively. The
decimal form of the resulting 8-bit word representing the LBP code can be expressed as follows

LBP (x, y) =
7

∑
n=0

2ns
(
in − ix,y

)
(5)

where ix,y corresponds to the gray value of the center pixel, and in denotes that of the nth neighboring
one. Besides, the function ξ(x) is defined as follows

ξ (x) =

{
1 x ≥ 0
0 x < 0 .

(6)

The LBP operator remains unaffected by any monotonic gray scale transformation which preserves
the pixel intensity order in a local neighborhood. It is worth noticing that all the bits of the LBP code
hold the same significance level, where two successive bits value may have different implications.
The process of Equation (5) is produced at the scale of the patch defined in the previous section. The
LBP(x, y) of each pixel inside this patch are concatenated to create a fingerprint of the local texture
around the pixel at the center of the patch. Equations (5) and (6) are applied on all patches of an image.

Gray-Level Co-Occurrence Matrix: A statistical approach that can well describe second-order
statistics of a texture image is provided by the so-called gray-level co-occurrence matrix (GLCM).
GLCM was firstly introduced by Haralick et al. [23]. A GLCM is essentially a two-dimensional
histogram in which the (i, j)th element is the frequency of event i co-occurring with event j.
A co-occurrence matrix is specified by the relative frequencies C(i, j, d, θ) in which two pixels, separated
by a distance d, occurs in a direction specified by the angle θ, one with gray-level i and the other with
gray-level j. A co-occurrence matrix is therefore a function of distance d, angle θ and grayscales i and j.

In our study, as perceptible in images of Figure 2, the weed-plant structures are isotropic meaning
that they show no specific predominant orientations. As a logical consequence, and as already stated
in similar weed classification problem using GLCM [24–26], choosing multiple orientations θ would
not improve the classification performance. We therefore arbitrarily chose a fixed θ = 0 which enables
to probe on average leaves positioned in all directions. For distance, d, it is taken at d = 2 pixels
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which correspond to a displacement capable of probing the presence of edges, veins, and structures in
the limb.

Gabor filter: Same Gabor filters as in the scatter transform were applied to the images to produce a
feature space. By contrast with the scatter transform, no non-linearities are included in this process and
only one layer of filters is applied. For a fair comparison in this experiment, scale range J and number
of orientations L of the Gabor filter bank are chosen at the same value as in the scatter transform.

Deep learning: Representation learning, or deep learning, aims at jointly learning feature
representations with the required prediction models. We chose the predominant approach in
computer vision, namely deep convolutional neural networks [27]. The baseline approach resorts
to standard supervised training of the prediction model (the neural network) on the target training
data. No additional data sources are used. In particular, given a training set comprised of K pairs of
images fi and labels ŷi, we train the parameters θ of the network r using stochastic gradient descent to
minimize empirical risk:

θ∗ = arg min
θ

K

∑
i=1
L(ŷi, r( fi, θ)) (7)

L denotes the loss function, which is cross-entropy in our case. The minimization is carried out using
the ADAM optimizer [28] with a learning rate of 0.001.

The architecture of network r(·, ·), shown in Figure 9, has been optimized on a hold-out set and is
given as follows: five convolutional layers with filters of size 3 × 3 and respective numbers of filters
64, 64, 128, 128, 256 each followed by ReLU activations and 2 × 2 max pooling; a fully connected layer
with 1024 units, ReLU activation and dropout (0.5) and a fully connected output layer for 2 classes
(weeds, plants) and SoftMax activation. Given the current huge interest on deep learning many other
architectures could be tested and possibly provide better results. As a disclaimer, we stress that the
architecture proposed in Figure 9 is of course not expected to provide the best performance achievable
with any neural network architecture. Here the tested CNN serves as a simple reference with a level of
complexity of the architecture adapted to the size of the input image and training data sets.

Figure 9. Architecture of the deep network optimized for the task on classification.

3. Result

In this section, we provide experimental results using the experimental protocol for the assessment
of scatter transform (Section 2.4) as well as the different alternative feature extraction techniques chosen
for comparison in Section 2.4.2.
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The scatter transform produces a data vector containing the Zm f of Equation (2) whose dimension
is reduced by a standard PCA and then applied to a linear kernel SVM. To compare the performance
of different structures of scatter transform on the database, we used a different combination of filter
scales, j, and the number of layers, m, to realize which structure is the best fit for our data. Table 4
shows the classification accuracy of these structures where 10-fold cross-validation approach is used
for classification. The best weed/plant classification results with scatter transform are obtained for
J = 4 and m = 4. This a posteriori exactly corresponds to the prediction done a priori from the
energy-based approach presented in the method section.

Table 4. Percentage of correct classification for 10-fold cross-validation classification on simulation
data with scatter transform for various values of m and J.

J = 1 J = 2 J = 3 J = 4 J = 5 J = 6 J = 7 J = 8

m = 1 70.37% 77.89% 82.74% 86.17% 88.96% 91.94% 94.14% 95.05%
m = 2 —- 91.95% 95.26% 95.54% 95.86% 95.82% 95.73% 95.55%
m = 3 —- —- 95.41% 95.44% 95.21% 95.07% 95.03% 96.00%
m = 4 —- —- —- 96.31% 96.02% 96.05% 96.16% 96.11%

We considered this optimal scatter transform structure with J = 4 and m = 4 and compared it
with all alternative methods described in Section 2.4. Table 5 shows the recognition rates of weed
detection on the data where a k-fold cross-validation approach of SVM classification with the different
number of folds is used. Scatter transform appears to outperform all compared handcrafted methods.
This demonstrates the interest of the multiscale and combinatory feature space produced by scatter
transform. It is important to notice that to have a fair comparison of these alternative methods,
we adapted the feature spaces of all algorithms to the same size. The minimum size of the whole
feature space is selected, and feature space of other algorithms are reduced to that specific size. In our
techniques, the minimum feature space belongs to the GLCM method which has a size of N × 19
where N represents the number of samples. The PCA algorithm is adapted to our models to reduce
the dimensions of the feature space generated by other techniques to the size of N × 19.

As shown in Table 5 and Figure 10, when compared with CNN, like most handcrafted methods,
scatter transform performs better for small data sets. The limit where CNN and scatter transform are
found to perform equally is found to be 104 on the weed detection problem as given in Figure 10. This
demonstrates the interest of the scatter transform in case of rather small data sets. It is, however, to be
noticed that an intrinsic limitation of scatter transform is that it works only with patches to perform
a classification while some architectures of convolutional neural network would also be capable of
performing segmentation directly in the whole image (see for instance U-Net) [29].

Table 5. Percentage of correct classification by using k-fold Cross-validation on simulated data.

5 Folds 6 Folds 7 Folds 8 Folds 9 Folds 10 Folds Average std

Scatter Transform (0.6584× 104 samples) 94.9% 95.2% 95.3% 95.7% 95.8% 95.8% ±1.1
LBP (0.6584× 104 samples) 85.5% 86.1% 86.3% 85.8% 86.9% 86.7% ±0.4
GLCM (0.6584× 104 samples) 87.4% 91.6% 90.9% 92.1% 92.4% 92.3% ±0.7
Gabor Filter (0.6584× 104 samples) 88.0% 88.2% 88.7% 88.6% 89.4% 89.3% ±1.3
Deep Learning (0.6584× 104 samples) 89.4% 89.9% 91.1% 91.5% 91.9% 92.1% ±1.4
Deep Learning (2.8× 104 samples) 97.6 % 97.9 % 97.9 % 98.2% 98.1% 98.3% ±0.9
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Figure 10. Comparison of the recognition accuracy between scatter transform and deep learning when
the number of samples increases.

4. Discussion

So far, we focused in this article on detection of weeds in fields by the scatter transform algorithm
with a comparison of other machine-learning techniques which have been trained and tested on
synthetic images produced by the simulator of Figure 4. Our experimental results show that a good
recognition rate of weeds detection (approximately 95%) can be achievable by the scatter transform
algorithm. On the other hand, other alternative methods also work well for this problem with a
minimum recognition rate around 85%. These experiments prove that texture-based algorithms can be
useful for weed detection in culture crops of high density.

One may wonder how these classification results compare toward the literature on weed detection
in less dense culture cited in the introduction section [12–21]. The performance in this literature varies
from 75% to 99% of good detection of weed. It is, however, difficult to provide a fair comparison since
in addition to the main difference with the absence of soil, the observation scales together with the
acquisition conditions vary from one study to another.

One may wonder how these algorithms trained on synthetic data behave when they are applied
to real images including plant background and weed not included in the synthetic data sets. We also
tested our scatter transform classifier which was trained on synthetic data when applied on the real
images of Figure 2. On average for all 10 real images, the accuracy found is 85.64%. Although this
constitutes already interesting results, this indicates a bias between simulated data and real data. One
direction could be to improve the realism of the simulator. In the version proposed here weeds were
not necessarily acquired in the same lighting conditions as the plant. A simple upgrade could be to
adapt the average intensity on the weed and the plant to compensate for this artifact or, since in plant
and weed can indeed be of various intensity, to generate data augmentation with various contrast.
However, simulators never exactly reproduce reality. Another approach to improve the performance
of the training based on simulated data would be to add a step of domain adaptation after the scatter
transform [30]. So far, the best and worst results obtained with scatter transform are given in Figure 11.
A possible interpretation for the rather low performance in Figure 11b is the following. The density of
weed in Figure 11b is very high compared to the other images in the training data-set. Consequently,
the local texture in the patch may be very different from the one obtained when weeds appear as
outliers. This demonstrates that the proposed algorithm, trained on synthetic data, is appropriate in
the low density of weeds at an observation scale such as the one chosen for the patch where plant
serves as a systematic background.

These performances could be improved in several ways. First, a large variety of weeds can be
found in nature and it would be important to include more of this variability in the training data
sets. Also, weeds are fast growing plants capable of winning the competition for light. Therefore,
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high percentages of weed are expected to come with higher weeds than in very low percentage of the
surface of weeds. This fact illustrated in Figure 11 is not included in the simulator where weeds of a
fixed size are randomly picked. Such example of enrichment of the training data-set and simulator
could be tested easily following the global methodology presented in this article to assess the scatter
transform. Finally, we did not pay much effort on denoising the data. The proposed data have been
acquired with a camera fixed on an unmanned vehicle. Compensation for variation of illumination in
the data-set, or inside the images, themselves or compensation for the possible optical aberration of the
camera used could also constitute directions of investigation to improve the weed/plant detection. All
the methods presented in this paper (including scatter transform) have the capability to be robust to
global variation of light intensity however the variation of light direction during the day may impact
the captured textures. Increasing the data-set to acquire images at all hour of a working day or adding
a lighting cabinet on the robot used would make the results even more robust [14,31–33].

The problem of weed detection in culture crops of high density is an open problem in agriculture
which we believe deserves the organization of a challenge similar to the one organized on Arabidopsis
in controlled conditions [34] for a biology community. Such challenges contribute to improving
the state of the art as recently illustrated with the use of simulated Arabidopsis data to boost and
speed up the training [35] in machine learning. This challenge is now open on the codalab platform
(https://competitions.codalab.org/competitions/20075) together with the effort of proposing real
data and the simulator (https://uabox.univ-angers.fr/index.php/s/iuj0knyzOUgsUV9) developed
for this article. These additional materials, therefore, contributes to the opening of the problem of
weed detection in culture crops of high density to a wider computer vision community.

(a) Image 2 (97.27%) (b) Image 9 (69.45%)
Figure 11. Visual comparison of the best and the worst recognition of weeds and plants by
scatter transform.

5. Conclusions and Perspectives

In this article, we proposed the first application of the scatter transform algorithm to plant sciences
with the problem of weed detection in a background of culture crops of high density. This open plant
science problem is important for field robotics where the mechanical extraction of weed is a current
challenge to be addressed to avoid the use of phytochemical products.

We assessed the potential of the scatter transform algorithm in comparison with single scale
and multiscale techniques such as LBP, GLCM, Gabor filter, and convolutional neural network.
Experimental results showed the superiority of the scatter transform algorithm with a weed detection
accuracy of approximately 95% over the other single scale and multiscale techniques on this application.
Though the comparison was not intended to be exhaustive among the huge literature on texture
analysis, the variety of tested techniques contributes to confirm the effectiveness of using the scatter
transform algorithm as a valuable multiscale technique for a problem of weed detection and opened
an interesting approach for similar problems in plant sciences. Finally, an optimization method based
on energy at the output of the scatter transform has been successfully proposed to select a priori the
best scatter transform architecture for a classification problem.
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Concerning the weed-plant detection, our optimal solution with scatter transform can serve as
a first reference of performance and other machine-learning techniques could now be tested in the
framework of the data challenge that we launched for this article (https://competitions.codalab.org/
competitions/20075). As a possible perspective of the investigation, one could further optimize the
scatter transform classifier proposed in this paper. For instance, the size of the grid could be fine-tuned
or some hyperparameters could be added with non-linear kernels in the SVM step. Also, weed/plant
detection was focused here on a binary classification since no distinction between the different weeds
were included. In another direction, one could also envision to extend this work to a multiple types of
weeds classification problem if more data were included.
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a b s t r a c t 

We address the medical image analysis issue of predicting the final lesion in stroke from early perfu- 

sion magnetic resonance imaging. The classical processing approach for the dynamical perfusion images 

consists in a temporal deconvolution to improve the temporal signals associated with each voxel before 

performing prediction. We demonstrate here the value of exploiting directly the raw perfusion data by 

encoding the local environment of each voxel as a spatio-temporal texture, with an observation scale 

larger than the voxel. As a first illustration for this approach, the textures are characterized with local 

binary patterns and the classification is performed using a standard support vector machine (SVM). This 

simple machine learning classification scheme demonstrates results with 95% accuracy on average while 

working only raw perfusion data. We discuss the influence of the observation scale and evaluate the 

interest of using post-processed perfusion data with this approach. 

© 2018 Published by Elsevier B.V. 

1. Introduction 

Cerebrovascular diseases represent a leading cause of disability 

and mortality worldwide ( Towfighi and Saver, 2011; Feigin et al., 

2014; Murray et al., 2015 ). Ischemic stroke ( 85% of all stroke cases) 

results from an acute occlusion of a cerebral artery. Early restora- 

tion of blood flow within the ischemic tissue (reperfusion), using 

intravenous thrombolysis and/or mechanical thrombectomy, is the 

most effective therapy to reduce infarct growth and promote clin- 

ical recovery ( Goyal et al., 2016 ). The clinical benefit of reperfu- 

sion is highly dependent on the extent of the ischemic, but still 

viable, cerebral tissue (i.e. ischemic penumbra) ( Nogueira et al., 

2018; Albers et al., 2018 ). Late revascularization procedures, in pa- 

tients with extensive, irreversible cerebral damage, may have lit- 

tle to no impact on their neurological recovery. Still, the rate of 

infarct growth within the ischemic penumbra is highly heteroge- 

neous across patients, due to varying degree of cortical collateral 

flow, and may spatially vary over time due to regional hemody- 

namic fluctuations. This inter-individual heterogeneity complicates 

∗ Corresponding author. 
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both acute treatment decisions and the evaluation of novel thera- 

peutic strategies. 

Thus, numerous research groups around the world focus on the 

challenging topic of ischemic stroke prediction and classification. 

Their work has allowed for a better understanding of the underly- 

ing mechanisms involved during stroke, but the prediction of the 

evolution of the ischemic lesion is still an open question ( Rekik 

et al., 2012; Wintermark et al., 2013 ). There is a great variability of 

stroke evolution among patients which current prediction models 

pain to describe, suggestive of a complex interaction between mul- 

tiple co-factors. The ISLE challenge ( Maier et al., 2017 ) for example 

is a testimony to the current interest of the research community 

for final stroke lesion prediction. 

In this context, Magnetic Resonance Imaging (MRI) is often used 

for the prediction of stroke lesion, notably perfusion MRI, which is 

generally used to evaluate hemodynamic parameters maps indica- 

tive of the state of perfusion in the cerebral tissues ( Davis et al., 

2003 ). A perfusion MRI is a 4-dimensional spatio-temporal image. 

It is constituted of a time series of 3-dimensional MR images, the 

acquisitions of which are synchronized with the intravascular bo- 

lus injection of a contrast-agent. The temporal signature of the MR 

signal recorded in each voxel will depend on the state of per- 

fusion of the tissue within the voxel and the MR temporal sig- 

nals are therefore used in practice to extract semi-quantitative or 

quantitative hemodynamic parameters. Over the years, numerous 

https://doi.org/10.1016/j.media.2018.08.008 
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post-processing treatments have been proposed to approach per- 

fusion MRI to a quantitative imaging modality ( Willats and Cala- 

mante, 2013a ). The objective of these post-treatments was moti- 

vated by the idea of detecting, via a simple thresholding method, 

the different pathological brain regions. However, there are still 

many difficulties to overcome in order to achieve an accurate and 

robust calculation of perfusion parameters and some researchers 

question the interest of such a quantitative approach in perfusion 

MRI ( Perthen et al., 2002; Meijs et al., 2015 ). In the end, perfu- 

sion MRI has principally been used as an alternative modality to 

the PET imaging modality, a quantitative imaging modality which 

is rarely available in hospital centers. However, is this not miss- 

ing the full potentiality of the perfusion MRI modality? Perfusion 

MRI is indeed a dynamic image modality but it is usually consid- 

ered either as a temporal entity during post-treatment, by consid- 

ering each voxel independently or as a spatial entity, when sum- 

marizing the information it contains by a 3-dimensional image. In 

practice, only a few recent approaches try to exploit the spatio- 

temporal nature of the data. For example, the spatio-temporal na- 

ture of the data was recently taken into account for the resolution 

of the ill-posed inverse problem of deconvolution, necessary for 

the extraction of quantitative hemodynamic parameters ( He et al., 

2010; Schmid, 2011; Frindel et al., 2014 ). Also, perfusion MRI has 

been used to quantify collateral flow ( Kim et al., 2014 ), which plays 

a major role in stroke lesion evolution. Some research team also 

started to revisit the predictive power of the temporal signals of 

the raw MRI perfusion image, whether with simple approaches us- 

ing local similarity descriptors, for example Frindel et al. (2012) or 

with more complex approaches using state of the art machine 

learning methods such as convolutional artificial neural networks 

( Ho et al., 2016 ). 

In this paper, we investigate the potential of new descriptors 

directly extracted from raw perfusion MR images for the classifica- 

tion of tissue fate. Since the human eye is capable of distinguishing 

brain regions exhibiting pathological spatio-temporal behaviors on 

raw perfusion MRI, even without any specific post-processing of 

the data, we propose here to study the predictive potential of raw 

perfusion MRI when considering the local spatio-temporal behav- 

ior of each voxel as a texture. 

Some recent works Huang et al. (2010) , Scalzo et al. (2012) and 

Giacalone et al. (2017) have demonstrated the interest of a “re- 

gional” approach for the question of the prediction of tissue 

fate in stroke over a single voxel approach. This was done in 

Huang et al. (2010) and Scalzo et al. (2012) with a classifier 

or regression model between temporal parameter extracted from 

perfusion weighted images (PWI) and the gray level of the fi- 

nal FLAIR. In Giacalone et al. (2017) the regional approach of 

stroke was demonstrated with predictibility metrics from infor- 

mation theory applied to binarized input-output data from PWI 

and FLAIR images. In these studies the considered images were 

post-processed. 

We propose a new approach which consists in encoding into 

a patch directly the spatio-temporal information contained in the 

regional environment of each voxel without any post-processing. 

We then evaluate the potential of this patch for the voxel-wise 

prediction of tissue fate. To do so, each patch is described us- 

ing texture descriptors which are used to classify the voxel asso- 

ciated with the patch depending on its chances of survival. Fol- 

lowing this texture approach, we propose to use the local binary 

pattern (LBP) as texture descriptors and a support vector machine 

(SVM) classifier for the classification. We will address the impor- 

tance of observation scale optimization and image denoising. We 

will also compare the performance of the proposed approach when 

post-processed perfusion data are used instead of raw perfusion 

data. 

2. Material 

MRI data were extracted from a cohort of patients acquired in 

Hospices Civils de Lyon ( Hermitte et al., 2013 ). We worked on lon- 

gitudinal data from four patients affected by an ischemic stroke 

of the anterior circulation. Those four patients did not receive any 

thrombolytic treatment and did not reperfuse on their own. The 

brain regions exhibiting a pathological hemodynamic behavior in 

the acute stage are therefore highly susceptible to end up dead and 

form the final ischemic lesion. All patients underwent the follow- 

ing MRI protocol on admission: diffusion-weighted-imaging (DWI; 

repetition time 60 0 0 ms, field of view 24 cm, matrix 128 ×128, 

slice thickness 5 mm), Fluid-attenuated-inversion-recovery (FLAIR; 

repetition time, 8690 ms; echo time, 109 ms; inversion time 

2500 ms; flip angle, 150 °; field of view, 21 cm; matrix, 224 ×256; 

24 sections; section thickness, 5 mm), T2-weighted gradient echo 

, MR-angiography and dynamic susceptibility-contrast perfusion 

imaging (DSC-PWI; echo time 40 ms, repetition time 1500 ms, field 

of view 24 cm, matrix 128 ×128, 18 slices, slice thickness 5 mm; 

gadolinium contrast at 0.1 mmol/kg injected with a power injector). 

A follow-up MRI was performed at 1-month, including the same 

sequences minus the DSC-PWI. The MRI sequences used here were 

acquired with a 1.5 Tesla MRI scanner. A motion correction was 

applied on the raw perfusion MRI. We registered, slice by slice, all 

time points on the first time point with a maximum mutual in- 

formation approach. This was done by registering each temporal 

point (n+1) on its previous temporal point (n) and by then ap- 

plying recursively the transformation matrices obtained until all 

time point is aligned with the first time point. The segmentation 

mask of the final lesion was delineated for each patient on the 

one-month follow-up FLAIR-MRI by experts. The FLAIR MRI was 

co-registered on the image computed by averaging the temporal 

points acquired before the contrast-agent bolus arrival. The trans- 

formation matrix obtained was then used to register the segmen- 

tation mask of the final ischemic lesion visible on the one-month 

follow-up FLAIR-MRI. After registration, the final lesion were re- 

binarized by applying a 50% threshold to correct for the eventual 

partial volume effects introduced during registration. 

The study proposed here is a voxel-by-voxel study, and there- 

fore, only a sub-group of voxels were selected from each patient 

in order to obtain a good repartition between infarcted and non- 

infarcted voxels in our study dataset. In accordance with the rec- 

ommendations of Jonsdottir et al. (2009) , the sub-set of voxels was 

selected in such a way as to have 50% of infarcted voxels ver- 

sus 50% of non-infarcted voxels in our dataset, with amongst the 

non-infarcted voxels, 60% situated in the ipsi-lateral hemisphere 

of the brain (where the final lesion is present) and 40% situated 

in the contra-lateral hemisphere (hemisphere not affected by the 

ischemic stroke). More precisely on the location of these train- 

ing voxels, all infarcted voxels were included, the voxel located in 

the contra-lateral were chosen randomly while the voxels in the 

ipsi-lateral were chose in the close vicinity (measure with mor- 

phomathematic distance) of the infarcted voxels. In the end, from 

the four patients considered here, we extracted a total of 22,105 

voxels for our pilot study dataset. A visual abstract of the an- 

notated data set considered for the supervised classification (in- 

farcted versus non infarcted) addressed from perfusion MRI in this 

study is given in Fig. 1 . 

3. Methods 

3.1. Encoding of the local spatio-temporal signature of each voxel 

into a patch 

The new encoding proposed for the perfusion MRI is motivated 

by the fact that the spatio-temporal signature of each voxel is dif- 
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Fig. 1. Annotated data set considered for supervised classification of this study based on raw perfusion MRI. 1 st line: patient 1 (slice z = 12), 2 nd line: patient 2 (slice 

z = 13), 3 rd line: patient 3 (slice z = 10), 4 th line: patient 4 (slice z = 14). 1 st column: FLAIR-MRI, 2 nd column: brain masks, 3 rd column: lesion masks obtained by 

the segmentation of the FLAIR-MRI, 4 th column: voxel subsampling for classification - healthy pixels chosen shown in red (contra hemisphere) and green (ipsi hemisphere), 

and infarcted pixels shown in blue. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

ficult to observe due to the 3D+ time nature of the data structure 

(See Fig. 2 ). 

We propose to translate this spatio-temporal signature, into a 

discriminant texture easily identifiable by the human eye and use- 

ful to automatically characterize the state of the tissues in each 

voxel by simple texture analysis tools from computer vision. In or- 

der to do so, we propose to encode the information contained in 

the Moore neighborhood of order 1 of each voxel. 

To do so, we unfold the temporal signals along a spatial dimen- 

sion and then pile up, one on top of the other, the temporal sig- 

nals of the 8 voxels in the Moore neighborhood of order 1 of each 

voxel of interest, creating thereby for each voxel a patch of size 9 

by N t , where N t is the number of temporal acquisition points in the 

perfusion imaging sequence. This encoding method is illustrated in 

Fig. 3 , with, in our case, N t = 60 . In order to take into account 

information from a larger neighborhood, it would be possible to 

consider larger Moore neighborhood orders. This would however 

decrease the amount of available voxels in the brain due to border 

effect. Instead, as introduced in Giacalone et al. (2017) , we pro- 

pose to add a preliminary image treatment, a time point by time 

point smoothing step with a mean filter of size N p x N p . N p can be 

seen as the observation scale for the neighborhood. A given voxel 

v i and a given observation scale N p are associated with a unique 

patch I N p (v i ) generated from the perfusion image. This prelimi- 

nary smoothing of the image allows to reduce noise in the patch, 

noise that might have created patterns which would not have been 

relevant to our classification task and would have hindered the 

classification process. However, if the observation scale N p is too 

large, we will loose the relevant local information and the classi- 

fication precision might be negatively impacted. In this paper, we 

evaluate the impact of observation scale on the precision of tissue 

fate prediction and will compare the predictive potential of patches 

of various size N S from I 1 , I 3 , I 5 , I 7 , I 9 , I 11 to I 13 . 

Intuitively, we expected to obtain different patterns (or tex- 

tures) on patches associated with voxels belonging to regions 

where the tissues end up as part of the final ischemic lesion and 

those associated with voxels in the rest of the brain. We will re- 

fer to these two groups of voxels as the pathological and healthy 

voxels. By looking at the patches obtained for these two groups 

of voxels, we notice a general tendency (see Fig. 4 ). The typical 

patch obtained for the healthy voxels exhibits a well-defined hypo- 

intensity segment of relatively narrow width and similar width for 

all the lines in the patch. As expected, this is indicative of a con- 

sistent behavior between neighboring voxels and a quick contrast- 

agent bolus passage. The typical patch obtained for the patholog- 

ical voxels exhibits a hypo-intensity segment which is relatively 

spread out and not very contrasted with varying width for the 

different lines in the patch. As expected, this is indicative of a 

more erratic behavior in the pathological tissues, with a difficult 

passage of the contrast-agent bolus. However, are the textures ob- 

tained on these patches sufficiently discriminating to allow for tis- 

sue fate prediction ? The question is to determine whether it is 
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Fig. 2. Illustration of the spatio-temporal signature of the raw MRI signals in perfusion MRI. 

Fig. 3. Encoding of the spatio-temporal signature of perfusion MRI signals as a patch. 
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Fig. 4. Illustration of the typical patterns obtained for patches of type I 1 , I 3 and I 5 (from top to bottom) for healthy voxels (left) and pathological voxels (right). 

possible to classify the voxels depending on their final state based 

on the pattern visible on the encoded patches. In order to do so, 

we propose here to use classical texture analysis and classification 

tools. 

3.2. Local binary patterns as a texture descriptor 

Since its introduction in Ojala et al. (2002) , LBP has been 

extensively reported in the literature for image classification 

( Nanni et al., 2012 ). Notably, LBP have been shown to be valuable 

for medical image analysis ( Nanni et al., 2010 ). For example, LBP 

have been used to identify malignant breast cells ( Oliver et al., 

2007 ) or to find relevant brain slices in magnetic resonance vol- 

umes ( Unay and Ekin, 2008 ). They have also been used as texture 

features extracted from thyroid slices ( Keramidas et al., 2008 ) and 

were investigated in automated cell phenotype image classification 

( Nanni and Lumini, 2008 ). More recently, algorithms using LBP tex- 

ture features and support vector machine classifiers were proposed 

for the classification of medical images from saliency-based folded 

data ( Camlica et al., 2015 ) and for the classification of skin cancer 

images to melanoma and non melanoma cases ( Adjed et al., 2016 ) 

and for macula pathologies ( Liu et al., 2011 ) or the breast cancer 

( Wan et al., 2017 ). 

An important property of the LBP is notably its robustness to 

image mean intensity variations which can be caused, for example, 

by illumination variations in classical images. An other attractive 

property is their computational simplicity which renders possible 

their use in real-time image analysis applications. In our case, the 

LBP properties will present a great interest. First, the raw perfu- 

sion MRI signals are not quantitative and brightness invariance will 

therefore be necessary. Moreover, if the LBP are to be used even- 

tually for patient management during clinical routine, where time 

is of the essence, a low computational cost will also be a highly 

desirable property. In this pilot study, we therefore propose to use 

LBP to describe the patterns observed on our patches. 

LBP correspond to texture descriptors which describe the local 

environment of each voxel by a label computed by simple thresh- 

olding of the gray-level values of its neighboring voxels. The basic 

idea behind LBP is that an image is composed of micropatterns and 

that a histogram of these micropatterns contains information about 

the distribution of edges and other local features in the image. The 

conventional LBP operator with neighborhood ( L, R ) ( Ojala et al., 

2002 ) is computed at each voxel location by considering both the 

value of the voxel under consideration ( q c ) and the values of the 

L voxels in the circular neighborhood of radius R around the voxel 

under consideration ( q l with l ∈ { 1 . . . L } ). Formally, the LBP oper- 

ator with neighborhood (L,R) is defined as 

LBP (L,R ) = 

L ∑ 

l=1 

s (q l − q c )2 
l−1 , (1) 

where s (x ) = 1 if x ≥0 and 0 otherwise. There are therefore 2 L dis- 

tinct labels resulting from the different possible circular patterns 

around each voxel. Two types of patterns can be distinguished 

in LBP: the uniform patterns, which have at most two transitions 

from s (q l − q c ) = 0 to s (q l+1 − q c ) = 1 (or reversely), and the non- 

uniform patterns. Ojala et al. (2002) have observed that the uni- 

form patterns constitute the majority of the patterns that can be 

observed in textured images. For example, they constitute slightly 

less than 90% of the patterns when using a (8,1) neighborhood 

in textured images. This knowledge can therefore be used to re- 

duce the number of possible labels by using a distinct label for 

all of the uniform patterns but by using only one label for all the 

non-uniform patterns. For example, if we consider a (8,R) neigh- 

borhood, there is a total of 2 8 = 256 possible patterns, only 58 

of which are uniform patterns, and we can therefore reduce the 

number of possible labels from 256 to 59. Here, we propose to use 

LBP with a (8,1) neighborhood (i.e. Moore neighborhood) and an 

encoding with uniform patterns, resulting in a total of 59 possible 

labels (see Fig. 5 ). 

Once the LBP operator has been applied to a patch, the concate- 

nated histograms of the sub-patches separating the labeled patch 

into contiguous segments can then be used as a feature vector 

to describe the texture in the initial patch. An important qual- 

ity parameter of the LBP as a texture descriptor is the dimension 

of the sub-patches on which the histograms are being computed. 

Here, we propose to use as a feature vector for each voxel the 

concatenation of the histograms on the adjacent sub-patches of 

width N h , separating each patch into N t / N h contiguous segments 

of equal width. Since we proposed to work with uniform patterns 

and a (8,1) neighborhood, each histogram contains 59 values and 

we therefore obtain a feature vector of total length N t / N h x59. In 

this paper, we evaluate the impact of the width N h on the preci- 

sion of tissue fate prediction and will compare the predictive po- 

tential of feature vectors calculated by using segments of width 3, 

4, 5, 6, 10, 12, 15, 20, 30 and 60 voxels respectively. 

We now wish to use these feature vectors to classify each voxel 

depending on its final state status (class 1 for pathological vox- 

els belonging to the final lesion or class 0 for healthy voxels). In 

order to do so, we propose to use a support vector machine clas- 

sifier for the supervised learning of our tissue fate classification 

model. 

3.3. Classification with a support vector machine classifier 

The Support Vector Machine (SVM) method consists in finding 

the separating hyper-plane allowing to separate at best, within the 

input variable space, the data points in the training set depend- 

ing on their final state status (class 0 or 1). A new point is then 

classified as belonging to class 0 or 1 depending on its position 

with respect to the separating hyper-plane. The farther the point 

is from the separating hyper-plane and the highest the confidence 

is concerning the class assigned to this point by the SVM classi- 

fier. The distance between the hyper-plane and the training points 

closest to it, points called support vectors, is defined as the margin. 

The separating hyper-plane selected with the SVM method corre- 

sponds to the hyper-plane resulting in the largest margin possi- 

ble. The support vectors are therefore the only points used for the 
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Fig. 5. Illustration of the LBP labels obtained (right) from a given patch (left). 

Fig. 6. Visual summary of the proposed classification approach. 

optimization of the margin and the definition of the optimum 

separating hyper-plane, hence the name of this machine learning 

method. This method works in cases where the points in the two 

different classes are linearly separable. In numerous situations, the 

two classes are not linearly separable and, in this case, it is possi- 

ble to transform the input variables into a new variable space, of 

higher dimension than the native space and in which the points 

are rendered linearly separable. In practice, the passage to another 

feature space is done via the use of a kernel function, and is there- 

fore referred to as the kernel trick. 

Here, after empirical testing, we decided to use an SVM clas- 

sifier with a degree-3 polynomial kernel, taking as input variables 

the elements of the LBP feature vector of each voxel. The size of 

the feature vectors obtained is quite large, therefore, in order to 

reduce the dimension of the input vector, we proceed beforehand 

to a principal component analysis (PCA) and preserve only the first 

principal vectors which allow to explain 90% of the total variance 

contained in the training dataset. A diagram summarizing the clas- 

sification approach proposed here is given in Fig. 6 . To account 

for the variability in the quality of the classifications obtained, we 

used in this section a K-fold cross-validation technique which al- 

lows to assess how well the SVM classifier might generalize to 

an independent data set for tissue fate prediction. We divided our 

data set into 100 subsets of voxels and, for each possible combina- 

tion, we used 99 of the subsets for the training of the SVM clas- 

sifier (99% of the data, i.e. 21,884 training points) and 1 subset for 

testing the quality of the classification model obtained (1% of the 

data, i.e. 221 testing points). 

4. Results 

4.1. Segment width optimization 

We show in Table 1 the influence of the segment width N h used 

for the computation of the feature vectors on the performance 

of the classification. Performances are expressed in terms of the 

minimum, mean, maximum and standard deviation σ of the ac- 

curacy, sensitivity and specificity obtained during cross-validation. 

Also, N f , the number of components kept after the PCA to explain 

90% of the total variance, is provided as a measure of the com- 

plexity of the model. As can be seen, the segment width N h used 

for feature vector computation greatly influences the quality of 

the classification obtained. It appears from the analysis of Table 1 . 

that decreasing the segment width increases the performances ob- 

tained, resulting in up to a 15% difference in accuracy between a 

segment width of N h = 60 and N h = 3 . The contrast-agent bolus 

observed on our data in healthy tissues has a width of roughly 10 

voxels. The optimum segment width found here, N h = 3 , is there- 

fore approximately a third of the width of the contrast-agent bo- 

lus, which seems reasonable. The patterns to be encoded by LBP 

as shown in Fig. 3 can be seen as the concatenation of three sub- 

patterns: a darker one corresponding to the bolus in the middle 

of two brigther ones which mainly corresponds to noise. Too large 

a N h would mix together local variations of these subpatterns and 

produce as shown in Table 1 a decrease of the prediction perfor- 

mances. The discriminant information lays in the relative sizes of 

these sub-patterns. Decreasing the size of the segment N h comes 

with an increase of the features selected N f in the prediction model 

and an increasing risk of overfitting. 

4.1.1. Observation scale optimization 

We now fix the segment width to the optimal value found 

in the previous section, N h = 3 , and investigate the influence 

of the observation scale N p used for the patch computation. The 

results are provided in Table 2 . It appears that the classifica- 

tion performance increases and that its variability decreases as 

the observation scale increases up to N p = 9 . For observation 

scales larger than 9, the performance seems to reach a plateau 

and its increase appears negligible compared to the variability of 

the results obtained. The optimization of the observation scale 

from N p = 1 to N p = 9 allows to improve the accuracy of an 

other 13%. Interestingly, these results are in accordance with the 
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Table 1 

Accuracy (%), Sensitivity (%), Specificity (%) obtained on the 100 test data sets during cross-validation when patches of type 

I 1 (i.e.: observation scale N p = 1 ) are used for classification and different size N h of segment width are evaluated for feature 

vector computation. N f corresponds to the number of features selected after dimension reduction via PCA. 

N h Accuracy (%) Sensitivity (%) Specificity (%) N f 

Min Mean Max σ Min Mean Max σ Min Mean Max σ

60 58.82 66.46 75.11 3.34 49.53 61.59 71.79 4.79 59.83 71.34 82.61 4.59 22 

30 61.09 68.81 76.47 3.27 55.00 68.04 78.38 4.79 59.26 69.55 79.65 4.45 50 

20 58.37 69.51 78.73 3.39 55.14 68.71 80.91 5.22 60.87 70.33 79.63 4.41 79 

15 65.61 72.07 78.73 2.83 60.95 71.48 80.85 4.28 60.55 72.69 81.42 3.91 111 

12 68.33 74.40 81.00 2.84 64.22 74.20 84.11 4.52 65.77 74.59 81.90 3.54 143 

10 68.78 74.78 82.35 3.14 65.09 74.17 84.68 4.58 63.54 75.43 84.91 4.12 176 

6 71.49 78.09 85.97 2.72 66.38 77.85 88.79 4.25 69.37 78.33 87.61 3.70 309 

5 71.49 79.05 85.52 2.59 68.97 79.07 87.07 3.95 69.72 79.01 88.50 3.74 379 

4 72.40 80.21 85.97 2.73 70.69 80.03 87.27 4.07 70.87 80.37 88.50 3.64 473 

3 75.11 81.81 88.24 2.71 72.41 81.43 89.81 3.71 73.33 82.16 91.15 3.56 659 

Table 2 

Accuracy (%), Sensitivity (%), Specificity (%) obtained on the 100 test data sets during cross-validation when the segment width used 

for feature vector computation is fixed to N h = 3 and different patch types I N p are evaluated. N f corresponds to the number of 

features selected after dimension reduction via PCA. 

Patch type Accuracy (%) Sensitivity (%) Specificity (%) N f 

Min Mean Max σ Min Mean Max σ Min Mean Max σ

I 1 75.11 81.81 88.24 2.71 72.41 81.43 89.81 3.71 73.33 82.16 91.15 3.56 659 

I 3 85.07 89.85 95.02 2.11 81.65 89.62 96.58 3.26 81.82 90.07 95.10 2.85 607 

I 5 89.14 93.43 96.38 1.63 85.71 93.65 98.28 2.41 88.46 93.20 97.64 2.09 545 

I 7 90.05 94.73 98.19 1.46 88.99 95.23 99.13 1.84 85.96 94.22 99.12 2.21 494 

I 9 92.31 95.04 98.19 1.28 90.76 95.38 10 0.0 0 1.80 89.81 94.70 10 0.0 0 1.92 454 

I 11 91.40 95.26 98.64 1.50 89.92 95.77 10 0.0 0 2.07 87.85 94.72 99.09 2.32 420 

I 13 91.86 95.37 98.19 1.39 88.24 96.02 10 0.0 0 1.83 90.18 94.70 98.28 2.00 391 

spatial scales found in the work of Scalzo et al. (2012) and 

Giacalone et al. (2017) pointing to the interest of a “regional” ap- 

proach to predict tissue fate in stroke 

4.2. Impact of perfusion MRI post-processing 

Results obtained so far have been obtained on raw dynamic 

susceptibility images considered without any other post process- 

ing than the registration described in the Material section. This 

means without the usual deconvolution step by the arterial input 

function. In this last experiment, we compare the classification re- 

sults obtained when using, as originally proposed in this article, 

raw perfusion images for the patch computation and those ob- 

tained when using, conventionally, images which underwent the 

usual post-processing treatments applied in quantitative perfusion 

MRI. 2 For this experiment a standard temporal Tikhonov deconvo- 

lution ( Calamante et al., 2003 ) was used for comparison with the 

raw perfusion signals. 

The results obtained using the optimal segment width N h and 

observation scale N p found in the previous experiments are given 

in Table 3 . It appears that the performances in terms of accuracy, 

specificity and sensitivity are very close to each other. The poten- 

tial gain in using post-processed images is possibly located in the 

size of the model, which is smaller (e.g. 350 features for the de- 

convolved data vs 454 for the raw perfusion data). This results are 

also illustrated in Fig. 7 . 

2 The usual post-processing treatments applied in quantitative perfusion MRI 

consist in estimating the contrast-agent concentration signals from the raw perfu- 

sion signals, under the assumption of a linear relationship between the change in 

relaxation rate and the concentration, and then in proceeding to a temporal decon- 

volution of the concentration signals by the arterial input function ( Calamante et al., 

2003 ). 

4.3. Sensitivity analysis 

In the previous subsection we have detailed the performance 

of the classification scheme of Fig. 6 while optimizing the spatial 

and temporal scales of the spatio-temporal representation of the 

perfusion MRI. Each step of this classification scheme could also of 

course be optimized. In this section, we investigate some of these 

variants while considering as reference the setup and associated 

performance obtained in Tables 1 and 2 and keeping as common 

point the spatio-temporal encoding which is the core of the pro- 

posal of this article. 

First, several variants of the LBP are tested. This includes the so- 

called local ternary patterns (LTP) ( Tan and Triggs, 2010 ), and the 

Discriminative Features of LBP Variants (disCLBP) ( Guo et al., 2012 ). 

Second, several variants of the dimension reduction technique have 

been tested with Locally Linear Embedding (LLE) ( Roweis and 

Saul, 20 0 0 ) and T-SNE ( Maaten and Hinton, 2008 ) for compar- 

ison with PCA. In step 4 of Fig. 6 , we used classical principal 

component analysis to reduce the dimension of the feature space. 

The dimension size of feature space is chosen fixed to have a 

fair comparison of all three classification approaches on our data. 

In order to estimate, an intrinsic dimension of the feature space, 

the Maximum Likelihood Estimates (MLE) algorithm of Levina and 

Bickel (2005) is used and estimated an intrinsic dimension of 69 

for the feature space that we consider for N f in the following ex- 

periment with all three dimensional reduction approaches tested. 

Third, several variants of the classifier have been tested. Since the 

data set considered here is relatively small for a machine learning 

approach, we selected classifier which are known to operate ro- 

bustly with small data sets. This includes soft margin SVM, and 

Random Forest (RF) ( Breiman, 2001 ), which are all tested with 

cross-validation approach with different number of folds. Concern- 

ing the RF classifier, the following parameters are considered to 

control depth of trees, maximum 100 decision splits, minimum 1 
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Table 3 

Accuracy (%), Sensitivity (%), Specificity (%) obtained on the 100 test data sets during cross-validation when the segment width 

is fixed to N h = 3 for feature vector computations and the observation scale if fixed to N p = 9 for the patch computation. 

N f corresponds to the number of features selected after dimension reduction via PCA. These results compare the quality of 

the prediction obtained if we use the raw perfusion signals (PWI) as input for our classification method or if we consider the 

contrast-agent concentration image (CAC) or the concentration image deconvolved with Tikhonov algorithm ( Calamante et al., 

2003 ) (IRF). 

Accuracy (%) Sensitivity (%) Specificity (%) N f 

Min Mean Max σ Min Mean Max σ Min Mean Max σ

PWI 92.31 95.04 98.19 1.28 90.76 95.38 10 0.0 0 1.80 89.81 94.70 10 0.0 0 1.92 454 

CAC 90.50 94.59 99.10 1.49 89.29 95.18 99.10 1.99 88.89 94.03 99.17 2.02 365 

IRF 90.05 93.94 97.74 1.56 89.62 94.05 98.21 1.87 87.85 93.87 99.15 2.38 350 

Fig. 7. Illustration of the classification performances obtained for one patient slice when using a segment width of N h = 3 and an observation scale of N p = 9 and (left) the 

raw perfusion signals, (middle) the concentration signals or (right) the concentration signals after deconvolution. The classification model used here was trained on all the 

voxels (from the four different patients) which did not belong to this specific slice. 

Table 4 

Accuracy (%) obtained by LTP where PCA,T-SNE and LLE are used as dimensional reduction functions. 

Number of folds in cross-validation 

Classifiers DR 2 3 4 5 6 7 8 9 10 

RF PCA 79.84 79.72 79.60 79.12 79.28 79.21 79.62 79.50 79.38 

TSNE 83.99 84.74 84.43 84.60 84.55 84.75 84.60 84.53 84.58 

LLE 83.78 84.30 84.43 84.67 84.59 84.75 84.76 84.59 84.64 

Soft margin SVM PCA 92.52 94.34 94.78 95.17 95.41 95.39 95.81 95.69 95.77 

TSNE 86.81 87.32 87.44 87.69 87.60 87.56 87.68 87.73 87.68 

LLE 86.32 86.92 87.04 87.18 87.17 87.16 87.17 87.28 87.27 

Hard margin SVM PCA 92.41 94.24 95.01 95.34 95.42 95.67 95.62 95.84 95.69 

TSNE 90.09 89.96 90.31 90.31 90.17 90.28 90.43 90.60 90.38 

LLE 88.55 88.83 89.19 89.49 89.32 89.36 89.29 89.48 89.53 

Table 5 

Accuracy (%) obtained by disCLBP where PCA,T-SNE and LLE are used as dimensional reduction functions. 

Number of folds in cross-validation 

Classifiers DR 2 3 4 5 6 7 8 9 10 

RF PCA 79.68 80.42 80.33 80.10 80.65 80.22 80.36 80.64 80.31 

TSNE 85.95 85.49 85.73 85.84 85.12 85.23 85.36 85.29 85.08 

LLE 85.13 84.95 84.94 85.11 84.97 85.18 85.09 85.16 84.89 

Soft margin SVM PCA 69.96 71.40 71.97 72.26 72.62 72.53 72.83 73.07 73.14 

TSNE 88.93 88.80 89.04 89.01 89.01 89.44 89.09 89.13 89.10 

LLE 85.33 86.03 86.17 86.28 86.41 86.43 86.51 86.48 86.54 

Hard margin SVM PCA 69.92 71.11 72.03 72.41 72.71 72.73 72.90 73.01 73.21 

TSNE 85.63 85.89 86.01 86.10 86.29 86.17 86.24 86.17 86.26 

LLE 85.10 85.74 86.09 86.45 86.34 86.41 86.33 86.49 86.43 

leaf node observation, and Gini’s diversity index as split criterion. 

The results are presented in Tables 4–6 . 

The obtained results in Tables 4–6 show that variants of the 

pipeline presented in the result section of this manuscript also ob- 

tain good performances. Possibilities of improvement from the per- 

formance obtained in the main result section of the manuscript 

are mainly found in Table 4 with the LTP method. A full optimiza- 

tion combining the best elements in the global pipeline of Fig. 6 is 

out of the scope of this article. The important point we want to 

stress here is that all these variants are based on the same spatio- 

temporal encoding of the raw perfusion data. This further demon- 

strates the interest of this encoding. 

5. Discussion 

The result presented in Fig. 7 for the prediction on raw per- 

fusion signals are intrinsically interesting since they demonstrate 

the possibility to perform prediction of similar quality without de- 

convolution. Also, errors found in Fig. 7 with our method are also 

intrinsically good errors since the badly classified voxels are not 
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Table 6 

Accuracy (%) obtained by LBP where PCA,T-SNE and LLE are used as dimensional reduction functions. 

Number of folds in cross-validation 

Classifiers DR 2 3 4 5 6 7 8 9 10 

RF PCA 80.64 81.40 81.47 81.69 81.29 81.05 81.40 81.14 81.58 

TSNE 85.85 85.28 85.25 85.26 85.65 85.33 85.05 85.36 85.40 

LLE 84.14 84.61 84.51 84.34 84.54 85.15 84.73 84.58 84.11 

Soft margin SVM PCA 71.10 73.32 74.54 75.11 75.49 75.37 75.58 75.66 75.85 

TSNE 85.94 86.50 86.63 86.73 86.61 86.66 86.65 86.71 86.69 

LLE 86.32 86.92 87.04 87.18 87.17 87.16 87.17 87.28 87.27 

Hard margin SVM PCA 72.03 73.67 73.97 75.22 75.43 75.68 75.68 75.54 75.68 

TSNE 88.79 89.54 89.60 89.29 89.79 89.65 89.27 89.05 89.07 

LLE 86.64 86.83 87.15 87.20 87.32 87.32 87.29 87.14 87.17 

randomly positioned but precisely located on the frontier between 

infarcted and non infarcted regions, i.e. where the decision making 

is the most challenging. 

Beside the intrinsic value of our predictor based on the pro- 

posed spatio-temporal encoding one may also wonder about the 

performances obtained with our prediction scheme in relation 

with the existing literature. In most recent studies using machine 

learning-based approaches in the framework of the ISLE challenge 

( Maier et al., 2017 ) or outside this challenge, for instance on the 

use of deep learning with neural network ( Huang et al., 2010; Stier 

et al., 2015; Nielsen et al., 2018 ) best performances of between 85 

and 95% accuracy are found. 

It is important however to notice that such performances were 

obtained here while incorporating perfusion images and diffu- 

sion images. Diffusion in the acute stage of the stroke is known 

to be a highly predictive imaging for the final stroke lesion 

( Giacalone et al., 2017 ). In the small cohort considered here the 

lesions were quite compact lesions with a good similarity between 

the early perfusion lesion and the diffusion lesion. This may ex- 

plain why we obtain prediction result similar to the one of the 

literature while working only on perfusion images. Larger dataset 

with patients having larger differences between perfusion and dif- 

fusion would be interesting to be incorporated to assess in such 

cases the predictive value of perfusion alone and the gain brought 

jointly using diffusion and perfusion along variant of the proposed 

encoding scheme. 

Other points could be discussed. For instance local binary pat- 

terns have been used here to analyze the local spatio-temporal 

patches seen as textures. This encoding benefits from an interest- 

ing property of invariance to a gray level baseline variation. This is 

important for texture characterization in temporal MRI sequences 

where this baseline can indeed vary. Local binary patterns, under 

the form used in this article ( Ojala et al., 2002 ), are not shift in- 

variant. Such shift would happen in practice in multicentric studies 

where the trigger of the acquisition with the injection of the con- 

trast agent is not normalized. However the typical duration of the 

bolus is an invariant parameter and it would be possible to nor- 

malize the local patch to be encoded with a raw detection of the 

peak of contrast. Other variants of the local binary pattern with 

additional properties of invariance could be tested ( Nanni et al., 

2010 ). Also, other texture approaches, possibly with native baseline 

and shift invariance properties, could be used ( Mirmehdi, 2008 ). 

The patches temporal encoding proposed in this article could also 

be seen and analyzed as transcient noisy patterns with wavelet- 

like approaches ( Mallat, 2008 ). We are currently considering all 

these perspectives with larger datasets. 

6. Conclusion 

In this pilot study, we have proposed a new approach to en- 

code the spatio-temporal signature of each voxel in raw perfusion 

data. We have then proposed a scheme based on local binary pat- 

terns coupled with a support vector machine classifier to realize 

a supervised classification of pathological and healthy voxels in 

stroke. This approach provides promising results, with a precision 

of classification of 95% on average on the small data set evalu- 

ated here. This is promising indeed since a large part of the liter- 

ature on stroke focuses on developing post-processing treatments 

( Willats and Calamante, 2013b ) to denoise images while the clas- 

sification here was realized from raw perfusion data only. 
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In this article, we address the problem of the classification of the health state of the colon’s wall of 
mice, possibly injured by cancer with machine learning approaches. This problem is essential for 
translational research on cancer and is a priori challenging since the amount of data is usually limited 
in all preclinical studies for practical and ethical reasons. Three states considered including cancer, 
health, and inflammatory on tissues. Fully automated machine learning-based methods are proposed, 
including deep learning, transfer learning, and shallow learning with SVM. These methods addressed 
different training strategies corresponding to clinical questions such as the automatic clinical state 
prediction on unseen data using a pre-trained model, or in an alternative setting, real-time estimation 
of the clinical state of individual tissue samples during the examination. Experimental results show the 
best performance of 99.93% correct recognition rate obtained for the second strategy as well as the 
performance of 98.49% which were achieved for the more difficult first case.

Classically the characterization of colon’s pathology is realized from histology1 but is now also investigated with 
in vivo imaging techniques which enable the oncological2 early detection of abnormal physiological processes 
such as inflammation of dysplastic lesions. This includes chromoendoscopy3, confocal laser endomicroscopy4,5 or 
multiphoton microscopy6. These modern video-microscopies introduced in preclinical studies on mice with the 
promises of translational research7.

These imaging techniques are producing videos which for the inspection of one colon of one mouse corre-
sponds to thousands of frames to be further multiplied by the number of mice inspected. Each frame of these vid-
eos can be different in the structure and texture as it is recorded over a colon’s wall with movement of the probe, 
spurious presence of unexpected items between probes and colon, variation of contrast agent concentration. To 
draw benefit from such imaging protocols, the bottleneck is thus the automation of the image analysis. In this 
article, we consider one of these protocols and propose a fully automated solution for the classification of colon 
wall images into healthy, inflammation and dysplastic tissues.

We work with the confocal endomicroscopy imaging protocol of5 for the classification of the health state 
of the colon’s wall of mice. Since its introduction, this protocol has seen widespread usage in multiple research 
groups8–10. So far, image analysis for the classification of colon’s wall health state with this protocol has been rela-
tively limited. The existing literature is based on handcrafted features5,8–10.

In this article, we go beyond the sole characterization (feature handcrafting) and, for the first time on Mice 
colon in cancer study from confocal laser endomicroscopy, in the growing trend of machine learning applied to 
medical image analysis11–13, propose a fully automated classification method based on supervised learning that we 
validate on thousands of images. This work is a priori challenging since the amount of data in preclinical studies, 
such as in our case, is rather limited compared to the usual amount of data available in medical applications of 
machine learning. Also, another a priori open question addressed in the preclinical study is the question of trans-
lational research, i.e. the reusability of the knowledge gained for animals on human or human on animals. We 
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address this question here, for the first time to our knowledge, in the perspective of machine learning. As the last 
innovation in our methodology to address a specific unsolved preclinical problem, we discuss different scientific 
use cases and corresponding strategies for training concerning some properties of confocal laser endomicroscopy. 
Images are acquired at the video frame rate while the expert holding the endoscopic probes moves it slowly to 
inspect the tissue when located close to the tissue of interest. Consequently, though the imaging system is produc-
ing vast amounts of images, a large number of images are very similar. We consider the possibility of taking ben-
efit from this self-similarity in order to significantly reduce the size of the data set requested during the training 
stage. This training approach is vital for the expert in charge of the annotation of the training data sets since it is a 
highly time-consuming task. In a second configuration, we also discuss the performance obtained with different 
machine learning approaches when we learn on images corresponding to a given set of mice while applying the 
classification on a distinct cohort of mice. This cross-subject training is relevant for clinical purposes because 
it quantifies to which extend the disease observed is generic or patient-specific. The performances of these two 
training strategies compared to the best performance obtained with a brute force random sampling on a whole 
cohort for the training of the classification algorithm.

In the literature, several studies have focused on the classification of colon’s health state from endomicroscopy. 
Up to our knowledge, this body of work based on the classical methodology of handcrafted feature design (taking 
into account domain knowledge), followed by supervised machine learning.

A method based on global descriptors proposed in5, whose introduced fractal box-counting metrics and illus-
trated them on two images. Vessel detection was proposed in8 after a Hessian-based filter in addition to length 
area and diameter measurements of vascular crypts of the colon’s wall. Blood vessels of the colon’s wall character-
ized in9 from Fourier analysis. Also, vascular networks of colon’s wall were characterized in terms of graphs in10 
after skeletonization on few hundreds of images.

Closest to our work is the method by Ştefănescu et al., which is based on machine learning with neural net-
works of images of human tissues14 acquired with confocal laser endomicroscopy. However, the images are clearly 
different; in contrast, the field of view and resolution, as can be seen in Fig. 1. These differences motivate our 
proposition of designing a specific method for mice trained on mouse images. In contrast to14, we (i) propose a 
method based on representation learning15 as opposed to handcrafted features, and (ii) specifically discuss differ-
ent experimental protocols and develop different training strategies adapted to these protocols.

Figure 1.  Top: Human samples of colon’s wall images: healthy (left) and unhealthy (right) tissues observed 
from fluorescent confocal endomicroscopy. Bottom: Mouse samples of colon’s wall images: healthy (left) and 
unhealthy (right) tissues observed from fluorescent confocal endomicroscopy.
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Results
In this section, we give experimental results using the experimental protocol and training strategies described in 
the method section as well as the different feature extraction and feature learning techniques.

Cross-subject training.  For this protocol, the most challenging one of all considered cases, where gener-
alization to unseen subjects (mice) is required, randomly chosen images of mice for three datasets of training, 
validation, and testing as shown in Table 1. While the training set is used to adjust the parameters of the model, 
the validation set is used to minimize overfitting and tune the parameters. The test set of unseen data is used 
to confirm the predictive power and that the model generalises. The final classification of trials is computed 
as the average performance of each fold. The number of healthy and unhealthy mice are not equal. We simu-
lated cross-validation for this approach by changing mice between training, validation, and testing for each new 
experiment.

Table 2 gives results with the different feature representations and classifiers described in the method section. 
In addition, Table 3 shows classification accuracy of a transfer learning method with different freezing layers dis-
cussed in section. Our proposed architecture trained from scratch shows the best recognition rate compared to 
handcrafted features, and state of the art high-capacity architectures with pre-training. The experiments indicate 
that high-capacity networks overfit on this amount of target data even when they are pre-trained on large datasets 
of natural images. We conjecture that the shift in data distributions is too large in the case of this application. 
The last layer of the network, still trained from scratch even in the case of transfer learning, overfits on the small 
target data set. To sum up the essence of the contribution, we train a high-capacity model on a large scale data set, 
followed by fine-tuning of a low capacity SVM model on the small volume target data set.

Also, we studied the dependency of the classification results on the number of subjects in the training data, 
as illustrated in the Fig. 2. For this study, we chose the LBP based representation and the SVM classifier since it 
can work better when a small size of the database is available for training. As expected, the system performance 
increases significantly when additional mice are added to the training set, as each mouse potentially has its spe-
cific pattern for health, inflammation, and cancer tissues.

Figure 3 shows some cases of correctly and wrongly classified images with their coarse localization maps. As 
can be seen, these images are indeed difficult to assess as the miss classified images have a similar pattern with 
another class.

Cross-sample training with all samples.  Let us recall that in another use case of cross-sample training, 
subjects (mice) are mixed between training and test sets. In our setup, the 7 fold cross-validation approach used 
where almost 75% of images are dedicated for training and 25% of images for testing purposes, which corre-
sponds to the proportions chosen for a similar problem in14, albeit for human colon’s walls. When needed, the 
validation set was chosen from the training set. Table 4 gives the prediction performance of the different classifiers 
on this data. We report means and standard deviations of ten runs.

In this more natural case, where correlations between subsequent frames in the input video can be exploited, 
our CNN architecture still outperforms other models and feature learning methods with a close to perfect perfor-
mance of 99.33%. Even transfer learning of deep networks cannot compete in this section, where generalization 
to unseen subjects is not an issue. We conjecture that the reason is that pre-training on the large-scale data set 

Healthy 
mice

Mice with 
cancer

Mice with 
inflammation

Training 5 7 7

Validation 1 2 2

Testing 3 4 7

Table 1.  Number of mice in each dataset.

Left Right

Classifiers
Transfer 
learning Accuracy

True 
Cancer

True 
Inflammation

True 
Healthy

Proposed CNN 
architecture — 98.49% ± 0.6 Predicted Cancer 13107 0 0

DenseNet X 94.54% ± 2.9 Predicted Inflammation 0 5012 46

VGG16 + linear SVM X 90.60% ± 0.4 Predicted Healthy 0 75 2011

VGG16 X 89.62% ± 3.3

ResNet50 X 75.93% ± 4.1

VGG16 — 74.82% ± 3.2

LBP features + linear 
SVM — 83.01% ± 0.4

Proposed method at14 — 77.41% ± 1.3

Table 2.  Left: Results of cross-subject training with full data, where all images of 6 healthy mice, 9 mice with 
cancer, and 9 mice with inflammation used for training the system. Right: Confusion matrix of cross-subject 
performance where our proposed CNN architecture is used.
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learns a representation tailored for high generalization, which requires encoding invariances to large defor-
mation groups into the prediction model. These invariances help to recognize natural classes, like animals and 
objects from daily life, even though their viewpoints and shapes might be profoundly different. It is clearly not the 

No. Freezing
Conv. layers 1 2 3 4 5 6 7 8 9 10 11 12 13

Accuracy 40.8% ± 17.4 65.6 ± 29.9% 89.6 ± 3.3% 89.2% ± 3.9 42.8% ± 21.9 43.4% ± 23.25 70% ± 24.1 52.8% ± 22.2 75.4% ± 23.9 82.2% ± 9.4 65.8% ± 29.9 41.2% ± 18.3 33% ± 0

Table 3.  Results of cross-subject training with different numbers of frozen layers when transferring the VGG16 
network from ImageNet to the target dataset.

Figure 2.  Dependency on the number of training subjects for cross-subject training (LBP features + SVM 
classifier).

Figure 3.  Example of correctly and miss classified images of the proposed CNN architecture for the cross-
subject training strategy. Each cell consists from left to right of a grayscale image, a coarse localization map of 
the important regions in the image for the network40, and a high-resolution class-discriminative visualization40. 
Cells with dashed lines mean that there is no miss classified images for that class.

Left Right

Classifiers
Transfer 
learning Accuracy

True 
Cancer

True 
Inflammation

True 
Healthy

Proposed CNN 
architecture — 99.93% ± 0.13 Predicted Cancer 13994 0 0

LBP features + linear 
SVM — 97.7% ± 0.39 Predicted Inflammation 0 4032 0

VGG16 + linear SVM X 85.9% ± 0.4 Predicted Healthy 0 5 1849

VGG16 X 82.12% ± 4.1

ResNet50 X 79.94% ± 4.6

DenseNet X 79.51% ± 3.8

VGG16 — 78.49% ± 1.27

Table 4.  Left: Results of cross-sample training with full data. Right: Confusion Matrix of cross-sample 
performance where our proposed CNN architecture is used.
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objective for our cross-sample use case, where generalization is less an issue than encoding extremely fine-grained 
similarities between samples which are very close in feature space.

Overall deep learning methods with a pre-training, the best results were obtained by the VGG16 model 
pre-trained on ILSVRC and fine-tuned on our target data set, where after fine-tuning a linear SVM classifier was 
trained on the last feature layer of the deep network. Interestingly, this performance is comparable to what was 
obtained in14 for a similar colon’s wall classification but on humans.

Cross-sample and cross-subject training with sample selection.  We tested the performance of the 
handcrafted pipeline when the number of input data is limited. For this approach, images of each state are divided 
into training and testing sets, and then the training set is split into an increasing number of clusters based on their 
similarities. We stop at around 1000 clusters when a plateau of performance is reached. Then, a random image of 
each cluster in each state is selected to train the model, and the model is tested on the test data. Figure 4 shows the 
average recognition rate of the system after three trials as a function of the number of clusters, i.e., the size of the 
data set for the training for both cross-subject and cross-sample approaches. As visible in Fig. 4, the performance 
of both cross-sample and cross-subject training with sample selection overpasses the random selection of images 
with a gain approximately constant of 13% of recognition rate in all the range. However, at its maximum level, the 
performance is lower than the best performance obtained in Table 4. This approach can also be used for real-time 
applications as there is no need to use clustering on test data.

Methods
Experimental protocols and associated training strategies.  Our main objective is to automate 
the classification process of mouse tissues into three classes, healthy, inflammation, and cancer tissues. Below, 
we describe two different medical use cases, where these predictions are helpful. In other words, two different 
approaches of splitting data into training and testing for our experiments are introduced, which refers to two 
different clinical problems where prediction is required on subjects or samples.

Scientific use cases.  Cross-subject predictions.  This use case arises when a prediction must be made on 
unknown subjects (unknown mice) using a model which has been created (trained) during an off-line training 
phase. The underlying scientific question addressed by this use case is whether locally acquired samples of tis-
sue can be correctly classified without any additional information from the same subject. Alternatively, in other 
words, we would like to study whether prediction models based on machine learning can generalize to unseen 
subjects; it quantifies to which extent the observed diseases are generic or patient-specific.

In a real-world scenario, the corresponding prediction model is static in a sense that different predictions on 
new subjects will be based on the same model acquired by the medical personnel at a single instant (software 
updates not with standing). It means a model is trained on a given set of subjects, and will then apply it to new 
subjects (previously unseen). Decoupling training and prediction is the main advantage of this use case, as the 
prediction model does not require re-training between predictions, and results can be obtained using the same 
model on any new subject.

Cross-sample predictions.  The second use case focuses more on individual tissue samples. This situation arises 
when one or more subjects are studied in detail, and a large number of tissue samples need to be classified. The 
underlying scientific question is, whether tissue annotation can be done semi-automatically when a large number 
of tissues need to be annotated from a low number of subjects. Alternatively, in other words, we would like to 
study whether a prediction model based on machine learning can generalize to different regions from the same 
or different subjects.

Figure 4.  Average of recognition rate of cross-subject (left) and cross-sample (right) training respectively 
with sample selection in solid red line versus a random selection of data in dashed blue line as a function of the 
number of images in the training dataset. Yellow and purple lines show the average recognition rate plus and 
minus standard deviation respectively.
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In a real-world scenario, the corresponding prediction model is dynamic, as (on-line) re-training is necessary 
for regular intervals. The medical personnel uses an application, which allows them to view tissue samples and 
annotate them in real-time, available in the additional information section.

The two uses cases are inherently different. Cross-subject predictions are usually more difficult, as the shift 
between the training data distribution and testing data distribution is generally higher, putting higher require-
ments on the generalization performance of the predictors. In practice, both cases can be addressed using fully 
supervised machine learning.

Proposed training strategies.  We propose three different training strategies to address the scientific use 
cases described above.

Cross-subject training.  This training strategy is designed to cover the cross-subject use case. The data set is split 
cross-subject wise, i.e., that subjects (mice) whose samples are in the training set are not present in the test set. It 
should be considered that the colon’s wall of a subject can sometimes consist of all three labels at the same time, 
which means that a part of the colon’s wall show cancer tissues. Another part show some inflammation tissues, 
and the rest can be considered as healthy tissues. Thus, it is essential to design a classifier that tries to label every 
image independently. Later a subject could be labeled based on the majority of labels of its images.

Cross-sample training with all samples.  This strategy corresponds to the cross-sample use case. The data set is 
split into training and test sets by randomly sampling images of each type to be classified (health, inflammation, 
and cancer). In particular, this approach selects images without information on whether they are consecutive in 
video frames, or whether they belong to a given subject. In this strategy, images from one subject (a mouse) can 
be in both training and testing sets, but it does not mean that the same images are used in training and testing. As 
the microprobe captured images through the colon’s wall of subjects, each image is taken from one specific part 
(tissue) of the colon’s wall.

Cross-sample training with sample selection.  In an alternative training strategy for the cross-sample use case, 
we address the fact that images correspond to video frames which are acquired in the continuity of a local probe 
inspection process. Therefore, consecutive images are visually similar with a high probability. This temporal cor-
relation between frames can lead to skewed (unbalanced) data distribution and, if not dealt with, to sub-optimal 
performance.

We propose an unsupervised sample selection processing based on clustering. Features are extracted from 
each image, which includes standard deviation, mean, variance, and the skewness of the raw pixel values. The 
features are clustered with k-means, and a single sample is picked from each cluster for training. The rest of the 
images of the database are used for testing.

Features, feature learning and classification.  Independently of the training strategy, we proposed two 
different procedures, including both feature extraction and classification methods. The first is based on hand-
crafted features, whereas the second resort to automatic learning of the intermediate representation.

Handcrafted features.  In this methodology, we handcraft feature representations instead of learning them. 
Handcrafted representations have been optimized by the computer vision community over decades of research, 
including theoretical analysis and experiments. In our setting, we resort to the local binary patterns (LBP)16, a 
state-of-the-art handcrafted descriptor which has been used in a variety of tasks in computer vision, among which 
are face recognition, emotion recognition, and others, see the survey in17. Notably, LBPs have been shown to be 
valuable for medical image texture analysis18.

Under the original form of16 and as used in this article, for a pixel positioned at the point x y( , ), LBP indicates 
a sequential set of the binary comparison of its value with the eight neighbors. In other words, the LBP value 
assigned to each neighbor is either 0 or 1, if its value is smaller or greater than the pixel placed at the center of the 
mask, respectively. The decimal form of the resulting 8-bit word representing the LBP code can be expressed as 
follows:

∑= −
=

LBP x y s i i( , ) 2 ( )
(1)n

n
n x y

0

7

,

where ix y,  corresponds to the grey value of the center pixel, and in denotes that of the nth neighboring one. Besides, 
the function s x( ) is defined as follows:

= ≥
< .{s x x

x
( ) 1 0

0 0 (2)

The LBP operator remains unaffected by any monotonic gray scale transformation, which preserves the pixel 
intensity order in a local neighborhood. It is worth noticing that all the bits of the LBP code hold the same signif-
icance level, where two successive bit values may have different implications. The process of Eq. (1) is realized at 
the scale of a patch size of ×N N  pixels. The LBP x y( , ) of each pixel inside this patch are concatenated to create a 
fingerprint of the local texture around the pixel at the center of the patch. Eqs. (1) and (2) are applied on all 
patches of an image. Finally, all histogram outputs of patches (after applying LBP on them) are concatenated and 
considered as the feature vector of an image. This patch size N, in this study, is chosen in the order of an average 
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size of vesicular crypts on health images. In our database, a patch size of 8 × 8 can almost cover a healthy vesicular 
crypt. At the next step, a linear SVM is applied to classify the images based on their LBP features.

Representation learning.  Representation learning, or deep learning, aims at jointly learning feature rep-
resentations with the required prediction models. We chose the predominant approach in computer vision, 
namely deep convolutional neural networks19, which have proven to be well suited for standard tasks in the medi-
cal domain like cell segmentation20, tumor detection, and classification21, brain tumor segmentation22, De-noising 
of Contrast-Enhanced MRI Sequences23 and several other purposes15. We train two different models, one which 
was designed for the task and trained from scratch, and one which has been adapted from (and pre-trained on) 
image classification.

Training from scratch.  The baseline approach resorts to a standard supervised training of the prediction model 
(the neural network) on the target training data corresponding to the respective training strategies described in 
section. No additional data sources are used. In particular, given a training set comprised of K pairs of images xi 
and labels ŷi, we train the parameters θ of the network f using stochastic gradient descent to minimize empirical 
risk:

∑θ θ=
θ =

ˆ⁎ y f xarg min ( , ( , ))
(3)i

K

i i
1


 denotes the loss function, which is cross-entropy in our case. The minimization is carried out using the ADAM 
optimizer24 with a learning rate of 0.001.

The architecture of our proposed architecture ⋅ ⋅f ( , ), shown in Fig.  5, has been optimized on a 
cross-validation set and is given as follows: five convolutional layers with filters of size 3 × 3 and respective num-
bers of filters 64, 128, 256, 512, 512 each followed by ReLU activations and 2 × 2 max pooling; a fully connected 
layer with 1024 units, ReLU activation and dropout (p = 0.5) and a fully connected output layer for 3 classes 
(health, inflammation and cancer) and softmax activation.

Transfer learning.  Deep learning addresses complex prediction problems through neural networks with high 
capacity, i.e., highly non-linear functions with a large number of parameters, whose estimation typically requires 
a large amount of annotated training data. If this data is not available, the trained networks tend to overfit on the 
training data and thus generalize poorly to unseen data.

A standard solution to this problem is transfer learning or domain adaptation. The idea is to learn high capac-
ity models on large alternative source data sets whose content is sufficiently correlated with the target application 
and then transfer the learned knowledge to the target data. Various techniques have been proposed, which differ, 
among other in the way this transfer is performed and whether labels are available for the target data set (super-
vised techniques, e.g.25,26) or not (unsupervised techniques, e.g.27).

We perform supervised transfer using classical weight freezing and fine-tuning25, which transfers knowledge 
by first solving Eq. 3 on the target data set, and then using the obtained parameters θ⁎ as initialization (starting 
point) for the training of the network on the target data set. The assumption is somehow grounded by the exist-
ence of standard features in images from natural scenes, which transfer well to images from other domains.

We transfer knowledge from the well-known image classification task ILSCVR 2012 (aka ImageNet), a data-
set of roughly one million images and 1000 classes28. Our model architectures optimized for this task, and as 
described above, is very likely to underfit on this transfer learning setting. Its hyper-parameters, among which 
are its architecture and the number of parameters, has been optimized over a validation set, which is very much 
smaller than the ILVSRC data by roughly a factor of 500. Its design capacity will, therefore, tend to be much too 

Figure 5.  The proposed architecture of the deep network optimized for the task on the cross-validation set.
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small for the knowledge encoded in the source data (ILVSRC). For this reason, we take “classical” and well-known 
high-capacity models for the ILVSRC task, namely VGG1629, DenseNet30, and ResNet5031. From the pre-trained 
model, we remove the task-specific output layer (designed for 1000 classes) and replace it with a new layer for 
three classes. Among all possible combinations of freezing layers which tested, the model with freezing at the 
first 3 layers and fine-tuning the other layers on the validation data set returned the best performance shown in 
the Table 3. The results of the transfer learning method with different freezing layers on our database show the 
transferability of features from ImageNet database in the spirit of25.

We would liketo point out that the two different strategies (training from scratch vs. pre-training and transfer) 
are compared using two different model architectures. Our goal is to compare strategies, and different strategies 
can possibly have different optimal architectures. Network architectures need to be adapted to various parame-
ters of the problem, namely the complexity of the task and the number of training samples. As mentioned above, 
in our case, there is a big difference between the small size of our dataset and the large size of typical computer 
vision datasets like the ImageNet/ILSVRC dataset (1 M images). Therefore, this involves optimizing parameters 
(through SGD) as well as the hyper-parameters (through model-search). Only if both are optimized, the poten-
tials of the two strategies are compared. In contrast, comparing two identical architectures would have been 
inconclusive, as one of two architectures would have been better suited to the task at hand.

Research involving animals.  All applicable international, national, and/or institutional guidelines for the 
care and use of animals were followed. All procedures performed in studies involving animals were in accordance 
with the ethical standards of the institution or practice at which the studies were conducted.

Ethical standards.  This study was approved by the institutional review board of the Université Claude 
Bernard Lyon 1 (reference number: DR2014-62-v1) and complied with ethics committee standards.

Annotating software.  The annotating software tool has been specially developed for this study but is appli-
cable to any video endoscopy annotation for cancer. It is freely available at https://uabox.univ-angers.fr/index.
php/s/AZ2IZl6LDYRcd8P together with a demo video and some data sample.

Database
The experiments involving animals were led in accordance with the rules of the University Lyon 1 Ethics 
Committee on animal experimentation. Animals were acclimated for two weeks prior to the experiment in the 
following environment: a 12-hour day/night rhythm in 300 cm2 plastic cages (for four animals) with straw bed-
ding, pellet food, and tap water. The temperature of each cage was monitored and kept between 19 and 21 C. 
To induce colitis, mice were chemically treated with a single injection of azoxymethane (AOM, intraperitoneal 
injection, 10 mg/kg body weight) at the beginning and then, during six months, with dextran sulfate sodium in 
drinking water (DSS, concentration of 2%). During the experiment, a pressure sensor placed on the mouse’s chest 
in order to monitor the respiratory index of animals. Analyzed images used in this article chosen at the extrema 
of the respiratory cycle, where the movements are the slowest to minimize artifacts due to these movements. 
Mice anesthetized with 3% isoflurane and aspiration flow set at 0.4 L/min during the induction phase. A 25 μL 
solution of Fluorescein Isothiocyanate FITC- Dextran 5% (Sigma Aldrich), used as a contrast agent, is injected in 
retro-orbital of the mouse’s eye before the CEM investigation.

The anesthesia maintained during imaging with 1.4 to 1.7% isoflurane vaporization and aspiration flow set up 
on 0.4 L/min. The endoscopic test was conducted using a mini multi-purpose rigid telescope dedicated to small 
animals (Karl Storz). Acquisition of images made by using a 488 nm confocal endomicroscope CEM (CellVizio c, 
Mauna Kea Technologies) combined with a 0.95 mm outer diameter Proflex MiniZ microprobe (PF-2173, Mauna 
Kea Technologies). The microprobe was inserted through the operating sheath of this endoscope and positioned 
on the mice’s colon walls. During the acquisitions, the depth assessed was approximately 58 μm for a lateral res-
olution of 3.5 μm and a frame rate of 12 fps. The output image size is 329 × 326 μm2 corresponding to a matrix of 
292 × 290 pixels10.

In total, 38 mice were included in the study for a total of 66788 images which have been annotated as healthy 
tissue images (6474 images from 9 mice), cancer tissue images (46566 images from 13 mice) or inflammation 
tissue images (13748 images from 16 mice) by two experts together at the same time with a pre-knowledge of 
mice diseases. Images were also labeled according to the mice from which they were acquired. Annotation was 
realized with the help of an application (available in the additional information section) especially developed for 
this study freely available, as pointed in the supplementary material section. It enables the classification of images 
according to the three classes studied in this article but also other classes of interestin biomedical studies of the 
colon’s wall. This application is made available as supplementary material to this study. As mentioned in5, some 
of the raw images do not carry any information for diagnosis. This can be due to misposition of the probe which 
does not receive enough signal, a decrease of the fluorescence, saturation of the imaging sensor due to too high 
amount of fluorescence, due to residues, due to contrast agent extravasation or presence of some light-absorbing 
objects within mucous film located between the probes and the tissue. To prevent the expert from spending time 
on annotating such non-relevant images and improve the learning process, we decided, as usually done in video 
endomicroscopy32,33 to withdraw them automatically and only keep the informative frame. A simple test based on 
the computation of the skewness of the gray level histogram of the images demonstrated to be very efficient for 
this task. Images with a skewness higher than −5 (as an empirical threshold) were kept. The skewness captures the 
dissymmetry of the histogram around its mean value. This is useful to detect saturated or underexposed images. 
We estimated, on some 6000 images, that this simple statistical test performs 98% of good detection for the detec-
tion of images carrying no useful diagnostic information with a false alarm of 1%. Additionally, in order to assess 
the influence of theses artifactual images if they would not have been removed, an additional experiment has been 
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done on all raw data (without removing noisy data). This experiment showed a reduction of 2% (on average) on 
the recognition performance of each training strategy by using our proposed CNN model. This demonstrates the 
interest of the denoising step but also quantify the robustness of our model.

Based on the training strategies, the database was spilled into three datasets of training (for training of our 
model), validation (to optimize hyper-parameters), and testing (to report performance on). In the cross-subject 
training strategy, images of each subject (mouse) were transferred into one of the datasets of training, validation, 
and testing. The exact number of mice in each dataset shown in Table 1. In the cross-sample training strategy, 75% 
of the whole database transferred to the training dataset, and the rest of the data belonged to the testing dataset. 
In this case, the validation dataset was extracted from the training dataset for deep learning experiments. This 
splitting database approach made a guaranty that the test dataset was not seen during training and validation of 
the model.

Conclusion
In this paper, we have presented three classification approaches to classify three states of health, inflammation, 
and cancer on mice colon’s wall. Fully automated machine learning-based methods are proposed, including deep 
learning, transfer learning, and classical texture-based classification. Different training strategies are compared 
in order to find the best approach for this specific problem. The images processed in this paper were acquired in 
the framework of a preclinical study on colon mice. In this type of study (preclinical), the size of the database is 
not comparable with other domains in machine learningAs also underlined in34 on the different types of images, 
we found that a custom deep learning model shows superiority over handcrafted features and well-known deep 
learning-based architectures. The best classification performance on this type of images are achieved with our 
proposed CNN model which are trained on colon’s wall images.

In the cross-sample case, where generalization to unseen subjects is not an issue, Deep learning gave a per-
formance of 99.93% of correct classification. Similar to the cross-sample, in the cross-subject approach where 
classification on un-seen objects is an issue, our proposed CNN method showed a performance of 98.49% of cor-
rect classification. These are usual order of magnitude of performance obtained with nowadays machine learning 
approaches when vast data sets are available, but this can be considered as excellent performance indeed here 
since we worked with the typical small data sets available in preclinical studies.

This work corresponds to the first fully automated classification algorithm for mice colon’s wall images 
reported in the literature. Similar works were carried on the human colon’s wall with the same imaging system. 
The comparison of the closest work14 with our algorithm shows a comfortable margin of a 14% of accuracy. This 
is an interesting result which demonstrates that in the perspective of machine learning, there is no guarantee of 
translational research between human and animal. Also, a novel unsupervised sampling strategy based on the 
specific similarities of images in the acquisition of images with endomicroscopy in the colon has been designed. 
The interest of this sampling strategy has been demonstrated in terms of amount of data required in the training 
data sets to reach a plateau of performance. However, the performance of this sampling strategy is lower than 
brute forces classical approaches. It would be possible to improve the metric of similarity used to select the images 
in the training data sets automatically. This was based on first-order statistics in this study, but other approaches 
could be used to include more dynamical information. However, due to the multi-scale sources of temporal noise 
(movement of the probes35, passing of unexpected items between probe and tissues, biological movement,etc.) it 
would be an open question to determine a reasonable time scale for this smoothing.

Our clustering method is somewhat related to active learning, where the agent requests feedback on data 
from a user. The comparison is a little bit a stretch, as no new data is collected from decisions by an agent. In our 
current implementation, the dataset stays stable, and only a subset is actively chosen.

However, we plan to investigate active learning as future work, where a classifier is trained on a subject fol-
lowed by continued examination of the subject on new samples. Here, an agent could quickly provide decisions 
on (i) which samples should be added to the training set, and (ii) into which direction the user should emphasize 
its search in order to optimize performance and discovery. This leads to an exploitation/exploration trade-off 
known from Reinforcement learning.

Direct perspectives of other sampling strategies are possible. It would now be possible to apply the classifica-
tion scheme developed here to produce a score on individual mice quantifying the number of images with the 
disease. Such a quantification could then be compared with clinical scores realized on other types of imaging 
systems in a multimodal perspective such as the one recently shown with magnetic resonance imaging36. Also, the 
machine learning approach presented with a discussion on the different training strategies could be transposed 
to other bioimaging problems. In confocal endomicroscopy, this includes, for instance, the characterization of 
other colon’s diseases observed in confocal microscopy37 or other parts of the digestive system38 or also to other 
organs39 which have received interest and could benefit from machine learning approaches to perform automated 
characterization of tissues.
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Abstract: Since most computer vision approaches are now driven by machine learning, the current
bottleneck is the annotation of images. This time-consuming task is usually performed manually
after the acquisition of images. In this article, we assess the value of various egocentric vision
approaches in regard to performing joint acquisition and automatic image annotation rather than
the conventional two-step process of acquisition followed by manual annotation. This approach is
illustrated with apple detection in challenging field conditions. We demonstrate the possibility of high
performance in automatic apple segmentation (Dice 0.85), apple counting (88 percent of probability
of good detection, and 0.09 true-negative rate), and apple localization (a shift error of fewer than 3
pixels) with eye-tracking systems. This is obtained by simply applying the areas of interest captured
by the egocentric devices to standard, non-supervised image segmentation. We especially stress the
importance in terms of time of using such eye-tracking devices on head-mounted systems to jointly
perform image acquisition and automatic annotation. A gain of time of over 10-fold by comparison
with classical image acquisition followed by manual image annotation is demonstrated.

Keywords: egocentric vision; image annotation; apple detection; eye-tracking

1. Introduction

In the era of machine learning-driven image processing, unequaled performances are accessible
with advanced algorithms, such as deep learning, which are highly used in computer vision for
agriculture and plant phenotyping [1]. The bottleneck is no more the design of algorithms than the
annotation of the images to be processed. When performed manually, this annotation can be very
time consuming, and therefore very costly. Consequently, it is useful to investigate all possibilities
to accelerate this process. Annotation time can be reduced via multiple approaches, which have
all started to be investigated in the domain of bioimaging and especially plant imaging [2–9]. First,
(i) annotation time can be reduced by parallelizing the task via online platforms [5]. Additionally,
(ii) it can be reduced by using shallow machine learning algorithms that automatically select the most
critical images or parts of the images to be annotated via active learning [4]. Transferring segmentation
models (iii) learned over available datasets can significantly reduce the need for annotated data
[10]. Another approach to reducing annotation time (iv) is to do the training on synthetic datasets
that are automatically annotated [2,3,6,7,9,11]. At last, (v) annotation time can be reduced via the
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use of ergonomic tools, which enable human annotators to accelerate the process without loss of
annotation quality [8]. In this article, we contribute to the latter approach (v) to reduce annotation time.
We introduce a novel use of egocentric devices in computer vision for plant phenotyping and assess
their value to speed up image annotation.

The term “egocentric device” is used to designate all wearable imaging systems that record images
from the first-person perspective. Images captured from egocentric devices are possibly of high value,
since their field of view benefits from the attention of the person who wears the device and who is in
charge of the targeted task to be done on the images. Reducing the field of view to a part of specific
interest may reduce the complexity of the inspected scene and thus help the automatic processing of
the acquired images. This is expected to be especially useful in complex scenes, such as those found
outdoors in agriculture and phenotyping in the fields. Additionally, some egocentric devices, namely,
head-mounted eye-trackers, can even include the capture of the ocular position of the annotator during
the recording of the videos. This would, in theory, open up the possibility to annotate images directly,
whereas acquisition and annotation are usually two separate steps. Such use of egocentric devices
opens up the possibility to conduct these steps jointly and hence reduce annotation time. However,
eye-trackers can never be perfectly calibrated, and their practical value in terms of both performance
and time is still to be assessed in order to speed up annotation. That is what we propose here.

For the first application of egocentric devices to accelerate annotation, we considered as a proof
of concept, a standard problem in computer vision for plant phenotyping. We chose the detection,
i.e., segmentation, counting, and localization of apples in color images. This task has been addressed
in many ways, including recently, with deep learning. This canonical problem is challenging for
computer vision, since it includes self-occlusion of multiple instances, occlusion by the shoots of the
apple trees, the variation of illumination, clutter from the self-similar background, variety in sizes and
colors of fruits, etc. Additionally, this computer vision problem is significant for various agricultural
applications, such as the design of automatic harvesters, automatic estimation of the fruit pack out,
and variety testing. Most state-of-the-art methods developed for apple detection are currently working
with supervised learning. Such methods require annotated images of apples to be efficient. In this
article, we demonstrate how the use of egocentric devices can accelerate the annotation of apples in
images. This acceleration in image annotation, illustrated here with apples, is of high value since it
could benefit from reducing the annotation cost of any supervised learning segmentation method.

A visual abstract of the proposed original approach for a joint image acquisition-annotation
process is illustrated with apple detection in Figure 1. For comparison, the conventional approach is
also depicted in Figure 1 wherein a handy camera is used to acquire images, and after image transfer
to a computer, images are manually annotated. We propose a single-step approach where hands-free,
head-mounted cameras with embedded computational resources are jointly acquiring and annotating
images. The article is organized as follows. After positioning our work with the most related work
(Section 2), we present (Section 3) the egocentric devices used, the acquisition protocol, and the dataset
created for this study. A classical algorithm adapted from the literature is described, as we use it to
detect apples in color images (Section 4). The same algorithm is then applied to compare five different
computational strategies, specially designed for this study, to reap benefits from egocentric vision
(Section 5). We finally conclude on the best practice identified via this comparison.
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Figure 1. Visual abstract of the article. The red dotted-line encapsulates the conventional two steps of
the acquisition and annotation process. We jointly perform image acquisition and image annotation
by the use of a head-mounted egocentric device, which simultaneously captures images and the
gaze of the person who wears the device and reaps benefits from both factors to annotate images
automatically. It is to be noted that the post-processing step to separate touching annotated objects is
not included here. It remains a step necessary in the conventional two-step approach and our proposed
single-step approach.

2. Related Work

Egocentric (first-person) vision is a relatively new research topic in the field of computer
vision which is increasingly attracting interest for understanding human activities [12–15], object
detection [16,17], creation of models of the environment with different levels of precision [18,19],
perception of social activity[20], user–machine interactions [21], driving assistance [22], and medical
applications [23–25]. There are different types of egocentric systems, such as smart glasses, action
cameras, and eye-trackers. Based on the processing capabilities, embedded sensors, such as the one
used in this article, are now more and more utilized in conjunction with egocentric video analysis [21].
Features such as hand appearance and head motion give essential cues about the attention, behavior,
and goals of the viewer [26–29]. In our case, we also used the fact that, usually, in egocentric vision,
salient objects of interest tend to occur at the center of the image, since they attract the attention of the
viewer [16,30]. In this article, we primarily used an eye-tracking system for egocentric vision to speed
up image annotation. The use of eye-tracker to speed up image annotation has been proven useful for
annotation with a screen-based system in [8,31,32]. Those studies demonstrated a possible gain of time
for annotation of 30-fold (approximately) by comparison with manual annotation. Here, we use, for the
first time to the best of our knowledge, an embedded eye-tracking system in the form of glasses (see
Figure 1) to jointly conduct image acquisition and annotation and thus extend the results of [8,31,32].
Embedded eye-tracking systems are known to be less accurate than screen-based eye-tracking systems
because they can move slightly on the head of the observer during acquisition. However, embedded
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eye-tracking systems open the door for an accelerated procedure with joint acquisition and annotation,
as illustrated in Figure 1. In this article we will compare the performances in terms of accuracy of apple
detection and annotation time of both screen-based eye-tracking systems and embedded eye-tracking
systems for image annotation.

Object detection in agricultural conditions has been investigated with a large panel of computer
vision approaches [33–45]. In the early works, such as [33], methods were handcrafted both from
the hardware side and the software side. Nowadays, it is more common practice to use standard
RGB cameras, and base the detection of apples on supervised machine learning methods learned
end-to-end via deep learning, as in [44,45]. Such modern methods, neural network-based, show
high performances but require large amounts of annotated images. Manual pixel-wise annotation is,
in general, a time-consuming operation, taking approximately 1.5 h per 100 images (308× 202 pixels).
In practice, apple detection is also challenging because of illumination conditions [46–48]. In this
article, we will not provide a novel method to detect apples automatically. Instead, we will investigate
the possibility of performing acquisition and annotation of apples in an orchard environment
simultaneously by using head-mounted egocentric devices. Indeed, while there has been significant
recent interest in fruit detection, segmentation, and counting in orchard environments, the cost of
providing a unified annotated dataset of the fruit on trees makes it the bottleneck in the state-of-the-art
literature [49].

The head-mounted egocentric camera provides areas of interest located in the vicinity of the
targeted objects in the scene. Therefore, these areas of interest are less accurate than if a manual
annotator was pointing at the object with a mouse. We propose in this article to test a standard
image segmentation approach to detect the targeted object in the areas of interest provided by the
head-mounted egocentric camera. As a consequence, the work relates to the literature on weakly or
semi-supervised learning [50] with inexact supervision; that is, the training data are given with labels
that are not as exact as desired. Different semi-supervised learning models have been introduced,
such as iterative learning (self-training), generative models, graph-based methods, and vector-based
techniques [51,52]. The color-based clustering technique for apple detection by using Gaussian Mixture
Models was explained in [53]. In this approach, the SLIC superpixel was applied to the input image
using the LAB color space. The superpixel’s results were clustered into approximately 25 color classes.
Finally, based on the KL-divergence between Gaussian Mixtures, each superpixel was classified into
an apple or background [54], from hand-labeled classes. Our objective was not to design a novel
semi-supervised algorithm. Instead, we revisited existing standard methods based on superpixels and
assessed the value of the areas of interest extracted by the head-mounted egocentric camera for a given
task of object detection.

3. Material and Method

3.1. Egocentric Vision Device

The egocentric imaging system used was VPS-16 head-mounted eye-tracking glasses equipped
with stereoscopic cameras in the nose bridge, a front camera with a diagonal coverage of 88 degrees,
and an audio microphone sampling at 10 kHz. The front camera was calibrated with the eye-tracker
before acquisition. The visual task defined to the wearer was to find apples on the targeted trees.
The acquisition time was nearly 90 s for the whole dataset (calibration time included). This acquisition
time is quite similar to the time required with a digital camera fixed on a tripod or hand-held,
the former of which would need to be located in different positions to cover all apples located on a tree.
The distance of the viewer and the tree was set approximately to one and a half meters. The viewer
was counting the number of apples as evidence of the ground-truth, which was recorded via the audio
microphone. Fixation points were recorded by the eye-tracker to investigate how they could serve to
automatically annotate apples on the trees.
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3.2. Dataset

With the sensor described in the previous subsection, we generated a new dataset of 10 videos
(25 fps) from 10 various apple trees in the orchard environment captured by the egocentric head-mounted
glasses’ eye-tracker. The total number of extracted images from the entire dataset was 24,618 (frames).
A fundamental parameter of eye-tracking analysis depends on the definition of the fixation and the
algorithm used to separate fixation from saccades [55]. Fixation refers to a person’s point-of-focus as
they look at a stationary target in a visual field. Although the mean duration of a single fixation may
depend on the nature of the task [56], numerous studies have been done to measure the average duration
for a single fixation [56–65]. The mean fixation duration for visual search is 275 ms, and for tasks that
require hand-eye coordination, such as typing, the mean fixation can be 400 ms [56]. Among our dataset,
the number of frames which received gazing of at least 275 ms was 419. The acquisitions were made
on two days at midday with different weather conditions at the orchard of INRAE Angers, France. No
difference was found in the results of the data coming from the two days. This dataset includes a variety of
apple colors together with apple and foliage density, which are representative of the dataset found in the
literature for apple detection [66–68]. Due to the complexity of each orchard tree, the illumination, and the
environment itself, different natural colors were found in the images, including various shades of green,
red, yellow, brown, or gray for the appearance of foliage, grass, apples, and tree trunks. Ground-truth was
created by manual annotation of the raw color images at approximately 54 s per image by using the Image
Segmenter application in Matlab 2017a. A sample of raw color images from different apple trees and their
corresponding manual ground-truth are illustrated in Figure 2. For the whole dataset, which consists
in 419 images, it roughly took 6 h to manually annotate all images. These manual annotations were
generated for evaluation of the accuracy of the egocentric vision methods presented in the next section.

Figure 2. Example of RGB images of apple trees from our dataset and the corresponding ground-truth
(manually annotated).
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4. Image Processing Pipeline

In this section, we present the image processing pipeline developed to automatically annotate
apples from the attention areas captured with egocentric vision. A global view of this pipeline
is depicted in Figure 3 and includes three main steps: image pre-processing, segmentation,
and performance evaluation.

Figure 3. The three-step image processing pipeline proposed to automatically segment apples from the
attention areas captured with egocentric devices.

The pre-processing started with the extraction of the frames with a resolution of 960× 544 pixels
from recorded videos. Next, an attention area was extracted from each frame based on egocentric
priors. The extraction of this attention area constitutes the main contribution of the article. Several
strategies have been tested and are presented in the next section. The pre-processed images were then
segmented with a standard approach for apple detection similar to the one presented in [49,53,69–71].
A classical superpixel technique (SLIC) [72] was applied followed by a simple non-supervised
clustering technique, K-means [73], to select superpixels corresponding to apples. To keep the size of
superpixel independent of the size of the attention area, we defined the number of superpixels as the
ratio of

N =
A
S

, (1)
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where A represents the size of the attention area, and S the size of an average apple, which is equal to
900 pixels in our dataset.

To simplify the images, the tree-labels (blue in our case) and sky parts were removed by applying
color thresholding (optimized on a small dataset) in the RGB color domain on the superpixel segmented
attention areas, as shown in Figure 4. The number of cluster K was found optimal for K = 2 and
was applied to feature space composed of (R, G, B, H, S) respectively for red, green, brightness, hue,
and saturation from each superpixel. The cluster with the smaller size was considered as the apple
cluster based on the assumption that the background occupied the largest area in the attention area.
Because blue parts were withdrawn and no green apples were present, the optimal value of K = 2
was reasonable for our use-case of apple detection in the orchard. Indeed, the local complexities in
attention areas extracted from the egocentric devices were limited to objects on a background with a
contrast of color. For other use-cases, where local contrast between the object and background could
depend on other features (size, texture, shape, etc.), it would be necessary to adapt this segmentation.

Figure 4. Color thresholding to remove blueish color belonging to the sky or blue tree-labels on
superpixel segmented attention areas. Each row represents from left to right: the attention area,
the superpixel segmented attention area, and the thresholded one, respectively.

Finally, the segmented apples were superimposed over the original image for qualitative
assessment and localization, and compared with the manual binary ground-truth to compute the
segmentation accuracy via the Dice Dc(X, Y) and Jaccard index J(X, Y) given by

Dc(X, Y) =
2 ∗ |X ∩Y|
|X|+ |Y| , (2)

J(X, Y) =
|X ∩Y|
|X ∪Y| , (3)

where X and Y represent the segmented image and the ground-truth respectively.
In addition to the segmentation of apples, counting and localization were also computed in the

following way. For object counting, we counted the number of connected components among detected
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objects which shared sufficient overlaps with ground-truth. An empirical threshold of 75 percent was
chosen for the overlap. The probability of good detection was computed as

PD =
TP

TP + FN
, (4)

with TP number of true-positive objects and FN number of false-negative objects. We also computed
the probability of true-negative rate as

TNR =
TN

TN + FP
, (5)

with TN number of true-negative objects and FP number of false-positive objects.
In localization, the Euclidean distance between the centroid xi of detected objects Xi and the

centroid yj of objects Yi with a maximum intersection with ground-truth was computed as

d(xi, yj) =
√
(uxi − vyj)

2 + (uxi − vyj)
2 , (6)

with u and v, which stand for Cartesian coordinates in the images and

j = arg max
j0

∣∣Xi ∩Yj0

∣∣ . (7)

The average distance

d =
1
N

N

∑
i=1

d(xi, yj), (8)

was computed over all detected objects sharing sufficient overlap with ground-truth. Here again,
a threshold of 75 percent of overlap was chosen. Distance d represents the average shift error of
localization of apples with an egocentric device from manual ground-truth.

5. Strategies for Extracting Attention Area

In the following we mention different approaches for extracting attention area either using
eye-tracking or not.

5.1. Attention Area from Eye-Tracking

In this section, we present strategies that we developed to extract attention areas from the
eye-tracking devices to perform joint acquisition-annotation after passing these areas to the image
processing pipeline of the previous section.

5.1.1. Selection by Eye-Tracking Glasses

The first approach extracted attention areas via the viewer fixation computed from the egocentric
eye-tracking glasses. In order to fix a threshold, a gazing position was recorded when the same fixation
position was observed during an interval of 6 frames, as calculated by

f i = Fps× f d , (9)

where f i is the frame interval, Fps = 25 is the number of frames per second, and f d is the average
fixation duration, which was set as 275 ms. Despite careful calibration before the acquisition, small shift
errors of alignment between the front camera of the device and the gazing point of the viewer can
occur. Therefore, we extended the attention area around each gazing position with a given radius
to compensate for the remaining small shift error of calibration of the eye-tracker. An illustration
of the creation of an attention area around a fixation point is provided in Figure 5. A systematic
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analysis of the evolution of the average segmentation accuracy as a function of the radius of the
attention area around each gazing position was undertaken. It is shown in Figure 6 and demonstrates
a non-monotonic evolution culminating at a value corresponding to triple the size of an average apple
size in our dataset. Consistently, this optimal value was also found to be very close to the maximum
shift error of calibration of the eye-tracker found in the whole dataset. For attention areas that are
too small, due to the shift error, apples can be missed. For overly large attention areas, due to the
complexity of the scene, the segmentation process fails to detect all apples correctly in the area.

Figure 5. Construction of attention areas. (a) The average diameter of an average apple is 30 pixels in
our dataset; (b) a cross indicates the center of the gaze of the annotator. There is a shift error from the
apple of (a). The maximum distance of the gazing point with the center of the closest object was found
at 169 pixels. (c) Chosen attention area with a size of 180× 180 pixels.

Figure 6. Apple segmentation accuracy as a function of the radius of attention area expressed in the
size of apples taken as 30 pixels. Maximum accuracy achieved when the radius size of the attention
map is equal to 80 (160× 160 pixels) corresponding to the red dotted line. The purple dotted line
corresponds to the maximum gaze shift error of (169 pixels) between eye-tracker and ground-truth
when computed on the whole dataset.
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5.1.2. Selection by Screen-Based Eye-Tracking

For comparison with the attention area created with the egocentric eye-tracker directly acquired
in the orchard, we also generated an attention map from the gazing point recorded with a screen-based
eye-tracker. Of course, this approach is less interesting for gain of time than the previous one with the
head-mounted eye-tracker, since it does not allow a joint acquisition annotation. However, desktop
eye-trackers are more accurate than head-mounted ones and thus are expected to constitute a reference
serving as an upper bound in terms of quality of annotation with ego-centric vision. The experiment
was performed on a screen with a resolution of 1920× 1080 pixels while the eye movements of the
viewer were recorded with an SMI binocular remote eye-tracker [74]. In this approach, for each apple
tree, we peaked out one frame, which included all the apples.

The annotation protocol was the same as in the previous method. Each image was displayed to
the viewer, who was asked to find the apples on the trees. The locations of the fixations of the viewer
were recorded at 60 Hz. For a fair comparison, the attention area diameter around each recorded
fixation was taken at the optimal value found for the eye-tracking systems embedded in glasses.

A comparison of the accuracy of the screen-based eye-tracking recording and the recording
with eye-tracking embedded in glasses was conducted. Figure 7 shows that in the form of heatmap
visualization of the attention of the viewer. The precision and accuracy of the produced gaze points with
the screen-based eye-tracker were found to be higher than when using the head-mounted eye-tracker.
The average shift error of Equation (8) was found to be 125 pixels less with the screen-based eye-tracker
than with the head-mounted eye-tracker.

Figure 7. Heatmap visualization of the attention of the viewer captured by the head-mounted (glasses)
eye-tracker (a) versus the screen-based eye-tracker (c). (b) Comparison of the heatmap generated by
the glasses eye-tracker (left) vs. the heatmap generated by the screen-based eye-tracker (right).

5.2. Attention Area without Eye-Tracking

Other strategies were developed to extract attention areas for comparison with performances
obtained with eye-tracking systems.
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5.2.1. Full-Frame

In this approach, the attention map was considered as the full-frame recorded by the camera. Thus,
in Figure 3, instead of a small patch of the entire original image, the full original image was directly
transmitted to the superpixel segmentation. Such a choice assumes that the camera field of view is
already a focus of the overall field of interest for the human annotator in charge of detecting apples.

5.2.2. Egocentric Prior

In this approach, we assumed, as is often done in egocentric vision [16], that the attention of
the viewer was focused at the center of the frame. Therefore, we selected the attention area as a disk
positioned at the center of the image with the size of 180× 180 pixels for a fair comparison with the
other approaches developed for eye-trackers.

5.2.3. Saliency Map

As the last method to compute an attention area, we turned toward a computational approach in
charge of numerically identifying areas of interest. Such a concept has been developed in the computer
vision literature under the name of the saliency map. Saliency acts as a local filter that enhances regions
of the image which stand out relative to their adjacent parts in terms of orientation and/or gray level
and/or color contrast [75]. Introduced in [76], saliency was inspired by the mechanisms of human
visual attention and the fixation behavior of the observer. There are numerous computational models
for salient object detection. In this study, for illustration and without any claim of optimality, we used
the algorithm proposed by [77], which computes saliency map in images using low-level features
and was proposed with codes included for reproducible science. Saliency maps were thresholded to
binary masks following the fixed threshold procedure described in [77]. Each connected component
of the binary saliency map served to produce an attention area. For a fair comparison with the other
approaches, attention areas of size 180× 180 pixels were chosen.

6. Results and Discussion

We are now ready to compare the results of the different approaches proposed for apple
detection by extracting attention areas through egocentric vision in the perspective of a joint
acquisition-annotation process. As shown in Table 1, we assessed the image annotation quality
by the same image segmentation pipeline of Section 4 (depicted in Figure 3). Comparison is provided
between the five different approaches presented in Section 5 for the extraction of attention areas from
egocentric devices. In terms of segmentation, accuracy was estimated by the Dice Equation (2) and
Jaccard Equation (3) indexes. The probability of good detection indicates the true counted apples
computed by Equation (4). The true-negative rate Equation (5) represents the proportion of actual
negatives that are correctly identified. The next column in Table 1 specifies the error of localization
of detected apples computed by Equation (8). Time is the approximate consumed execution time
(automatic annotation) acquired from each approach of the whole dataset. Finally, the time gain
indicates the ratio of manual annotation time over the consumed execution time obtained from each
automatic annotation approach. All these experimental results correspond to an average of over 10
different trees available in the dataset.

The best average performances (highlighted in bold in Table 1) in terms of segmentation accuracy
of apples were obtained with the eye-tracking-based methods. Challenging images and resulting
annotations with eye-tracking-based methods are provided in Figure 8 for qualitative assessment.
Overall, the screen-based eye-tracker provided the best result but only slightly above the one obtained
from the glasses eye-tracker. This embedded glasses eye-tracker, despite its substantial shift errors,
had a high value since it enabled joint image acquisition and annotation. The saliency approach
provided a result close to the one obtained with the baseline method (full-frame). This could certainly
be improved with a systematic benchmark of other saliency methods of the literature. However,
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a fundamental reason for the failure of the saliency approach, which would be common to all generic
saliency maps, is that saliency is, so to say, attracted by contrasting objects which may not be apples
(for example, stems, leaves, items in the background, a data matrix positioned in the field to identify
trees). As a consequence, saliency creates many true-negatives in attention areas since the task of
detecting apples does not specifically drive it. In contrast, human attention focuses on the apple as
captured by eye-tracking systems.

Interestingly these results were consistent for the three tasks assessed: segmentation, counting,
and localization. This demonstrates the robustness of the interest of eye-tracker devices for annotation.
Eye-tracking systems, such as the two used in this study, can be considered as expensive devices
(typically between 10,000 and 20,000 euros currently). It is interesting to see that the egocentric prior
approach gave the third-best performance, and this could be accessible with any camera embedded on
glasses (for 10 to 100 euros).

Table 1. Performance of apple detection with the five approaches developed for automatic apple
annotation in the attention area captured by the egocentric devices. Each column corresponds to
an average over the 10 trees of the dataset. Dice and Jaccard assess in percentage the quality of
segmentation via Equations (2) and (3); good prediction and true-negative rate assess in percentage the
quality of object detection via Equations (4) and (5); and the shift error of Equation (8) assesses in pixels
the quality of good localization. The time corresponds to the approximate execution time for automatic
annotation for the whole dataset in seconds. Time gain indicates the ratio of manual annotation time
(6 h) over automatic annotation time obtained from each approach. Time was measured on a windows
machine with an Intel Xeon CPU and 32.0 GB RAM by Matlab 2017a.

Method (Section) Dice Jaccard Good
Detection

True-Negative
Rate Shift Error Time

(Second)
Time
Gain

Full-Frame (Section 5.2.1) 0.24 ± 0.22 0.21 ± 0.16 0.31 ± 0.20 0.17 ± 0.72 174.11 ± 34 880 24

Glasses Eye-tracker (Section 5.1) 0.78 ± 0.08 0.64 ± 0.08 0.84 ± 0.16 0.09 ± 0.07 15.97 ± 11 1960 11

Screen-based Eye-tracker (Section 5.1.2) 0.85 ± 0.09 0.77 ± 0.13 0.88 ± 0.12 0.09 ± 0.13 2.37 ± 1.86 3240 6

Egocentric Prior (Section 5.2.2) 0.46 ± 0.36 0.38 ± 0.31 0.54 ± 0.39 0.28 ± 0.23 84.82 ± 7.25 1960 11

Saliency (Section 5.2.3) 0.27 ± 0.13 0.16 ± 0.08 0.42 ± 0.45 0.51 ± 0.17 7.21 ± 8.28 2358 9

The values of the obtained results in terms of segmentation, counting, and localization were
also assessed in terms of timing. As expressed in Section 3.1, acquisition time with an egocentric
device is comparable with acquisition time with any standard camera. Therefore gains of time were
compared regarding the annotation time only. This timing is provided in the last column of Table 1
for automatic annotation based on the image processing pipeline applied to extracted attention areas.
Without any surprise, the full-frame approach, which requires no computation of attention map, is the
fastest method. The second most rapid methods are the egocentric prior and glasses eye-tracker.
The screen-based eye-tracker method, which gave the best performance in terms of apple detection,
came with the slowest timing. However, these timings for automated annotation are to be compared
with the timing requested by a human annotator to manually annotate all apples in the dataset.
The estimated timing was 6 h for the 419 frames. The gain of time for all methods is presented in
Table 1. Saliency, as presented here, could be criticized since many other variants of the saliency
map could be tested and possibly provide better results. In terms of timing, however, we believe the
performances are realistic, and it was worth mentioning them here. All in all, the glasses eye-tracker
method appears to be a good trade-off between speed and annotation performance (as summarized in
Table 2). For this head-mounted device, the gain in performance was about 11 times, which is smaller
than what was found in the closest related work with desktop eye-trackers for object detection [8,31,32].
This difference may come from the fact that in this literature, the tasks targeted were relatively more
straightforward and required less post-processing. Optimization of the code could thus increase the
gain in time. We are currently investigating all those perspectives.
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Figure 8. Qualitative assessment of results. From left to right, an example of the attention area
captured by eye-tracking, automatic annotation obtained from the proposed image processing pipeline
of Figure 3, ground-truth manually recorded, and comparison of manual ground-truth and automatic
segmentation. (a) Examples of good performance; (b) Some challenging conditions wherein more
errors were found (missed detection, false detection).

Table 2. Qualitative summary of the five uses of egocentric devices compared in this study.

Method Joint Acquisition
Annotation

Fastest
Execution Time Best Annotation Best Counting Best Localization

Full-Frame + + - - -

Glasses Eye-tracker + - + + -

Screen-based Eye-tracker - - + + +

Egocentric Prior + - - - -

Saliency + - - - +
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7. Conclusions

We have assessed the value of egocentric imaging devices to jointly perform acquisition and
automatic image annotation. This was illustrated with apple detection in orchards, which is known
to be a challenging task for computer vision applied to phenotyping or agriculture. Despite shift
errors in the calibration of egocentric imaging devices, the performance of the detection of apples
from the gazed recorded areas was found to be very close to the one obtained from the manual
annotation. The compensation for these shift errors was obtained by applying a standard non
supervised segmentation algorithm only applied in attention areas centered on the gazing positions
captured by the egocentric devices. Specific interest was shown for head-mounted eye-tracking
systems with an estimated gain of time in comparison with manual annotation of 11 times with
non-GPU-accelerated software.

This first use of egocentric vision to speed up image annotation opens up interesting perspectives,
especially in plant phenotyping. The task here was focused on apples, but the approach is in fact
generic. Thus, it would be interesting to extend the applicability to other phenotyping items of interest.
The non-supervised image segmentation algorithm applied in gazed areas was purposely chosen
simply in this article to demonstrate the value of the eye-tracking device. It is interesting to notice
that performances obtained with this simple algorithm were already interesting quantitatively and
qualitatively. The literature of non-supervised image segmentation with superpixels is huge [78,79],
and it would be interesting to revisit more exhaustively this literature for the segmentation of gazed
areas. Specific attention could focus on the methods addressing the limitation of superpixels [80],
also observed in this article, with "leakage" of boundaries in the vicinity of the targeted objects [81].
To remain on the topic of apples, this could include the determination of flowering stages or the
detection of diseases. Additional technological services from egocentric vision could be tested to speed
up annotation. For instance, this includes the use of sound recording, which could be coupled to
automatic speech recognition for later fusion with information extracted from the captured images.
The pilot study presented here is promising. For a tool to be used by technicians and engineers in the
field, it would be necessary to implement an ergonomic version of the software to experiment on a
large network of users the method developed to accelerate image annotation with egocentric devices.
Validation of the quality of the annotation was performed at various levels, including location, object
detection, and pixel-wise segmentation. Another stage of validation of the quality of the annotation
would be to train a machine learning algorithm on the annotated images and compare the performance
with the manually annotated data.
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A B S T R A C T   

The problem of final tissue outcome prediction of acute ischemic stroke is assessed from physically realistic 
simulated perfusion magnetic resonance images. Different types of simulations with a focus on the arterial input 
function are discussed. These simulated perfusion magnetic resonance images are fed to convolutional neural 
network to predict real patients. Performances close to the state-of-the-art performances are obtained with a 
patient specific approach. This approach consists in training a model only from simulated images tuned to the 
arterial input function of a tested real patient. This demonstrates the added value of physically realistic simulated 
images to predict the final infarct from perfusion.   

1. Introduction 

Stroke is a major cause of mortality and disability in the world [1]. 
Stroke is divided into ischemic (85%) and hemorrhagic types (15%) [2]. 
Ischemia occurs when a cerebral artery is occluded [3]. Neuroimaging in 
acute stoke aims to obtain rapid information on tissue and vessel status 
to aid acute stroke intervention [4]. Diagnosis obtained from modern 
neuroimaging modalities enables efficient management of ischemic 
stroke and decide weather patient may benefits from intravenous 
thrombolysis or mechanical thrombectomy [5,6]. The most common 
neuroimaging, due to its widespread immediate availability, is 
computed tomography (CT), which is used in the initial diagnosis to 
determine the type of stroke (ischemic or hemorrhagic) [7]. Magnetic 
resonance imaging (MRI) may be substituted for CT as it becomes more 
readily available and it provides greater physiological information on 
soft tissues. MRI imaging for acute stroke include diffusion-weighted 
imaging (DWI) and perfusion-weighted imaging (PWI) [4]. DWI al
lows early detection of an infarcted lesion within minutes of a stroke by 
quantifying motion of water molecules: restriction in the diffusional 
movement of water is subsequent to cytotoxic edema. PWI is a func
tional brain imaging modality which requires the administration of an 
intravenous bolus of an contrast agent and provides information on the 
hemodynamic status of the tissues. The combination of DWI and PWI is 
commonly used in clinical practice to evaluate the extent of irreversible 
tissue damage (). In the treatment decision context, this information 

helps physicians to identify acute stroke patients that could benefit from 
reperfusion therapies. 

Still, developing automated methods to predict the extent of the 
stroke lesion from MRI scans remains an open challenge [8]. This pre
diction has been mainly addressed so far with thresholded hemody
namic biomarkers based on kinetic models [9–11]. However, given the 
high dimensionality of PWI, machine learning techniques [12] have also 
been successfully proposed in recent years [13–21]. A limitation to the 
use of supervised machine learning is the limited amount of data. This 
lack of data is mainly due to the poor quality of the clinical datasets 
(corrupted or missing images), the insufficient amount of labelled data 
(current datasets limited to a few hundred patients) and the imbalance 
between classes (more pixels healthy than pathological pixels). This can 
be considered as a bottleneck specially when using highly discriminating 
algorithms depending on a large number of parameters. A way to 
circumvent this limitation is to generate more data from simulation and 
image synthesis model [22–24]. Data augmentation is also a way to 
improve regularization and reduce overfitting by injecting more prior 
information into the training dataset [25]. 

In this article, we assess the interest of simulation for the prediction 
of the fate of acute stroke lesion. This prediction is undertaken here with 
deep learning on convolutional neural networks (CNN) since they are 
known to have, by comparison with the classical shallow learning 
techniques (support vector machines, random forests …), higher amount 
of parameters to be tuned and can produce the best performances but 
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also are the most likely to benefit from data augmentation. 
Deep learning has been applied in stroke in different contexts 

including prediction from perfusion imaging or with other MRI modal
ities, for whole tissue segmentation or voxel-based classification and 
also with more or less complex neural network architectures [14–18]. In 
our case, we apply a standard architecture of CNN learning at the voxel 
level for binary classification of the fate of the tissue (i.e. tissue expan
sion or regression) from spatio temporal data. Neural networks usually 
require some data augmentation which is conventionally done in deep 
learning with spatial distortions likely to occur in nature [26]. In our 
case, due to the temporal dimension of the data, usual spatial distortions 
would not correspond to realistic transformation which differentiate a 
patient from another. Instead, we propose to use a 3D plus time simu
lator recently developed for perfusion MRI [27]. In the use case of 
Giacalone et al. [27] the simulator served as a ground truth generator to 
evaluate the robustness of deconvolution algorithms [28]. We propose 
to extend here the use of the physical simulator of Giacalone et al. [27] 
to another problematic of more clinical importance in acute ischemic 
stroke management, with the prediction of the fate of the tissue from 
perfusion imaging. 

As main novelty of our work, we demonstrate the possibility to boost 
the performance of final stroke prediction with help of synthetic 
perfusion MRI images produced by the physically and physiologically 
relevant simulator of Giacalone et al. [27]. Additionally, we further 
enrich this simulation by focusing on arterial input function which was 
stressed as the limiting factor of the simulator in Giacalone et al. [27]. In 
the other deep learning studies applied to stroke [14–18] the training 
dataset was based on a cohort of patients. By contrast here, we 
demonstrate the possibility, thanks to the use of simulation, to train on 
the perfusion MRI data of a single patient in acute stroke to predict the 
final infarct of this specific patient. Closest related work regarding 
synthetic data has been used to learn perfusion parameters from a 
relatively small number of training samples in CT perfusion [29] with 
classical data augmentation techniques. By contrast, we predict the final 
fate of the tissue from raw (i.e. non deconvolved) data without help of 
perfusion parameters, we work on MRI perfusion images and we develop 
synthetic data from an MRI simulator. Recent studies have shown the 
benefit of learning from raw perfusion data of training cohorts for 
ischemic lesion prediction [30–32]. Here, as additional novelty, we 
show how synthetic data simulated from raw MRI perfusion data can be 
used to directly learn the final infarct of a given specific patient, without 
the need of a training cohort. 

2. Material and method 

2.1. Clinical MRI data 

We used clinical MRI data from the European I-Know multicenter 
database [33]. All patients from the study gave their informed consent 
and the imaging protocol was approved by the regional ethics com
mittee. In total, we had a cohort of 76 patients with acute ischemic 
hemispheric stroke at our disposal, including 40 patients who received a 
thrombolytic treatment while the remaining 36 patients received no 
treatment. None of the patients reperfused after stroke. 

All patients underwent the following MRI protocol on admission: 
diffusion-weighted-imaging (DWI; repetition time 6000 ms, field of view 
24 cm, matrix 128 � 128, slice thickness 5 mm), fluid-attenuated- 
inversion-recovery (FLAIR; repetition time, 8690 ms; echo time, 109 
ms; inversion time 2500 ms; flip angle, 150; field of view, 21 cm; matrix, 
224 � 256; 24 sections; section thickness, 5 mm), T2-weighted gradient 
echo, MR-angiography and dynamic susceptibility-contrast perfusion 
imaging (DSC-PWI; echo time 40 ms, repetition time 1500 ms, field of 
view 24 cm, matrix 128 � 128, 18 slices, slice thickness 5 mm; gado
linium contrast at 0.1 mmol/kg injected with a power injector). From 
DSC-PWI, we extracted the commonly used hemodynamic maps such as: 
the 3D maps of the cerebral blood flow (CBF), the cerebral blood volume 

(CBV), the mean transit time (MTT), the time to maximum (TMAX) and 
the time to peak (TTP). A follow-up FLAIR-MRI was performed at 1- 
month after admission time. Raw perfusion MRI were registered, for 
each slice, using the first time point as reference for all the other time 
points, with a maximum mutual information approach. Final lesion was 
segmented for each patient on the one-month follow-up FLAIR-MRI by 3 
experts. The FLAIR-MRI were first co-registered to DSC-PWI by 
computing the average temporal signal before contrast-agent arrival. 
Raw perfusion MRI were registered, for each slice, using the first time 
point as reference for all the other time points, with a maximum mutual 
information approach. This was done by registering each temporal point 
(nþ1) on its previous temporal point (n) and by then applying recur
sively the transformation matrices obtained until all time points were 
aligned with the first time point. All registrations were done using 
Elastix software [34]. The transformation matrix obtained was then used 
to register the final ischemic lesion mask. After registration, final lesion 
was rebinarized by applying a 50% threshold correction to avoid 
possible partial volume effects introduced by registration. 

2.2. MRI simulator 

Simulated data were generated with the DSC-MRI perfusion simu
lator of Giacalone et al. [27] that is able to simulate contrast-agent 
concentration images. We briefly recall the parameters of this simu
lator which includes realistic brain and lesion shapes, distinct classes of 
tissues (healthy, infarcted, gray and white matter) and their associated 
hemodynamic parameters as well as arterial input function (AIF). In 
Giacalone et al. [27]; the simulator was used to test the robustness of AIF 
deconvolution. The sensitivity to all parameters was systematically 
tested and the uncertainty of the AIF itself was demonstrated, as also 
shown in Calamante et al. [35]; to be the limiting factor. In this study, to 
extend the value of the simulator of Giacalone et al. [27] to machine 
learning, we decided to limit the investigation on the choice of the 
simulated AIF. Haemodynamic parameters were set to their default 
values presented in Giacalone et al. [27]; that we recall in Table 1. These 
haemodyamic parameters correspond to average values from the values 
reported in the literature. Acquisition parameters were set to 200 a. u. 
for the baseline value, 60 s for the acquisition time, 0:030s s for the time 
echo and 21 dB for the SNR. 

The AIF is modeled as a gamma distribution that can be expressed 
using the simplified formulation proposed by Ref. [36]: 
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where ymax and tmax respectively correspond to the magnitude and the 
position of the maximum of the arterial input function, d is the arrival 
time of the contrast agent and α corresponds to the shape parameter of 
the gamma function. 

AIF extraction. We characterized the AIF of each patients with a 
multiple AIFs selection method. To do so, AIFs were extracted for each 
patient from voxels located in the main cerebral arteries on their DSC- 
PWI [37]. The voxel selection was performed with a manual ROI 

Table 1 
Simulator default parameters for tissue variability of hemodynamic parameters 
Cerebral Blood Flow (CBF, in mL/g/s) and Mean Transit Time (MTT, in s). The 
distribution of each parameter is modeled by a Gaussian of average μ, standard 
deviation σ. We considered 3 tissue classes: Healthy Gray Tissues (HGT), Healthy 
White Tissues (HWT), and Lesional Tissues (LT). Background (BG) has a null 
distribution.  

Hemodynamic Parameters BG HGT HWT LT 

CBF (μ� σ)  0 � 0  60 � 9  25 � 2.1  10 � 4.3  
MTT (μ� σ)  0 � 0  4 � 2.2  4.8 � 3.2  10 � 5   
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method by three different operators. Then raw perfusion signals for all 
selected voxels of each patient were averaged to produce mean 
contrast-agent concentration signal. The contrast agent curves were then 
fitted by a gamma function defined in Eq. (1). 

AIF characterization. The estimation of AIF parameters are known to 
be critical for the prediction of the ischemic lesion fate [27,35]. There 
are different possible origins of AIF variability. First, in a multicentric 
study the duration of the perfusion protocol may differ. In our case the 
duration was standardized to 1 min for all centers. Also, the delay be
tween beginning of acquisition and the injection may differ from one 
patient to another producing a temporal shift. However because CNN 
are translation invariant they are not sensitive to this possible time shift. 
Intra-patient variability accounts for the AIF variation depending on the 
location of the selected voxel. Inter-patient variability is attributed to 
the amount of blood coming to the brain that may of course vary from 
one patient to another. Both these biological sources of variability were 
present in our dataset. Intra-patient variability was reduced in our study 
by averaging AIF for each patient after arterial selection by three distinct 
experts. Concerning inter-patient variability, as observed in Meijs et al. 
[38] and in our dataset, most AIFs present a narrow and hight distri
bution represented in blue in Fig. 1 (the transit time of the contrast agent 
is between 10 and 15 secondes). However, few patients have larger AIF 
(represented in red in Fig. 1), hence they are underrepresented in the 
cohort. These observations motivated the choice to investigate various 
approaches to simulate AIF in this study along the various datasets 
described in the following. 

2.3. Training and testing datasets 

Three training datasets were created to predict ischemic lesion fate of 
real patients of the cohort as described in this subsection. The first 
training dataset corresponds to real patients from the cohort, while the 
two remaining training datasets are pure simulated data. 

2.3.1. Training datasets 
Training dataset with a selection of real patients. First, a training dataset 

of 6 patients from the cohort of Section 2.1 was created: all presented 
narrow AIFs as shown in blue in Fig. 1. This approach enables to test the 
predictive value of a biased training dataset of real patients presenting a 
very low AIF variability regarding our tested patients. This dataset from 
real patients is obviously very small. It will serve as reference to compare 
with the prediction result of dataset generated from simulated patients. 

Training dataset with simulation from theoretical AIF found in the liter
ature (dataset A). A simulated dataset, noted A, was created with con
centration images generated with the AIF default settings of the 
simulator, which correspond to average AIF parameters from the 

literature [39]. In this configuration, AIF simulation parameters were set 
to a unique value, that is to say: ymax ¼ 0:61, tmax ¼ 4:5, d ¼ 3, α ¼ 3. 
This approach enables to test the predictive value of synthetic perfusion 
images simulated from a theoretical AIF not tuned to the values of our 
tested patients. 

Training dataset with simulation from patient-specific AIF (dataset B). A 
second simulated dataset, noted B, was created by setting the AIF input 
parameters to the clinical AIF fitting parameters extracted from each 
tested patient (see chosen values in Table 2). This approach enables to 
test the predictive added value of synthetic perfusion images simulated 
from an AIF tuned to the values of our tested patients. 

2.3.2. Testing dataset 
We chose 8 patients from the cohort of Section 2.1 to build the testing 

dataset. These were selected to cover the diversity of AIF shape observed 
in the cohort. Only 2 of these 8 patients received a thrombolitic treat
ment but none of them reperfused on their own. These 8 chosen patients, 
in addition to their representative AIF shapes, have been selected with 
sufficiently large final lesions. Indeed when final lesions are very small 
(typically smaller than some mLs), DSC are calculated on very few 
voxels, and each poorly predicted voxel very quickly penalizes the pa
tient DSC. Also, lesions exploded in multiple non connected sub-lesions 
are also more difficult to predict as demonstrated in Frindel et al. [40]. 
This choice is justified to guarantee a controlled evolution of the lesion 
(stable or enlarged lesions) in order to focus on the AIF and the vari
ability resulting from this parameter. As shown in Fig. 2, patients 1, 2, 3 
and 6 present large AIF, whereas the other patients present relatively 
narrow AIF shapes. AIF of each individual patient to be tested were 
extracted. The fitting parameters of each of the tested patients are pre
sented in Table 2 and depicted in Fig. 2. In dataset B variants of the AIF 
of Table 2 were simulated. 

Fig. 1. Mean AIF curves extracted on each of the 76 patients in the cohort. The blue and red lines correspond to AIFs with respectively narrow and large distributions. 
The gray lines correspond to the remaining AIFs. It shows the wide variability and inhomogeneity of AIF shapes. 

Table 2 
AIF parameters (ymax, tmax, d, α) values of the tested patients obtained from their 
mean contrast agent gamma curve.  

Patient ymax  tmax  d  α  

1 0.90 6.32 13.14 4.23 
2 0.86 10.53 11.99 8.54 
3 0.60 3.41 18.67 0.99 
4 0.92 5.26 19.64 0.94 
5 0.74 2.35 11.62 1.01 
6 0.60 4.58 14.01 2.30 
7 0.77 3.45 9.40 2.48 
8 0.85 7.08 8.79 8.03  
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2.4. Voxel fate prediction models 

The prediction of cerebral tissue fate from perfusion images was 

done after a spatio temporal encoding of the voxel environment fed to 
convolutional neural networks, as described in this subsection. Fig. 3 
shows the proposed pipeline when learning from simulated data. 

Fig. 2. AIF curves from the 8 testing patients, shown in color, among all the AIF of the cohort. In order to better visualize them, we did not show the delay d. The 
chosen patients present wide AIF shape differences. 

Fig. 3. Overview of the proposed prediction pipeline. (a) The initial images are contrast-agent concentration images. In experiment 1, the training dataset consists in 
patches from real concentration images, whereas in experiment 2 and 3, the training dataset consists in synthetic patches obtained from the simulator. In experiment 
2 AIF input parameter is set to a default value, and in experiment 3, AIF input parameter are the ones of the tested patient. (b) Concentration images are encoded into 
spatio-temporal patches. (c) A Convolutional Neural Network (CNN) model is trained from patches of the concentration images. (d) Each voxel from the tested 
concentration images is classified as healthy or infarcted. 
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2.4.1. Encoding of perfusion images 
Perfusion images were converted into contrast-agent concentration 

images after a logarithmic transformation, under the assumption of a 
linear relationship between the contrast agent concentration and the 
change in transverse relaxation rate [41,42]. This transformation makes 
it possible to standardize the images between patients since the baseline 
is dispensed with. Then, concentration images were encoded in local 
spatio-temporal patches as recently described in Giacalone et al. [30]. 
Shortly, the time signal of a voxel of interest is deployed along a spatial 
direction. Its 8 voxels in the Moore neighborhood of order 1 are also 
deployed in the same direction, stacking the time signature of each 
neighboring voxel below each other. Thereby a patch of size 9 by Nt is 
created for each voxel, where Nt is the number of temporal acquisition 
points in the perfusion imaging sequence. In order to obtain patches 
independent of each other, we did not consider a Moore neighborhood 
of higher order. 

It has been shown that patches for injured voxels present different 
patterns than patches for healthy voxels which can be discriminated in 
terms of texture [30]. To go further than Giacalone et al. [30]; we can 
notice from Fig. 4 that this discriminability strongly depends on AIF. For 
instance in Fig. 4, patient 8, who had a narrow AIF, has a contrast-agent 
transit time much shorter than patient 2, who had a larger AIF. This 
supports the need for specific patient learning, taking into account the 
AIF of each patient to better predict their pathological voxels. 

2.4.2. CNN classifier 
A CNN was designed to directly take as input the spatio-temporal 

patches of dimension (9,60) to make a voxel-based prediction, as one 
patch represent the spatio-local environment of one voxel. The output 
for each patch was the predicted probability to belong to two classes 
(healthy tissue or infarcted tissue). We chose CNN as they are known to 
be translation invariant [43,44]. This property was a key point in 
learning, as we only wish to learn about the transit of the contrast agent 
in tissues and not about its arrival time. Thus, the network would not be 
sensitive to the delay d, but only to the white pattern of the 
spatio-temporal signature. A unique architecture described in Table 3 
was designed. This architecture present a limited number of convolu
tional layers in order to avoid the patch size reduction and overfitting. 
Network weights were randomly initialized at the beginning of the 
training. Rectifier linear units (ReLU) function was used as activation 
function, known to perform better and faster than the sigmoïd or hy
perbolic tangent functions [45,46]. In the last fully connected layer, we 
used softmax, with 2 output units as our task approach a binary seg
mentation problem. As long as the patches input have small dimensions 
(9,60) and that convolution tends to reduce the output image dimension, 

we decided not to use any max-pooling to avoid further size reduction. 
We used dropout [47,48] in the fully connected layers in order to avoid 
overfitting. We used the categorical cross-entropy function as a loss 
function and a stochastic gradient descent to optimize the model. For all 
experiments, the total number of weights to train was 197 087, the 
dropout was set to 0.5, the number of epochs was set to 30, and the batch 
size to 32. 

Each model was trained 10 times in order to have an overview of 
their global performance and not only the best metric shot. To get a 
balanced training dataset we ensured that half of the patches contain 
voxels classified as lesion on the follow-up FLAIR-MRI. All CNNs were 
trained using Keras 2.1.3 with Python 3.6.3 interface. The training of the 
networks took globally less than 15 min on a standard work station with 
an NVIDIA GeForce GTX 1080 GPU with 8 GB memory. 

2.4.3. Evaluation of the classification 
We assessed our results using the Dice Similarity Coefficient (DSC) 

[49] and the Hausdorff Distance (HD) [50], as both were used for the 
international Ischemic Stroke Lesion Segmentation challenge of MICCAI 
[51]. These metrics were computed between the predicted infarcted 
voxels and the mask of the final lesion provided by FLAIR-MRI. For 
comparison the prediction of the perfusion lesion was also computed 
from a TMAX perfusion map thresholded at 6 s with approach proposed 
by Frindel et al. [28]. This procedure is a standard approach in clinical 
research [52,53]. We computed DSC and HD between the voxels above 
this threshold and the mask of the final lesion as a clinical reference. 
Using synthetic data for training enables to produce data on demand. We 
evaluated the minimum number of simulated patches required to obtain 
stable learning for the described CNN architecture. For each patient, we 
had 125 000 initial patches that we divided into 8 subsets by simple 
random sampling with replacement of different size: respectively 20%, 
30%, 40%, 50%, 60%, 70%, 80%, 90% of the initial number of patches. 
For each patient, each set of patches was trained 10 times. 

2.5. Experiment details 

We classified the patches of the testing dataset through three ex
periments, each using a different training dataset. We give experimental 
details in the following subsection. 

Experiment 1: training from a selection of real patients. In this experi
ment, the training dataset consisted of patches from 6 patients of the 
cohort presenting narrow AIF (see Section 2.3.1). From these 6 patients, 
we were able to get 21 914 patches with half of it healthy, and the other 
half infarcted. The validation dataset consisted of 17 766 patches from 3 
independent patients presenting a different AIF shape. In this experi
ment, learning rate was set to 0.01. 

Experiment 2: training with simulation from theoretical AIF. In this 
experiment, the training dataset consisted of 125 000 patches from the 
simulated images of dataset A with half of it healthy, and the other half 
infarcted. The validation dataset consisted of a set of 125 000 patches 
from other images obtained with the same simulation parameters. In this 
experiment, learning rate was set to 0.0001. 

Experiment 3: training with simulation from patient-specific AIF. In this 
experiment, we learned from a synthetic specific patient. Dataset B was 
separated into several subsets, each set representing simulated images of 

Fig. 4. Illustration of a healthy patch (left) and a pathological patch (right) 
from concentration image for the tested patients 1 and 8. Healthy voxels ex
hibits a narrow hyperintensity segment resulting from the quick contrast-agent 
bolus passage. Pathological voxels exhibits a spread out hyperintensity 
segment, noisy and low contrasted, resulting from the difficult passage of the 
contrast-agent bolus. The two patients have different hemodynamic charac
teristics: the transit time of the contrast-agent, represented by the space be
tween the two arrows, is faster for patient 8 than for patient 2. Patch intensities 
were converted into grayscale image for the representation. 

Table 3 
Convolutional neural network architecture proposed. The type of the two first 
layers are 2D Convolutional layers (Conv2D) and the two last layers are fully 
connected layers (FC).  

Layer Type Filter Size Stride # filters FC units Output Shape 

1 Conv2D 2*2 1*1 16 – (8, 59, 16) 
2 Conv2D 2*2 1*1 32 – (7, 58, 32) 
3 FC – – – 15 (15) 
4 FC – – – 2 (2)  
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a specific tested patient. Therefore, 8 different trainings were done. For 
each training, the corresponding training set consisted of 125 000 
patches with half of it healthy, and the other half infarcted, and the 
corresponding validation dataset consisted of a set of 125 000 patches 
from other images obtained with the same patient specific simulation 
parameters. In this experiment, learning rate was set to 0.0001. 

3. Results 

Table 4 reports the results obtained by the three conducted experi
ments in terms of mean DSC and HD values and their standard deviation 
for each tested patient. The DSC and HD values between the thresholded 
TMAX and the final lesion is also shown, as a clinical reference. 

The results from experiment 1 show the impact of a mismatch be
tween training and testing in terms of AIF. Discrimination between 
healthy and pathological voxels was only trained from narrow AIF pa
tients: it turns out to be impossible to correctly predict the voxels of the 
tested patients with different AIF shapes such as patient 1, 2, 3 and 6 
who have mean DSC below 0.13. In contrast, tested patients with AIFs 
close to those of the learned patients, such as patients 4, 5, 7 and 8 have 
mean DSC greater than 0.49. 

In experiment 2, training CNN with synthetic data obtained from a 
theoretical AIF, corresponding to average AIF parameters from the 
literature without any patient specific tuning, provides very poor results. 
Almost all voxels are predicted infarcted, so that DSC is very low and the 
Hausdorff distance high. This illustrates that a theoretical AIF is not able 
to capture the variability that exists between patients. AIF differs from 
subject to subject and since we work on raw perfusion imaging data, it is 
important to incorporate the specific AIF of each considered patient. 

The variability brought by the AIF from one patient to another is 
well-known [38]. This is the reason why most classical approaches use 
deconvolution in order to compensate for this variability. In experiment 
3, we did not solve this ill-positioned inverse problem and rather 
incorporate the specific arterial input function in the direct problem 
through simulation of the perfusion signals with a set of realistic arterial 
input functions. In experiment 3, the training dataset contains system
atically simulated images where the AIF is tuned to those of the patient 
to be predicted (dataset B). It clearly appears that the adjustment of the 
AIF-related parameters in the simulator has a considerable impact on the 
learning performance. The average DSC in experiment 3 is 0.40 (�
0.19), compared with 0.14 (� 0.074) in experiment 2 and 0.30 (� 0.22) 
in experiment 1. Learning from specific AIF in experiment 3 clearly 
improved the median DSC, which is 0.48 in experiment 3, compared 
with 0.27 in experiment 1 and 0.15 in experiment 2. It appears also that 
learning from raw data in experiment 3 gives better results than 
thresholding the deconvolved TMAX which present an average DSC of 
0.32 (� 0.14). As another reference, it is interesting to note that the best 

models so far in the stroke prediction ISLES 2017 challenge had an 
average DSC of 0.38 (� 0.22) and an average Hausdorff distance of 
29.21 (� 15.04). The mean performance scores in experiment 3 is in the 
same order of magnitude. However an absolute comparison is not 
strictly possible because the two datasets are different. To test the 
transferability of our proposed method, we have run 10 times experi
ment 3 for patients with large lesions, patients number 7 and 20, from 
the ISLES dataset. The average DSC was 0.39 (� 0.30) and the average 
Hausdorff distance was 46.9 (� 1.80). 

Regarding our described CNN architecture in experiment 3, we also 
investigated the minimum patches required for stable training. Results 
are shown in Fig. 5. It appears that between 25 000 and 100 500 training 
patches, DSC increases almost linearly depending on the number of 
training patches. Beyond 100 000 patches, the curve seems to reach a 
plateau: all the diversity of information provided by the simulated im
ages has been learned, and the supply of new images is redundant. Also 
the standard deviation of the DSC values is lower after training more 
than 100 000 patches. These observations indicate that given our CNN 
architecture and our dataset, the minimum number of training patches 
to obtain stable and optimal results is around 100 000. 

As additional experiments, we compared experiment 1, 2 and 3 with 
other neural network architectures and metrics of merit. The results of 
this comparison are provided in the additional material section. The 
added value of the simulation used in experiment 3 over experiments 2 
and 1 is robustly obtained. 

4. Discussion 

The previous results have demonstrated the value of perfusion im
aging simulation based on AIF for the prediction of lesion fate in stroke. 
In this section, we go beyond the sole observation of average perfor
mance and now discuss the limit of our experiments. 

Faced with the problem of AIF representativeness in the training set 
underlined in experiments 1 and 2, we proposed through experiment 3 
to learn directly from the AIF of the patient to be tested. Thanks to this 
type of learning, each patient was correctly predicted individually, even 
for patients whose AIF is under-represented in the overall cohort. It 
should be noted that for experiment 3, we simulated images from a 
single averaged AIF of the tested patient. However, some studies show 
that it may be beneficial to take into account the intra-patient AIF 
variability [54]. Indeed, in experiment 3, the extracted AIF seems rele
vant for patients 2, 3, 4, 5, 6 and 7, but not enough for patients 1 and 8 as 
they show better performances in the experiment 1. Probably, these two 
patients cannot be summarized in one single AIF as they might present a 
large AIF intra-variability. This encourages us for further work to 
simulate images with several AIFs according to the intra-AIF variability 
of the tested patient, and therefore potentially better represent their 

Table 4 
Hausdorff distance (HD) and similarity metrics (DSC) after performing 10 times experiment 1 (1st column), 2 (2nd column), and 3 (3rd column). All metrics are 
averaged over the 10 times, and shown for each tested patient (average � standard deviation). DSC and HD between TMAX � 6s and final lesion is shown (4 rth 
column). We showed in bold when experiment 3 gave the best performance at the patient scale. For the three experiments, HD standard deviation is low or even zero 
because some outlier voxels were systematically mis-predicted. The metrics are also averaged over the test dataset (last raw).  

Patient Experiment 1 Experiment 2 Experiment 3 TMAX thr 

HD DSC HD DSC HD DSC HD DSC 

1 50.4 � 0.0  0.17 � 0.031  50.2 � 0.0  0.12 � 0.00  50.2 � 0.0  0.086 � 0.003  49.7 0.11 
2 51.1 � 0.0  0.18 � 0.002  51.1 � 0.0  0.18 � 0.00  48.8 � 0.829  0.62 � 0.008  43.2 0.51 
3 44.1 � 0.0  0.054 � 0.001  43.8 � 0.0  0.053 � 0.00  43.8 � 0.0  0.23 � 0.010  43.4 0.14 
4 44.4 � 0.0  0.47 � 0.041  44.9 � 0.0  0.17 � 0.00  44.8 � 0.085  0.48 � 0.008  42.2 0.47 
5 43.8 � 1.08  0.36 � 0.069  45.4 � 0.0  0.11 � 0.00  44.4 � 0.0  0.47 � 0.005  46.1 0.31 
6 43.0 � 0.0  0.11 � 10� 5  43.0 � 0.0  0.11 � 0.00  42.5 � 0.0  0.20 � 0.006  44.7 0.28 

7 44.0 � 0.36  0.47 � 0.031  45.0 � 0.0  0.26 � 0.00  45.0 � 0.0  0.53 � 0.004  46.3 0.36 
8 40.1 � 3.07  0.64 � 0.026  47.1 � 0.0  0.17 � 0.00  44.0 � 10� 6  0.48 � 0.017  45.8 0.40 

Total mean 45.1 � 3.73  0.30 � 0.22  46.3 � 2.94  0.14 � 0.074  45.4 � 2.65  0.40 � 0.19  45.18 � 2.36  0.32 � 0.14   
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hemodynamic characteristics. 
At the voxel level, Fig. 6 shows the position of the badly classified 

voxels resulting from experiments 1, 2 and 3. We can see that many of 
our errors are in the ventricles. As contrast-agent does not pass into these 
areas, the voxels have a particularly noisy signal. Thus the model detects 
cerebral blood flow disturbance and directly links it with the final 
ischemic stroke. These errors could be easily filtered by limiting mask 
segmentation errors. 

The current state-of-the-art in the prediction of lesion fate in stroke 
classically works on the deconvolved parametrics maps (CBV, CBF, 
Tmax, TTP and MTT) learned on cohorts of patient. With our approach it 
is actually not possible to learn directly from these maps since our 
encoding is based on the spatio-temporal signature of perfusion data. A 
possible comparison would be to compare learning from raw perfusion 
signals, encoded with our spatio-temporal approach, and learning from 
deconvolved signals (the one used to produce standard parametric maps 
CBV, CBF, Tmax, TTP, and MTT). Such a comparison was shown in 
Giacalone et al. [30] and demonstrated the interest of the proposed 
spatio-temporal encoding of raw perfusion signal. 

In this work, the CNN architecture exploited consists of a low number 
of layers. The minimum number of patches required for a specific patient 
learning was therefore limited to 100 000 (which is approximately 25 
simulations needed to represent a patient with 2000 infarcted voxels and 
corresponds to a computation time of 3 min on the work station of 
Section 2.4.2). However, with other encoding methods and more com
plex models, the number of data required for learning could be higher. 
The simulator we used in this paper [27] would be able to overcome this 
problem, by allowing to produce a theoretically unlimited amount of 
labelled data. 

Finally, it should be noted that this approach, although no instan
taneous, seems fully compatible with the real-time management of 
stroke patient in clinical routine although including learning and 
simulation. Indeed, for performances compared with the state-of-the-art, 
the overall computation time (simulation and learning) for a patient- 
specific approach as developed in experiment 3 is about 20 min. This 
remains of the same order of magnitude as the time announced for a 
deconvolution approach as in Frindel et al. [28]. 

5. Conclusion 

In this article, we demonstrated how the simulation of 

hemodynamical signals can be used to increase the amount of data and 
boost the performance of convolutional neural networks for the pre
diction of the lesion evolution in acute ischemic stroke from DSC-PWI. 
This new demonstration of the value of simulation to train machine 
learning techniques in medical imaging enabled to obtain performances 
close to the ones of the literature for this important stroke problem. 

Several simulation approaches have been tested including the 
simulation from average AIF values found in the literature or simulation 
from the AIF of the specific tested patient. In this patient specific sce
nario, we have shown that the performance of prediction was higher to 
results from the state of the art methods applied on cohorts while 
learning here on a specific patient instead of a cohort. A limitation in 
machine learning based prediction for biomedical imaging is the limited 
size of cohorts. This is a priori especially true with highly expressive 
models such as the one based on convolutional neural networks. We 
have demonstrated on the specific disease of stroke that in fact it is 
possible to predict on an extremely limited cohort of a single patient 
from convolutional neural networks with help of simulation. 

This work could be extended in several directions. For stroke, several 
works propose to predict the final infarction simply through the perfu
sion modality, in the framework of the challenge ISLES for example [8] 
or outside this challenge [17,30,31]. However, acute DWI is known to be 
a highly predictive image for the final stroke lesion [55,56]. Incorpo
rating diffusion in the model could highly improve performance classi
fication. This would require to integrate a diffusion simulator [57,58] 
and redesign the architecture of the convolutional neural network used 
in this study. Also the simulation was here limited to a pixel-wise 
simulator. More spatial context could be integrated in the realism of 
the simulator by adding a physical layer at a spatial level of the DSC-MRI 
simulator. As another extension of this work for stroke, one can notice 
that the simulation of brain tissue was here based on global stationary 
binary class model (healthy versus infarcted) while from a clinical 
perspective, stroke appears as a more complex problem with importance 
on the spatial localisation of the tissue. It is however obvious that 
whatever the level of simulation complexity, some bias between real and 
simulated images will remain. A way to learn this bias and thus improve 
the performance of simple simulation-based training approaches, such 
as the one introduced here, could be to add some domain adaptation 
techniques just before the last decision layers of the convolutional 
neural network used here [59]. Finally, the use of simulation to train 
machine learning based model is of generic value and may be extended 

Fig. 5. Resulting DSC according to the number of training patches in experiment 3. Each point corresponds to the mean DSC of 10 repeated experiments on each 
tested patient and its standard deviation. The red dotted line indicates the optimal number of training patches. 
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to any other disease and imaging modality for which some simulator are 
already available [60]. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.compbiomed.2019.103579. 
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Abstract

In this report we investigate various strategies to boost
the performance for leaf segmentation of Arabidopsis
thaliana in chlorophyll fluorescent imaging without any
manual annotation. Direct conversion of RGB images to
gray levels picked from CVPPP challenge or from a vir-
tual Arabidopsis thaliana simulator are tested together with
synthetic noisy versions of these. Segmentation performed
with a state of the art U-Net convolutional neural network
is shown to benefit from these approaches with a Dice co-
efficient between 0.95 and 0.97 on the segmentation of the
border of the leaves. A new annotated dataset of fluorescent
images is made available.

1. Introduction

Due to heavy occlusion, variability in terms of size and
shape, leaf segmentation is a challenging task from the com-
puter vision perspective [16]. One strategy to simplify the
segmentation is to reduce the biological variability and fo-
cus on a limited amount of plant species of specific inter-
est. This has been undertaken in the CVPPP challenge since
2014 with a focus on a few species including Arabidopsis
thaliana which serves as a reference for a number of funda-
mental biological questions. The effort to provide finely an-
notated data [14] has enabled great improvement of the state

of the art on segmentation performance. An open question
is now how to transfer this knowledge obtained from RGB
images on annotated plants either to other species or other
modalities of imaging. In this work, we focus on the trans-
fer of the knowledge gained from annotated leaves of Ara-
bidopsis thaliana in RGB to images of the same plant in
chlorophyll fluorescence imaging.

2. Related Work

Segmentation of Arabidopsis thaliana leaves in RGB
images has been highly studied since the introduction of
the CVPPP challenge. If in 2014 and 2015 the contribu-
tions of this challenge proposed methods based on models
[20, 27, 21], most of the participants have so far mainly
tackled the challenge with deep neural network [29, 26, 31].
In this work we did not propose any innovation on this side
and rather work on a standard neural network architecture
but applied it for the first time on another imaging modal-
ity. We used the U-Net architecture [23] which had been
mainly employed for the pixel-wise segmentation of sepa-
ration boundaries in medical [34] and satellite images [13].
Here, we applied U-Net for the first time to the best of our
knowledge on leaf segmentation of Arabidopsis thaliana in
chlorophyll fluorescence imaging.

Chlorophyll fluorescence analysis is a non-destructive
technique which has been developed to probe plant phys-
iology [6]. Among all the chlorophyll fluorescence param-
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eters that can be estimated, the maximum quantum yield of
photosystem II (PSII) photochemistry (Fv/Fm = (Fm −
F0)/Fm) [9] is an indicator of plant stress [22]. Fluores-
cence chlorophyll by image analysis on whole plant has
been widely studied [24, 4, 17]. So far, to the best of our
knowledge analysis on individual leaves has not be tackled
in top view images of Arabidopsis thaliana.

Image simulation to boost machine learning received an
increasing interest in plant imaging [35, 10, 1, 8]. This can
include standard data augmentation, sophisticated infog-
raphy or generative models from convolutional networks.
In this communication we generated the images from one
imaging modality to learn on another imaging modality.
This topic has been demonstrated possible for instance for
life science applications in the medical domain [12] in a
cross modal image synthesis and also in microscopy in a
superresolution problem [19]. We considered for the first
time data augmentation from the synthesis of images from
RGB imaging modality to chlorophyl fluorescence imaging
in plant sciences.

3. Method

3.1. Datasets

Three datasets coined CVPPP, CSIRO and Real-Fluo are
considered in this study. They are described in the following
lines.

CVPPP. We used the dataset provided in the Leaf Seg-
mentation Challenge held as part of the computer vision
problems in plant phenotyping CVPPP workshop [14].
CVPPP dataset consists in 27 RGB images of tobacco
plants and 783 RGB images of Arabidopsis wild and mu-
tant plants. We considered only the Arabidopsis dataset in
this study. All images are hand labelled to obtain ground
truth masks for each leaf in the scene (as described in [14]).
These masks are image files encoded in PNG where each
segmented leaf is identified with a unique integer value,
starting from 1, where 0 is background.

CSIRO. To extend the CVPPP dataset we also used syn-
thetic images of top down view renders of Arabidopsis gen-
erated with the simulator described in [30, 32]. The CSIRO
dataset contains 10000 synthetic images (width x height:
550 x 550 pixels). Similarly to CVPPP dataset, each RGB
image has a corresponding leaf instance segmentation an-
notation: each leaf in an image is uniquely identified by a
single color value, starting from 1, where 0 is background.
All images are stored in PNG format.

Real-Fluo. For model testing we used 38 real gray-scale
fluorescent images of Arabidopsis. The PSI Open Fluor-
Cam FC 800-O (PSI, Brno, Czech Republic) was used to
capture chlorophyll fluorescence images and to estimate the
maximum quantum yield of PSII (Fv/Fm) on wild type
control of Arabidopsis thaliana. The system sensor is a

CCD camera with a pixel resolution of 512 by 512 and a
12-bit dynamic range. The system includes 4 LED panels
divided into 2 pairs. One pair provides an orange actinic
light with a wavelength of around 618 nm, with an intensity
that can vary from 200 to 400 μmol/m2/s. It provides a 2s
pulse that allows the measurement of the initial fluorescent
state (F0). The other pair provides a saturating pulse during
1s in blue wavelength, typically 455 nm, with an intensity
of up to 3000 μmol/m2/s. The saturating pulse allows col-
lecting of the maximum fluorescence (Fm). Fluorescence
chlorophyll imaging was used in a dark adapted mode after
a dark period of 45 min to produce maps with the fluores-
cent quantum efficiency Fv/Fm = (Fm − F0)/Fm. All
these 38 images were manually annotated using Phenotiki
image analysis software [15] and are made available to the
reader (see the web link at the end of the article).

3.2. U-Net Model

The segmentation of the leaves was considered to be a
pixel-wise classification where the pixel of the leaf con-
tour should be detected among the other pixels of the im-
age. Picking out leaf contours allowed separating leaves
and thereby performing leaf segmentation, for example with
help of a watershed transform. Each pixel was therefore
classified among three mutually exclusive classes: mask
without contours, leaf contours and background. It means
that every pixel was labeled by a three-component one-hot
vector.

The U-Net model [23] was used for the pixel-wise clas-
sification. As shown in Figure 1 U-Net architecture is sep-
arated in 3 parts: the contracting/downsampling path, the
bottleneck, the expanding/upsampling path. The encoder-
decoder type architecture with skipped connections allows
combining low-level feature maps with higher-level ones,
and enables precise pixel classification. A large number
of feature channels in upsampling part allows propagating
context information to higher resolution layers. The output
of the model was a three-channel label that indicated the
class of every pixel as shown in Figure 2. All activation
functions in the convolutional layers were rectified linear
units, ReLU [11]. The last layer before the prediction was
a softmax activation with 3 classes. Images and labels from
all datasets were resized to width x height: 128 x 128 pixels.
Using ground truth (GT) labels, we created three-channel
labels as shown in Figure 2. To reinforce the learning of the
contour class, which was highly unbalanced, we replaced
the encoder by a ResNet152 backbone pre-trained on Ima-
geNet [33]. The decoder was not changed from the original
description [23]. We empirically found that the best perfor-
mances were obtained when all skipped connections were
kept which was in accordance with the intrinsic multiscale
nature of plants [25]. The resulting U-Net neural network
had a total 1,942,275 trainable parameters.
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Figure 1: U-Net architecture. Each blue box corresponds
to a multi-channel feature map. Gray arrows indicate the
merging of the context and localization information that
was done by concatenating the features from the contract-
ing path with the corresponding ones in the expansion path.
Input image has 128x128 pixels, the output of the model is
a three-channel binary image: mask without contours, leaf
contours and background.

Figure 2: Production of the three-channel binary labels
from ground truth (GT) labels: the first channel contains
mask without leaf contours, the second channel - leaf con-
tours and the third one - background.

3.3. Data augmentation

Several strategies of data augmentation were investi-
gated from CVPPP and CSIRO datasets to train our U-
Net in order to perform leaf segmentation on the Real-Fluo
dataset.

In a first simplest strategy, we converted CVPPP and
CSIRO directly from RGB to gray levels along the simple
CIE formulae Gray = .299 ∗Red+ .587 ∗Green+ .114 ∗
Blue. In a second strategy, we considered binary images
such as the ones in Figure 3 column (b) and mapped on them
a noisy texture learned from the real fluorescence images,
Real-Fluo, shown in Figure 3 column (a). A copy of the
original binary image for each plant was also kept so as to
produce the associated GT. For a first trial of transfer from
RGB images to fluorescence images, we propose to test an
extremely simple model for the noisy texture which is esti-
mated as an additive Gaussian white noise process indepen-
dent and identically distributed for a given leaf. This choice
was first driven by an Occam’s Razor simplicity spirit. In-
deed with such a model the simulated leaves have no spa-
tial structures such as vascular veins. Leaves are therefore
expected to be distinguished in real images only from their
first order statistics. Also, as an additional motivation to test
this simple fluorescence chlorophyll simulator, the noise in
real fluorescence images is expected to be mostly thermal
noise on the camera which will control the standard devi-
ation of the noise. The leaves themselves, if considered to
have homogeneous tissue, may have a variety of average
values in fluorescence emission depending on their physio-
logical state.

To estimate the parameters of these Gaussian processes,
we analyzed the distribution of the gray levels among a
small set of images of real plants. In order to ensure that
this small set of chlorophyll fluorescence images was rep-
resentative from the rest of the images we considered one
image of plant at each developmental stage represented in
the test dataset. Average value and standard deviation of the
gray levels inside the plants for both considered chlorophyll
fluorescence parameters F0 and Fm are given in Table 1.
The order of magnitude of the average value and standard
deviation of the chlorophyll fluorescence parameters F0 and
Fm remained in the same range in our experiment.

Synthetic chlorophyll fluorescent images were then sim-
ply produced by adding Gaussian noises with mean μ and
variance σ2 for each fluorescence map (μF0 , σ

2
F0
), and

(μFm
, σ2

Fm
), randomly sampled in Table 1. A different real-

ization of these noises was applied for each individual leaf
of gray scale GT labels in CVPPP and CSIRO datasets so as
to produce a synthetic fluorescent example xF given by

xF = 1−
∑

l(yg
(l) +N (μF0

, σ2
F0
))∑

l(yg
(l) +N (μFm

, σ2
Fm

))
, (1)
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Figure 3: Examples from datasets used for model training
and its evaluation. (a) Plant image examples. (b) three-
channel labels for pixel-wise classification. (c) Ground
truth labels with leaf segmentation. First line: CSIRO
dataset, 783 examples. Second line: CVPPP dataset, 783
examples. Third line: Real-Fluo dataset, 38 examples.
Forth line: CSIRO-Fluo dataset, 5481 examples. Fifth line:
CVPPP-Fluo dataset, 5481 examples. Number of examples
in datasets are given before application of the standard data
augmentation.

where yg
(l) is lth binary leaf from a gray scale GT label

and N (μF0 , σ
2
F0
) is a Gaussian noise realization. For ev-

ery GT label we produced 7 synthetic fluorescent examples
xF by drawing random values for μF0

, σF0
and μFm

, σFm

from Table 1. The pipeline of data augmentation is shown

in Figure 4.

As a result, in addition to CVPPP and CSIRO, we ob-
tained new datasets, CVPPP-Fluo and CSIRO-Fluo, con-
taining 5481 = 783 * 7 and 70000 = 10000 * 7 synthetic flu-
orescent images (width x height: 128 x 128 pixels), respec-
tively. Now, our objective is to compare the added value of
all these datasets for leaf segmentation in Real-Fluo dataset
with the U-Net model presented in previous section.

Figure 4: Data augmentation using synthetic fluorescent
training data. For each gray-scale GT label from CVPPP
or CSIRO datasets we produced fluorescent images and as-
sociated three-channel labels.

Time μF0
σF0

μFm
σFm

Day 1 167.83 34.88 180.77 24.68
Day 5 165.81 33.1 180.00 22.36
Day 6 164.48 30.87 177.9 20.8
Day 7 158.16 31.45 174.73 21.1
Day 8 165.24 32.31 181.14 21.36
Day 9 168.3 28.03 184.36 17.86
Day 12 173.06 28.01 189.96 17.15

Table 1: Mean, μ, and standard deviation, σ for chlorophyll
fluorescence F0, Fm estimated on a single plant from Real-
Fluo dataset at different dates after emergence of first leaves
(cotyledons).
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3.4. Watershed Post-Processing

To segment leaves with use of estimated three-channel
labels, we applied the classical marker-controlled watershed
segmentation [3, 2]. The markers were generated with a
contourless mask from output three-channel label and then,
to segment leaves, we flooded marked “basins” within the
bounds of mask.

4. Experiment and Results
4.1. Training

On top of the data augmentation techniques that we gen-
erated from CVPPP and CSRIO datasets as described in sec-
tion 3.3, we apply a standard data augmentation strategy in
order to further reduce overfitting and improve generaliza-
tion. For this data augmentation we used Albumentations li-
brary [5]. While the data augmentation strategies of section
3.3 focused on contrast and noise distribution, here we gen-
erated geometrical transformation such as horizontal flip,
vertical flip, random rotate at 90 degree and random half-
sized crop and applied them to shuffled training dataset.

It was shown that for high level of imbalance, loss func-
tions based on overlap measures appeared to be more ro-
bust [28]. Through all of our experiments, we minimized
weighted combination of multi-class cross entropy and dice
losses

L(y, y∗) = w0C(y, y∗) + w1(1−D(y[..., 0], y∗[..., 0]))

+w2(1−D(y[..., 1], y∗[..., 1])).
(2)

C(y, y∗) is the categorical cross entropy defined as

C(y, y∗) = −
∑

ij

yij log y
∗
ij (3)

and D(y, y∗) is the Dice coefficient

D(y, y∗) =
2
∑

ij yijy
∗
ij + ε∑

ij yij +
∑

ij y
∗
ij + ε

, (4)

where y is a model prediction with values yij , y∗ is a ground
truth label with values y∗ij and ε = 0.001 is used here to
ensure the coefficient stability by avoiding the numerical is-
sue of dividing by 0. The weight ratios (w0, w1, w2) used
to correct the class imbalance was respectively 0.4, 0.1, 0.5
for cross entropy, contourless mask and contours. Adam
optimizer was used with default parameters lr = 0.001,
β1 = 0.9, β2 = 0.999. Our training procedure consisted
of splitting the data into 80% and 20% training and cross
validation respectively. We shuffled the dataset examples at
the beginning of each epoch and used a batch size of 16 ex-
amples. We also implemented batch normalization before
each activation.

Leaf segmentation in fluorescence images was done with
different data augmentation strategies for the training based
on the datasets of Figure 3 and their combinations. A base
line consisted in training directly on the CVPPP or CSIRO
RGB to gray images. The learning from the simulated
fluorescence dataset either generated along Eq. (1) from
CVPPP labels and/or CSIRO labels was tested for compar-
ison. The previous strategies were tested also when small
amount of real fluorescence images were added in the train-
ing. The eight different tested training strategies are sum-
marized in Table 2.

4.2. Results

To assess the quality of segmentation, we used the soft
Dice coefficient, Eq. (4), that was computed separately for
all pixels and for leaf contours. Furthermore, the pixel-wise
accuracy was evaluated in order to get a general idea of the
model performance. It was computed as the ratio between
correctly classified pixels and the total number of pixels in
the test sample. To assess the performance of leaf contour
detection we computed additional metrics. True positives
(TP ) are contour pixels present in both prediction and GT
mask. False positives (FP ) are contour pixels present in
prediction but absent in GT mask. False negatives (FN ) are
contour pixels absent in prediction but present in GT mask.
Knowing these numbers we can estimate true positive rate

TPR =
TP

TP + FN
, (5)

that describes the fraction of correctly classified contour
pixels in comparison of the total number of contour pixels
in GT mask. Moreover, positive predictive value

PPV =
TP

TP + FP
, (6)

gives us the fraction of correctly classified contour pixels
among all predicted contour pixels.

Table 2 displays the model performance on the Real-
Fluo dataset for eight model training experiments. A first
global observation is that the performance of training on
CVPPP alone was rather high. This demonstrates a high
similarity of RGB reflectance images converted to gray lev-
els and the fluorescence images despite the physical differ-
ences in the mechanism of their production. Training on
CVPPP-Fluo and CSIRO-Fluo alone or combined did not
provide better performances than CVPPP alone. The best
model Dice score was 97% obtained for extended CVPPP
and CVPPP-Fluo datasets with 10 examples from Real Fluo
dataset. The use of small quantity of real fluorescent im-
ages among images with modeled fluorescence resulted in
Dice score gain of 2-3% in comparison with CVPPP and
CVPPP-Fluo datasets. The same positive effect of the injec-
tion of 10 real fluorescent images on the model performance
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Training dataset Accuracy Ltrain Dtrain Ltest Dtest Dc TPR PPV
CVPPP 0.96 0.03 0.98 0.19 0.95 0.67 0.74 0.62
CVPPP-Fluo 0.96 0.01 0.99 0.22 0.94 0.68 0.82 0.58
CSIRO-Fluo 0.94 0.02 0.99 0.27 0.92 0.46 0.48 0.46
CVPPP-Fluo + CSIRO Fluo 0.95 0.01 0.99 0.3 0.93 0.62 0.63 0.62
CVPPP + 10ex 0.98 0.04 0.98 0.05 0.97 0.84 0.8 0.87
CVPPP-Fluo + 10ex 0.98 0.02 0.99 0.05 0.97 0.84 0.83 0.85
CSIRO-Fluo + 10ex 0.98 0.03 0.98 0.06 0.96 0.84 0.85 0.82
CVPPP-Fluo + CSIRO Fluo + 10ex 0.98 0.04 0.97 0.06 0.96 0.8 0.8 0.82

Table 2: Performance metrics on Real-Fluo samples for training strategies with the various strategies tested of data augmen-
tation. To estimate the overall model performance, we used pixel-wise Accuracy. To assess overfitting, we calculated loss
function, Eq. (2), and Dice coefficient, Eq. (4), for the training dataset, Ltrain, Dtrain , and for the test dataset, Ltest, Dtest,
rescpectively. The accuracy of contour pixels detection was evaluated by means of Dice coefficient, Dc, true positive rate,
TPR, and positive predictive value, PPV . See Eq. (5, 6) for the last two estimates.

was observed for the other datasets as well, CSIRO-Fluo +
10ex and CVPPP-Fluo + CSIRO Fluo + 10ex. It increased
overall pixel-wise accuracy to 0.98 and the quality of con-
tour detection became quite high as well: Dc ∈ [0.8, 0.84],
TPR ∈ [0.8, 0.83], PPV ∈ [0.82, 0.87]. In more de-
tails, the comparison of model performance from training
on CVPPP and CVPPP-Fluo showed that the imitation of
fluorescence by modelling increased TRP by 9% and de-
creased PPV by 6%. It means that the modelled fluores-
cence allowed us to detect a little bit better leaf contours on
real fluorescent plant images but at the same time it had
the tendency to classify surplus pixels as contour pixels.
Training on CSIRO-Fluo had the lowest values of metrics
in comparison with the other training strategies. However
these can be considered as interesting results if one keeps
in mind that in this case the network was trained only on
purely synthetic datasets. Probably, there is a deficiency
of important information of leaf texture in synthetic plants
from CSIRO-Fluo that prevents the simulation of fluores-
cence in a sufficient realistic way.

As shown in Figure 5, with the worst example from the
best training strategy, most errors of pixel classification oc-
curred for occluded leaves, i.e. for really difficult cases.
Another source of discrepancies was an inaccurate annota-
tion of some contour pixels. It means that some pixels were
correctly classified as contour but since they were present
in GT label with displacement they were not counted in
true positive rate. However, this type of errors did not
prevent the correct segmentation as it is shown in the up-
per line of Figure 6. Only two cases of occlusive leaves
were not segmented. These kind of discrepancies could po-
tentially be solved using a more advanced post-processing
method. Overall, the segmentation performance was higher
for young small plants where there was not a lot of leaf oc-
clusion as it is shown in the lower line of Figure 6.

5. Conclusion and Discussion

In this paper, we studied the transfer of knowledge for
leaf segmentation learned from RGB imaging to fluores-
cence imaging. Various data augmentation strategies were
tested with real images of plants or on pure synthetic plants
and from RGB to gray conversion up to a physical mod-
elling of noise in fluorescence.

This was illustrated on Arabidopsis thaliana which is
one of the most studied plant for fundamental biology and
with the U-Net neural network architecture applied for the
first time in this context. We have demonstrated that ex-
isting annotated datasets in RGB could be used to learn to
segment leaves in fluorescence images by a simple RGB
to gray conversion. Also, good performances (although
not the best) of segmentation could be obtained by learn-
ing on purely synthetic datasets automatically annotated
and mapped with a first order statistics physical modelling
of noise in fluorescence. Segmentation performance were
found higher when some real images were also introduced
in the training process.

These results could be extended in various promising di-
rections. First, one could try to improve the segmentation
result presented here. Other neural network architectures
could for instance be tested such as the one recently intro-
duced to consider segmentation as a regression [18]. Also
performances on training from simulated datasets could
benefit from domain adaptation [7] to compensate for the
necessarily non perfect match between simulation and re-
ality. Other plant imaging modalities could finally be also
investigated in the same way as in this communication. One
could for instance think to thermal imaging or Tera hertz
imaging which are also used to assess the physiological
state of leaves. There are currently no annotated datasets for
these images and it would therefor be interesting to explore
if data augmentation from other imaging in which annotated
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Figure 5: Example of leaf contours detection in a Arabidopsis fluorescent image. In this case the model was trained on
CVPPP-Fluo + 10ex dataset including 5481 images with imitated fluorescence and 10 real fluorescent images. True positives
show well predicted contour pixels existing in GT label. False positives show surplus pixels that were classified as the contour
but did not exist in GT label. False negatives are pixels that had to be classified as contour pixels since they were presented
in GT label.

Figure 6: Examples of watershed segmentation produced by
the model trained on CVPPP-Fluo + 10ex. Upper line: Dc

= 0.8, Accuracy = 0.96, TPR = 0.82, PPV = 0.78. Lower
line: Dc = 0.84, Accuracy = 0.98, TPR = 0.83, PPV =
0.86.

datasets are available could be helpful.

To contribute to reproducible science, we have
opened, as an additional result from our study,
access to our annotated dataset of Arabidopsis
thaliana in fluorescence imaging (https://uabox.univ-
angers.fr/index.php/s/BglUZgoE5EWK4MM).
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