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Abstract

The Team Orienteering Problem (TOP) is an optimization problem belonging to the class of Vehicle
Routing Problem with Profits in which the objective is to maximize the total profit collected by visiting
customers while being limited to a time limit. This paper deals with the very large scale TOP in an
industrial context. In this context, computing time is decisive and classical methods may fail to provide
good solutions in a reasonable computational time. To do so, we propose a Large Neighborhood Search
(LNS) combined with various mechanisms in order to reduce the computational time of the method. It
is applied on classical sets of instances from the literature and on a new set of very large scale instances
ranging from 1001 to 5395 customers that we adapted from Kobeaga et al. (2017). On the small scale
set of instances, most best-known solutions are found. On the large scale set of instances, three new
best-known solutions are found while the algorithm quickly gets more than half of the other best-known
solutions.

Keywords: Team Orienteering Problem, Very large scale, Vehicle Routing Problem, Clustering, Large

Neighborhood Search

1. Introduction

The Orienteering Problem (OP) is an optimiza-
tion problem which was first introduced in 1987
by Golden et al. (1987). Also known as the Selec-
tive Travelling Salesman Problem (Laporte and
Martello, 1990), OP belongs to the class of Vehi-
cle Routing Problem (VRP) with Profits. Like the
VRP, OP is NP-Hard (Golden et al., 1987). In the
OP, every customer has a profit which is collected
if it is visited by the vehicle. It differs from the
VRP as the vehicle is constrained by a time limit,
meaning that it is usually not possible to visit ev-
ery customer. Thus, the objective is then to max-
imize the total profit collected while respecting
the time limit. The Team Orienteering Problem
(TOP) is an extension of the OP where several
vehicles are considered. TOP is used to modelize
several applications, in particular the Tourist Trip
Design Planning (TTDP)(Vansteenwegen, 2007).
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In TTDP, the aim is to build a tourist trip itinerary
based on a list of points of interest. As tourists
usually can’t visit every point of interest, the goal
is to give them the best itinerary which can be
characterised by their location, their preferences,
the period of the year and so on. A survey on this
problem can be found on Gavalas et al. (2014)
and Ruiz-Meza and Montoya-Torres (2022).

This paper aims at addressing an industrial prob-
lem that can be modelized as an extension of the
TOP: the subsurface imaging problem. In our
context, computing time is decisive as it can be
necessary to solve the problem several times an
hour. Thus, we seek to obtain solutions under a
budget time of 10 minutes. Industrial instances
can also have more customers or more vehicles
than in classical literature instances, making it
even harder to solve efficiently. As in Arnold
et al. (2019), we define the ’very large scale’
VRP as a VRP problem where we consider sev-
eral thousands of customers since the term ’large
scale’ is used to describe problems of several
hundreds of customers. The very large scale char-
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acteristic has not been much tackled even if it
became recently a new source of dedicated re-
searches (Arnold et al., 2019, Accorsi and Vigo,
2021). The main aim of those articles is to ob-
tain very good solutions in a time allowing the
proposed algorithm to be used in the industrial
context. To do so, heuristic approaches are used
and paired with various mechanisms in order to
reduce the computational time while preserving
the quality of the final solution. The recent in-
terest for those problems can be explained by the
technological progress which eases the treatment
of such problems. However, even if very large
scale instances are tackled in some works in the
OP context (Kobeaga et al., 2017), to our knowl-
edge, this paper is the first one to address the very
large scale TOP.

To deal with it, we propose a Large Neighbor-
hood Search (LNS) combined with local search,
simulated annealing, and with specific mecha-
nisms to get very good solutions in a reason-
able time. The remaining of this paper is orga-
nized as follows. First, in Section 2, we describe
the industrial context. In Section 3, we discuss
about the state-of-the-art algorithms for both the
TOP and the very large scale VRP. In Section 4,
we present one mathematical formulation of the
problem. Then, in Section 5, we describe the
LNS and we evaluate it in Section 6. We also
propose an extension of several instances used
in the OP to build a new set of very large scale
instances for the TOP. Results on industrial in-
stances are then evaluated in Section 7. Finally,
we conclude this paper in Section 8 and propose
some perspectives of research to better deal with
such problems.

2. Industrial context

We are interested in a vehicle routing problem
that arises in the subsurface imaging field. The
aim of this field is to gather data that enables
geologist to understand the structure of the sub-
surface, allowing environmental site characteri-
zation. Geophysical imaging provides essential
knowledge on the structure of the subsurface.
Applications can be found in geothermics or in
the process of carbon capture. In the subsurface
imaging field, several vehicles need to cover large
areas to collect, on visited points, data related

to the subsurface composition. These operations
can last for several weeks with hundreds of thou-
sands points that need to be visited to ensure a
relevant cartography.

To this end, equipment getting data related to the
subsurface structure are first deployed on the area
of interest. Because of the size of the area to be
studied, the whole area is not equiped and it is
then needed to reposition the equipment through-
out the study. Vehicles then go from point to
point to collect geophysical data and to allow the
equipment repositioning. Even if not every point
is not available at the begining of the harvesting,
problems of several thousands of points are still
considered. One of the specificities of the prob-
lem is the number of hazards that happens during
the gathering operation: vehicles may need main-
tenance operations, new areas may open and new
available points appear regularly. Because of this,
it is needed to update regularly the planning to
ensure the quality of the process. This is defined
as having the highest productivity possible, com-
puted as the number of points visited during the
next hour.

Thus, this problem can be modelized as a Team
Orienteering Problem with multi-depot and open
routes (MDOTOP), where each point has a profit
of 1. The aim of our work is to propose, in a bud-
get time of 10 minutes, solutions of high quality.
For technical reasons, it is not possible to update
continuously the planning, and this duration is as-
sociated to the time when routes can be updated.

3. Literature review

To our knowledge, the MDOTOP is not ad-
dressed in the literature. Thus, we review the
Team Orienteering Problem. The TOP is a rout-
ing problem consisting in the maximization of the
total profit collected by several vehicles on cus-
tomers over a time limit. It is a well-studied prob-
lem but it still remains difficult to solve. Both
exact and heuristic methods has been applied to
the problem, heuristics being the main approach
to tackle it. We review both of these methods ap-
plied to at least one of the two sets of instances
from the literature: the small scale one proposed
by Chao et al. (1996) and the large scale one in-
troduced by Dang et al. (2013a). Then, we review
the very large scale VRP. In this context, several



thousands of customers must be visited and clas-
sical methods need to be adapted to scale accord-

ingly.

3.1. Exact methods

Few exact methods have been developed to tackle
the TOP. Among these methods, Branch & Cut
(BC) (Dang et al., 2013b, Bianchessi et al., 2018)
has shown good results recently by finding 327
optimal solutions out of the 387 tested on the
classical set of instances proposed by Chao et al.
(1996). Branch & Price (BP) has also been
used to tackle the TOP (Boussier et al., 2007,
Keshtkaran et al., 2015) but results obtained
were not among the best. Overall, the combi-
nation of both methods, called Branch & Cut &
Price (BCP), is the method which is the most
used among exact methods (Poggi et al., 2010,
Keshtkaran et al., 2015, Pessoa et al., 2019, Orlis
et al.,, 2020). In particular, the state-of-the-art
method uses a BCP to solve the TOP with over-
laps (Orlis et al., 2020). It manages to find opti-
mality in 371 out of the 387 instances, and closes
33 open instances. Finally, cutting-plane meth-
ods (El-Hajj et al., 2016, Assun¢do and Mateus,
2019) have also been applied to the TOP. The lat-
ter solves 341 instances to optimality, showing
that cutting-plane algorithms can also be used to
tackle the TOP efficiently. Overall, exact meth-
ods have only been applied to the small scale set
of instances (Chao et al., 1996) as obtaining very
good results on this set is still a challenging task.
Obvious perspectives will be to build efficient ex-
act methods that can tackle problems from the
large scale set of instances.

3.2. Heuristic approaches

Based on its complexity, heuristic approaches are
more suitable to tackle the TOP. The first heuris-
tic applied to the TOP is developed by Chao et al.
(1996) and is compared to a modified version of
Tsiligirides’ heuristic (Tsiligiridis, 1984) which
was applied to the stochastic OP. Results showed
that the proposed heuristic was better than the
adapted one.

Later, different methods were applied to the TOP.
Tabu Search (TS) was one of the first method
used. In Tang and Miller-Hooks (2005), the au-
thors embedded the TS in an adapative memory

procedure. According to the authors, this pro-
cedure allows diversity in the pool of solutions.
The TS alternates between small and large neigh-
borhood which enables the heuristic to be fast
while not loosing quality. In their TS, greedy pro-
cedures are paired with random ones. Archetti
et al. (2007) developed two variants of the TS al-
gorithm. Both variants are mostly distinguished
by the fact that one considers infeasible solutions
while the other does not.

In the same paper, authors also apply a Vari-
able Neighborhood Search (VNS) to the TOP.
The VNS is considered in two versions depend-
ing on the computational time allocated to it.
Overall, the VNS was better than both of their
TS. A Skewed VNS (SVNS) is also proposed
by Vansteenwegen et al. (2009b) and outper-
forms their prior Guided Local Search (GLS) al-
gorithm (Vansteenwegen et al., 2009a). Vidal
et al. (2014b) developed several heuristics based
on a new neighborhood search. Among these
heuristics were a multi-start local improvement
heuristic and an Iterated Local Search (ILS).
Both heuristics performed well in terms of solu-
tion’s quality with respect to the computational
time. Kim et al. (2013) proposed the first algo-
rithm based on large neighborhood search. They
used an Augmented Large Neighborhood Search
(AuLNS) paired with three improvement algo-
rithms and obtained the best known solutions
of all instances in a better computational time
than Dang et al. (2013a), outperforming all ex-
isting algorithms. Recently, a LNS proposed
by Orlis et al. (2020) finds all but one best
known solutions on the small scale set of in-
stances. In 2020, Hammami et al. (2020) pro-
posed an Hybrid Adaptive Large Neigbhorhood
Search (HALNS). In their algorithm, the ALNS
framework is paired with the resolution of a set
packing problem consisting in finding the best set
of routes built during the process. Results showed
the efficiency of the method as it found all best
known solutions for both the small and large scale
sets of instances while improving one best known
solution on the last set. This method is the best
for both set of instances from the literature with
respect to the solution’s quality and the associ-
ated CPU time. Other methods are proposed as
a Multi-start Simulated Annealing (MSA) algo-
rithm (Lin, 2013) that obtained 135 best known



solutions on the small scale instances, and a Simi-
larity Hybrid Harmony Search algorithm (SHHS)
(Tsakirakis et al., 2019). In the latest, the authors
proposed two versions of their algorithm, one be-
ing static while the other is dynamic. The better
one, the dynamic, found 276 best known solu-
tions out of the 328 tested instances.

Population-based algorithms have also been used
to tackle the TOP. Ke et al. (2008) proposed 4
variants of Ant Colony Optimization algorithm
based on the algorithm used to build candidate
solutions. Out of the 4 versions, the sequential
one was the best one. Bouly et al. (2008) pro-
posed a Memetic Algorithm (MA) which con-
sists in the combination of a Genetic Algorithm
(GA) and local search operators. Results ob-
tained were comparable to those of Archetti et al.
(2007). Dang et al. (2011) proposed a Particle
Swarm Optimization-based Memetic Algorithm
(PSOMA) based on the work from Bouly et al.
(2008). It showed very good performances as
it outperformed existing algorithms. In 2013,
Dang et al. (2013a) proposed a PSO-inspired Al-
gorithm (PSOIiA) based on their prior work. The
proposed algorithm outperformed all existing al-
gorithms: it was the first algorithm to find ev-
ery best known solutions of the small scale set
of instances. Based on their results, the authors
showed that a new set of instances was needed
to have a new base of research for the TOP, as
already proposed in Souffriau et al. (2010). They
built a new set of larger instances based on the OP
instances constructed by Fischetti et al. (1998).
A genetic algorithm approach was then proposed
by Ferreira et al. (2014), but they only tested a
limited number of small size instances and none
of the new large scale instances. A population-
based algorithm is also proposed by Vidal et al.
(2014b). Specifically, they adapted their Uni-
fied Hybrid Genetic Search (UHGS) (Vidal et al.,
2014a) framework and obtained very good re-
sults on the subset of small scale instances tested.
Finally, in 2020, a Scatter Search Hybrid ap-
proach was proposed (Alkhazaleh et al., 2019)
and showed good results as it got 154 best known
solutions out of the 157 tested instances belong-
ing to the small scale set. Other methods in-
cludes a Pareto Mimic Algorithm (PMA) (Ke
et al., 2016) which showed very good results both

on the small and large scale sets, and a Hybrid
Scatter Search with steep descent (HISS-SD) ap-
proach (Alkhazaleh et al., 2019) which obtained
results sligthly worse than PSOiA (Dang et al.,
2013a).

Heuristic approaches are described in table 1. In
particular, we report, for each method, the algo-
rithm, the set of instance considered, the number
of best known solutions found, and the average
CPU (s).

3.3. Very large scale

The very large scale component has only been
tackled a few number of times in the VRP. In this
context, the number of customers is large and ex-
act methods are not suitable. The size of these
instances is obviously a key factor to choose or
adapt a method to this context. The goal is then to
obtain very good solutions in a reasonable com-
putational time based on the instance size and
the problem tackled. In Kytojoki et al. (2007),
the authors developped a VNS that was coupled
with a GLS framework. Memory usage was opti-
mized by the use of compact information avoid-
ing the storage of the distance matrix. They also
used an appropriate representation of a solution
that eases classical operations like insertions and
removals. The algorithm managed to solve in-
stances up to 20 000 customers in a reasonable
time. Zachariadis and Kiranoudis (2010) pro-
posed a TS paired with Static Move Descriptors
(SMD), a method that greatly reduces the com-
putational complexity of local search operators
so that they cost an almost linear computational
time. Also using these SMD to diversify the ex-
ploration, they managed to solve instances up to
3 000 customers. Recently, Arnold et al. (2019)
proposed a knowledge-based heuristic based on a
prior analysis about the difference between (near-
)optimal solutions and other solutions. Used to
penalize ’bad’ edges in a GLS and associated to
pruning strategies and reduced information stor-
age, they managed to solve instances up to 30 000
customers. Finally, Accorsi and Vigo (2021) pro-
posed a new method based on an ILS. To reduce
the computational time, they used SMD, granular
neighborhood (Toth. and Vigo, 2003), and inten-
sify the optimization around areas that were re-
cently modified. The local search was designed



Method  Reference Algorithm Instance set #BKS CPU (s)
THM Tang and Miller-Hooks (2005) Tabu Search Chao et al. (1996) 33/157 445.7
GTP Archetti et al. (2007) Tabu Search Chao et al. (1996) 69/157 113.2
GTF Archetti et al. (2007) Tabu Search Chao et al. (1996) 94/157 189.22
FVNS Archetti et al. (2007) Variable Neighborhood Search Chao et al. (1996) 94/157  22.65
SVNS Archetti et al. (2007) Variable Neighborhood Search Chao et al. (1996) 127/157 322.59
SACO Ke et al. (2008) Ant Colony Chao et al. (1996) 128/157 294.61
DACO Ke et al. (2008) Ant Colony Chao et al. (1996) 80/157 249.18
RACO Ke et al. (2008) Ant Colony Chao et al. (1996) 81/157  238.77
SiACO Ke et al. (2008) Ant Colony Chao et al. (1996) 84/157  250.58
SKVNS Vansteenwegen et al. (2009b)  Skewed Variable Neighborhood Search Chao et al. (1996)  44/157 4.63
GLS Vansteenwegen et al. (2009b)  Guided Local Search Chao et al. (1996) 21/157 9.24
FPR Souffriau et al. (2010) Path Relinking Chao et al. (1996) 78/157 6.1
SPR Souffriau et al. (2010) Path Relinking Chao et al. (1996) 126/157 260.61
MA Bouly et al. (2008) Memetic Algorithm Chao et al. (1996) 146/157 114.77
PSOMA Dangetal. (2011) Particle Swarm Chao et al. (1996) 146/157 50.46
AuLNS  Kimetal. (2013) Augmented Large Neighborhood Search Chao et al. (1996) 157/157 55.96
PSOiA Dang et al. (2013a) Particle Swarm Chao et al. (1996) 157/157 128.76
Dang et al. (2013a) 71/82 11,031.04
MSA Lin (2013) Multi-start Simulated Annealing Chao et al. (1996) 133/157 41.34
UHGS Vidal et al. (2014b) Unified Hybrid Genetic Search Chao et al. (1996) 155/157 192
UHGS-f Vidal et al. (2014b) Unified Hybrid Genetic Search Chao etal. (1996) 150/157 68.96
MS-ILS  Vidal et al. (2014b) Multi-start Iterated Local Search Chao et al. (1996) 153/157 156
MS-LS Vidal et al. (2014b) Multi-start Local Search Chao etal. (1996) 115/157 9.29
PMA Ke et al. (2016) Pareto Mimic Algorithm Chao et al. (1996) 157/157 66.85
Dang et al. (2013a) 81/82 1,004.15
SHHS Tsakirakis et al. (2019) Similarity Hybrid Harmony Search Chao et al. (1996) 68/157 74.33
SHHS2 Tsakirakis et al. (2019) Similarity Hybrid Harmony Search Chao et al. (1996) 105/157 74.28

LNS Orlis et al. (2020)
HALNS Hammami et al. (2020)

HISS-SD  Alkhazaleh et al. (2019) Hybrid Scatter Search

Large Neighborhood Search
Hybrid Adaptive Large Neighborhood Search

Chao et al. (1996)
Chao et al. (1996)
Dang et al. (2013a)
Chao et al. (1996)

156/157 140
157/157 23.8
82/82 783.36
154/157 80.95

Table 1: Description of references method used. Based on the instance set, we report the number of best known solutions

(BKS) found and the average CPU (s) reported.

in a Hierarchical Randomized Variable Neigh-
borhood Descent (HRVND) to further promote
the intensification and the diversification while
maintaining efficient computational time. Results
were better than previous works on the very large
scale VRP.

With regard to the OP, Kobeaga et al. (2017)
introduced a new set of very large scale in-
stances. Authors proposed a genetic algorithm
that maintains unfeasible solutions during the
search. However, no specific mechanisms were
introduced to address the very large scale com-
ponent in their work, resulting in high computa-
tional time for the biggest instances of the set.

4. Problem formulation

We model the Multi-Depot Open Team Orien-
teering Problem with a graph G = (V, A) where
V = {1,..,N} represents the set of vertices,
i.e. the customers, with {1,...,m} and {N —
m, ..., N} being the starting and ending points of

every route, m the number of vehicles, and A =
{G, )i € V,j e V,i # j} the set of edges. A
profit p; is associated to each customer i € V
and each edge (i, j) € A has a travel time ¢; ;.
Travel times to the ending points have a cost of 0
as these points are introduced to model the open
path of each vehicle. The set of vehicles is noted
K = {1,2,..,m} and all vehicles share identical
features. Every vehicle k € K must respect a time
limit D.

We use two types of variables to model the MDO-
TOP: (1) binary variables x]l‘j which determine if
the vehicle k € K uses the edge (i, j) € A, and (2)
binary variables yf.‘ which determine if the vertice
i € V is visited by the vehicle k € K. Using these
variables, based on El-Hajj et al. (2016), we can
model the MDOTOP as follows:

z*:maxZnyXp,v (€))

keK i€V
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The objective function (1) maximizes the total
profit collected on customers. Constraints (2) are
the flow conservation constraints and link vari-
ables xffj and y’jf . Constraints (3) ensure that each
customer can be visited at most once. Constraints
(4) impose the starting and ending points for all
vehicles. Constraints (5) guarantee that every ve-
hicle will respect the time limit D. Finally, con-
straints (6) will make sure that there is no subtour
in the solution.

To our knowledge, the MDOTOP was not con-
sidered in the literature. To compare our method
with the literature, it is thus applied to the TOP.
As no exact methods are applied to the large scale
set of instances for the TOP, and because the
best exact method (Orlis et al., 2020) already has
important computational time on the small scale
one, we propose a metaheuristic to address the
problem.

5. Solution approach

In this section, we present the algorithm we have
developed to tackle the very large scale TOP. As
previously mentioned, the main goal of this pa-
per is to propose an algorithm which quickly pro-
vides very good solutions so it can be used in a
complex industrial context. Based on the litera-
ture, we proposed a metaheuristic which is more
suitable to solve difficult and large scale routing
problems in a reasonable time. We chose to de-
velop a Large Neighborhood Search (LNS) to ad-
dress the TOP. This choice is led by its high level

of performances when tackling the VRP and its
variants while being highly scalable to solve in-
dustrial problems (Mara et al., 2022). LNS is
first introduced in 1998 (Shaw, 1998) and then
extended to the ALNS by Ropke and Pisinger
(2006) who applied it on a Pickup and Delivery
Problem with Time Windows (PDPTW). LNS is
a metaheuristic based on the repetition of destroy
and repair operators. The structure of our LNS
is detailed in Algorithm 1. In the following, we
first present our construction heuristic and then
our LNS.

Algorithm 1 Overall LNS framework used in this

paper.

Require: Initial solution: S, initial temperature: T,
number of non-improving iterations before increas-
ing the size of neighborhood lists: «, cooling factor:
¢, cooling step size: stepSize
S Best < S0, T < Ty, Nolmp « 0
while Non stopping criterion do

for step < 1 to stepSize do
S New < N 0
Select a removal operator D and a repairing
operator R
Generate g and remove g vertices of S y,,, us-
ing D
Repair S v, using R
A = 2(S New) — 2(S0)
if S y.,, meets the requirements then
Apply Local_Search on S v,
end if
Generate 0 € (0, 1)
if S yey is better than Sy or e7 > ¢ then
S 0 < S New
end if
if S yew 18 better than S g, then
SBext — SNew
Reset the size of the neighborhood list
Nolmp « 0
else
Nolmp « Nolmp + 1
end if
if NoImp > « then
Increase the size of the neighborhood list
Nolmp « 0
end if
end for
T —Txc
end while

5.1. Construction heuristic

The LNS requires an initial solution S that
will be improved over iterations. In routing



problems, several methods exist to build an
initial solution, as among the most popular ones,
the Cheapest Insertion and the Clarke & Wright
heuristic (Clarke and Wright, 1964). As we aim
to deal with problems of thousands of points,
a cluster-first route-second method is defined
to build the initial solution. By partitioning the
space, the construction of the initial solution
is easier and the overall process might even be
sped up by providing a better solution to the
metaheuristic. This method has shown success
in the TSP context where millions of customers
can be tackled by partitioning the space before
optimizing each partition independently (Taillard
and Helsgaun, 2018).

5.1.1. Clustering-first

To do the clustering, k-means has shown good
performances (Mariescu-Istodor, 2021). Based
on it and proposed in Kaufman and Rousseeuw
(1990), we then chose k-medoids to cluster the
customers. In the TOP however, all customers are
usually not visited as every route is constrained
by a time limit. To take this into account, we pro-
pose an adaptation of the algorithm of Berndbe-
Loranca et al. (2014). In their method, in or-
der to build balanced clusters, the authors pro-
pose to modify the traditional function optimized
in k-medoids by a weighted objective function.
They apply it in a geographical context and show
that using the modified k-medoids function re-
sults in better-balanced clusters. This idea of
balancing clusters is interesting to represent the
time limit associated to each route. It has already
be shown that compact routes are usually better
than routes overlapping each other and these in-
tersections must be avoided in the VRP (Arnold
and Sorensen, 2019). Having compact and non-
overlapping routes should then ease the overall
process of finding quickly very good solutions
while the balance makes sure that each partition
is equally distributed. Solutions where routes are
compact, contiguous and non-overlapping also
tend to be accepted more easily by the user in a
realistic routing plan (Brdysy and Hasle, 2014),
making the interest of the clustering even bigger
for our application. The k-medoids function of
Bernédbe-Loranca et al. (2014) is defined by:

F1:min Wpedoids (Z Z fi,ck)
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where t; ¢, is the travelling cost between the cus-
tomer i € M, and the center Cy, of the medoid My,
|M,| the number of customers in the k& medoid
and B the balance objective equal to % The first
part is the classical k-medoids objective function
to minimize. The second part is associated to Lo-
ranca’s homogeneity function: it consists in com-
paring the number of customers belonging to the
cluster and its balance objective to penalize the
function according to this difference. An adapta-
tion of this function is proposed to better repre-
sent the routing context. Indeed, k-medoids may
associate a vehicle to a cluster which is far away
from the vehicle’s depot. This would induce a
non-negligible cost in the vehicle’s route which
would not have been anticipated during the clus-
tering process. To solve this problem, we intro-
duce a new component to the k-medoids function
proposed in Berndbe-Loranca et al. (2014):

K
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The first two parts are Berndbe-Loranca et al.
(2014) function while the last part is there to
make sure that the clustering function takes into
account the cost needed for a vehicle to reach its
cluster. Note that in the TOP context all vehicles
share a common depot but the function can easily
be tuned to tackle the multi-depot variant. It is
also possible to consider an unbalanced version,



for example if the fleet of vehicles is heteroge-
neous, to build clusters of different size based on
the vehicle speed.

5.1.2. Routing-second

When the clustering phase is finished, each cus-
tomer is inserted into its associated route (de-
fined by its cluster) using the Cheapest Insertion
heuristic while an insertion is feasible, that is an
insertion which does not violate the time limit D
of the route. Finally, the local search framework,
detailed in Section 5.3, is applied to improve the
quality of the initial solution.

5.2. Large Neighborhood Search

To optimize our initial solution, we chose to use a
LNS. As it is often done, our LNS is paired with
simulated annealing (SA) to escape local opti-
mum by accepting slightly worse solutions (Kirk-
patrick et al., 1983). Our LNS also has classi-
cal stopping criteria based on the computational
time, the number of iterations and the number
of iterations without improvement. Specific de-
tails are discussed next: first, we start to describe
both destroy and repair operators considered in
this paper. Then, we describe neighborhood lists
that are used to reduce the number of evaluations
done in our optimisation process. Afterwards,
we present the blink that is done to diversify the
neighborhood exploration. Finally, the objective
function used to compare solutions is presented.

5.2.1. Destroy operators

Our LNS uses several destroy operators to ex-
plore a large neighborhood. The number of de-
stroyed customers g will be picked from an inter-
val [Gmin, gmax] for operators which destroy cus-
tomers, and from an interval [¢seg, > @seqma:] O
operators which destroy a sequence of consecu-
tive customers. At each iteration, the selected op-
erator is chosen randomly to avoid redundancy.
In addition, a variant based on sequences of con-
secutive customers is considered for most opera-
tors. Classical operators proposed by the litera-
ture and used in our algorithm are:

e Worst Cost (Sequence) destroy: criterion as-
sociated to the cost of a (sequence of) cus-
tomer in the route;

e Worst Profit (Sequence) destroy: criterion
associated to the profit of a (sequence of)
customer;

e Random (Sequence) destroy: destroyed (se-
quence of) customers are chosen randomly.

e Shaw destroy: Shaw’s criterion was first in-
troduced in Shaw (1998). It consists in de-
stroying relative customers from the route.
In our work, we consider two customers i
and j as relatives if the travelling time ¢; ;
between them is small enough.

Dedicated operators used are:

e Rectangle destroy: geographical position is
a criterion that may be useful when tack-
ling specific instances where some areas are
widely covered by customers. Introduced
in Demir et al. (2012), this operator picks
randomly a seed customer from the prob-
lem and deletes every customer which is in
a rectangle around him (figure 1). While
the number g € [Gmin, gmax] Of customers
to delete is not reached, the rectangle is ex-
tended.

o Worst Cost-Efficiency (Sequence) destroy:
the profit is a good indicator of the relevance
of a customer. However, a customer can
bring a small profit while not being costly
in travelling time. We then define an opera-
tor based on the cost-effectivness of a cus-
tomer which deletes from the solution the
q € [qmin> gmax] Worse customers based on
this criterion. The cost-efficiency of a cus-
tomer i positioned between customers j and
1, noted CE;, is computed as follows:

CE = 2L ©)

Y

CljJ =ttt —tj (10)

where p; is the customer’s profit, and c’l ; its
cost of visit in its route as defined in Equa-
tion 8. A cost-efficient customer is then
very interesting to visit because he doesn’t
cost much compared to the profit he brings.
This operator makes a link between the ob-
jective function, which maximizes the total
collected profit, and the time limit constraint
associated to the routes.
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Figure 1: Figure showing the principle of Rectangle De-
stroy. The customer (0) is picked as the seed, thus is the
center of the rectangle. Every customer in the resulting rect-
angle is destroyed from the solution.

5.2.2. Repair operators

Our LNS is composed of seven repair operators.
We chose these operators based on their goal
to avoid overlapping operators while exploring a
large and diverse neighborhood. As we already
mentioned, unlike in the VRP, in the TOP it is
not possible to insert every customer into a vehi-
cle’s route. Those operators aim to insert the best
customers possible while maintaining the feasi-
bility of the route. To do so, after each insertion,
we check that it is still possible to insert a cus-
tomer. The reparation process stops when the op-
erator can’t insert a new customer. For all these
operators, customers are inserted into their best
feasible position, that is the position of insertion
inducing the smallest increase of cost among the
route. Our repair operators can be categorized
in two families: global insertion operators, which
is composed of operators that compare every cus-
tomer at each insertion, and sorted insertion oper-
ators, which insert customers in a pre-computed
order.

Global insertion operators. Global insertion op-
erators are more costly than sorted insertion op-
erators but they also have a better view of the
solution at each step of insertion. Most of the
time, they remain fast to compute but their com-
putational time also grows with the instance size.
This may be problematic in our context as we
want to solve very large scale instances. To avoid
this problem, they tend to be used with a smaller
probability than other insertion operators. Two
global insertion operators are evaluated in our
LNS:

e Best Cost insertion: criterion associated to
the cost related to the insertion of a customer
into a route;

o Cost-Efficiency insertion: criterion associ-
ated to the cost-efficiency of a customer into
a route. As the customer is not yet visited
and because customers are only inserted into
their best feasible position of insertion, this
criterion can be computed as:

Pi

min Ci‘z
Vil Js

CE; = (11)

where min cj. , corresponds to the minimum
feasible cost insertion of i in the solution.

Sorted insertion operators. Sorted insertion op-
erators are fast to compute as they usually start
by sorting the customers based on a specific crite-
rion and then insert them in the defined order. In
opposition with global insertion operators, they
have a very limited view of the solution at each
step of insertion as the defined order is not re-
assessed after any insertion. Repair operators that
use this principle are the following:

e Best Profit insertion: criterion associated to
the profit of a customer;

e Random insertion: select randomly the cus-
tomer to insert into a route;

e Order insertion: replace the customers that
just got deleted from the solution. It aims
at moving well-organized sequences of con-
secutive customers into a better place. In-
deed, if a sequence of customers is well-
organized, its cost might be low if globally
taken. Nevertheless, this does not mean that



the sequence is at the best place in the so-
lution. The Order insertion operator aims at
correcting these kinds of issues.

e Reverse Order insertion: inserts customers
in the reverse order of destruction. This
means that the last customer deleted from
the solution is the first to be replaced. The
operator aims at reversing sequences of con-
secutive customers which might be well-
organized but might be better placed if re-
versed.

e k-Regret Cost-Efficiency insertion: based
on the classical regret insertion operator, this
operator searches for customers that are the
most critical in the insertion order. The k-
regret associated to the cost-efficiency crite-
rion of a customer i can be computed as:

k
CE) - CE! (12)
j=1

j=

where C El] is the j* best cost-efficiency of i.
The k-Regret Cost-efficiency operator has a
similar objective to the Cost-efficiency oper-
ator: to find the best customers to insert ac-
cording to both the cost associated to their
visit and the profit they bring. However, it
does it in a smaller computational time, as
customers are sorted before inserting them.
In this paper, a full regret is used to compute
the regret value, meaning that all feasible in-
sertions are considered for each customer in
the computation of the regret cost-efficiency
value.

5.2.3. Neighborhood lists

To avoid the evaluation of too much possibili-
ties during the process, neighborhood lists are
used. We use similar ones as proposed by Toth.
and Vigo (2003), which are called granular lists.
These lists aim at defining a set of neighbors for
every customer based on a set of ’short’ edges.
In our algorithm, a customer i is a neighbor of a
customer j if it follows one of the following con-
ditions:

o .
T+m’

o fii<¥=px%

e jis at most the ' nearest customers from i.
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where 9 is the granularity threshold, § is a posi-
tive sparsification parameter, cg,, is the cost value
of the initial heuristic solution, i.e. the sum of ev-
ery route’s cost, 7 is the number of visited cus-
tomers in the solution, and 7 is the minimum
number of neighbors considered for each cus-
tomer. The first condition enables the algorithm
to search around ’short’ arcs while the second one
makes sure that every customer has a minimum
number of neighbors, tackling some cases where
a customer might be isolated from the others. As
the initial granularity threshold value might not
be the best suited for the tackled problem, it may
be interesting to increase the size of our lists. For
this purpose, we also define a parameter « which
corresponds to the maximum number of LNS it-
erations without finding a new best solution. If
during the LNS process we reach this number,
then the size of our lists is increased by increasing
the value of 5. A maximum number of neighbors
per customer is also defined to avoid considering
too much neighbors. These lists are used in every
repair operator and in every local search opera-
tor. For example, while repairing a solution, only
the insertion of a customer around its neighbors
is evaluated. Similarly, only moves that imply
neighbors are evaluated in the local search frame-
work. Thus, the size of the graph considered is
reduced as illustrated figure 2.

5.2.4. Blink

A blink is used to add a diversification process
in our destroy & repair operators. Blink is intro-
duced in Christiaens and Vanden Berghe (2020)
and consists in skipping an evaluation or a move-
ment based on a random criterion. Several types
of blink were tested: blinking when finding a new
best candidate in destroy & global repair oper-
ators, blinking to avoid the evaluation of a cus-
tomer for destruction (Dumez et al., 2021), blink-
ing to avoid the evaluation of a customer inser-
tion, and blinking to avoid a position of insertion
for a customer. Overall, only the first one has im-
proved the algorithm performance, meaning that
sometimes the algorithm ignores a new best can-
didate to remove or insert in the solution.

5.2.5. Objective function
Obviously, the main objective function to opti-
mize is the total profit collected on customers.



Figure 2: Figure showing an example of the reduction in the
graph size while using neighborhood lists. Edges which are
more costly than a defined threshold value are not explicitly
considered anymore.

However, it is important not to overlook the cost
of the solution associated to the collected profit.
In the TOP, several solutions may have the same
profit but differ in its routes cost. A smaller-
cost route should be preferable over a bigger-cost
route as it should be easier to add a new customer
into the smallest one. This idea is used by Vidal
et al. (2014b) and has already shown its interest.
As such, solutions having a smaller cost are pri-
oritized when comparing to solutions having the
same profit.

5.3. Local search

The main goal of this local search framework is
to quickly get to, or near, the local optimum. By
pairing this framework and the destroy & repair
process, we hope to cover a very wide number
of local optima and, by extension, to find the
global optimum. The local search framework
is composed of several operators which are ap-
plied in the given order while there is an im-
provement: 1-1 Exchange, Replace, 3-opt, and
Cross-Exchange. This order is chosen based on
the computational complexity of local search op-
erators. For all but 3-opt, the best-improvement
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criterion is used to determine the move to apply.
For 3-opt, a first-improvement strategy is used.
If the local search framework improves the so-
lution, it tries to insert new customers using the
Cost-efficient repair operator as a compromise
between the additional profit gained by visiting
a new customer and the remaining time available
in the associated route. This process is repeated
while it improves the quality of the solution.

5.3.1. Restricted candidate list

Following the same principle than the neighbor-
hood lists, we define a Restricted Candidate List
(RCL). Our choice of using it is based on Arnold
et al. (2019) where authors show that, in very
large scale problems, it is important not to lose
time in the evaluation of already good area, while
intensifying the optimisation around bad areas
will lead to an overall better solution. It is then
necessary to define what is a good area and a
bad one in a solution. This definition might be
problem dependant. In their work, Arnold and
Sorensen (2017) study how different are (near-
) optimal solutions from non-optimal solutions
based on several metrics on a VRP problem. Us-
ing these metrics, they managed to predict the
quality of a solution with an accuracy up to 93%,
which shows that these metrics can be used to dif-
ferentiate these solutions. They finally use the
width, the cost and the depth implied by an edge
to define a ’bad’ edge, and use this definition to
build a very competitive heuristic for the VRP.
In the TOP context, profit is at least as impor-
tant as the cost of a customer and these observa-
tions might not hold. However, the cost of a route
is still a key factor while optimizing a solution
since it might be possible to insert another cus-
tomer by reducing it. In our work, we character-
ize customers and not edges as profit is customer-
dependent. A customer i positioned between cus-
tomers j and [/ is then evaluated by his profit p;,
his cost cj’] (see Equation 10), his depth depth;
and his width widthi.,l that can be computed as:

widzh;,, = width(j, i) + width(i, ) (13)
Both the depth of a customer and its width are
represented in figure 3. To compute the width
width(i, j), first build the parallel straight line



from (0, G) going through i, with G the route’s
center of gravity. width(i, j) is then computed as
the distance between j and its projection on the
previously built straight line. The resulting func-
tion used to evaluate a customer is then:

V; = (wp X pi + Wy X width’j’l + we X c’j’,)

y depth; :
maxDepth

o

(14)

where maxDepth is the maximum depth in the
route, and wj,, wy,w. and wy € {0,1} are the
weight applied to each metrics considered. The
RCL is only used in the 1-1 Exchange, Best Re-
place and Cross-exchange operators, to limit the
number of evaluated customers while targeting
the ’bad’ ones. It is composed of the ¢ worst cus-
tomers of the solution based on Equation 14.

Figure 3: Illustration of the metrics used to characterize the
restricted candidate list. (G) is the route’s center of gravity.
The depth of (i) corresponds to the distance between the de-
pot and i.

6. Numerical results on literature instances

Our algorithm is implemented in C++11. We
evaluate it on an Intel Xeon processor E5-2690,
2.60GHZ with 8 GB of RAM. The LNS is tested
in the same conditions as in Hammami et al.
(2020): we report the best solutions obtained
from twenty independent runs which are per-
formed on each instance. Tests are performed
on two sets of existing instances, and on a new
set of very large scale instances that we built for

the TOP based on the instances of Kobeaga et al.
(2017) for the OP. Instances are described in Sec-
tion 6.1.

6.1. Instances description

To evaluate our algorithm, we apply it to pop-
ular TOP instances from the literature and on
a newly introduced set of very large scale in-
stances. These instances are classified into three
different categories which are small scale, large
scale and very large scale, based on their size.

6.1.1. Small scale instances

The small scale instances are those introduced
in Chao et al. (1996). These instances are sep-
arated into seven sets based on their size, which
vary from 21 to 102 customers. In each set, the
number of customers and their position stay the
same, but the time limit and the number of vehi-
cles vary. According to Souffriau et al. (2010),
out of the 387 instances of this set, only 157 are
relevant as every algorithm got the same results
on the remaining instances of this set. Therefore,
only these 157 instances are considered in this pa-
per.

6.1.2. Large scale instances

We also test our LNS on a larger set of in-
stances. This set is the one reported by Dang et al.
(2013a). It was introduced to give a new area
of research on the TOP as PSOiA (Dang et al.,
2013a) found all best known solutions when ap-
plied to the small scale set of instances. This set
is composed of 333 instances which were adapted
from the OP (Fischetti et al., 1998) and derived
from the Capacitated VRP (CVRP) and the TSP.
For the CVRP, customers’demand became their
profit, whereas for the TSP instances, profits were
created using three ways:

e Every customer has a profit of 1 (genl);

e Every customer’s profit is computed by a
pseudo-random function so that the value
can’t be less than 1 and more than 100
(gen2);

e Every customer has a profit dependent on its
distance from the depots. The further the
customer, the bigger the profit (gen3).



These instances are larger than the previous set,
ranging from 101 to 400 customers. Still, they are
not big enough to model some industrial prob-
lems which can have several thousands of cus-
tomers to consider.

6.1.3. Very large scale instances

The main goal of our algorithm is to tackle in-
stances of several thousands of customers. To
our knowledge, such instances are not available
in the literature in the TOP context. A new
set of instances based on the literature (Kobeaga
et al., 2017) is built by adapting the very large
scale instances from the OP. The time limit D7 9"
of the TOP is based on the time limit DOF
of the OP and determined as in Chao et al.
(1996): DToP = DTOP, where m is the num-
ber of vehicles considered. Instances can be
found at https://github.com/CharlyChgn/
VLS-Team-0Orienteering-Problem. It con-
sists in 24 problems associated to 3 classes of
profit generation (genl, gen2 and gen3) as in
Dang et al. (2013a) (and explained previously for
large instances) and with 4 variations on the num-
ber of vehicles, resulting in a total of 288 in-
stances. As these instances are bigger, it is eas-
ier to consider more vehicles while still having a
large number of customers per route. This is con-
sistent with our goal to tackle industrial problems
as the number of vehicles can be bigger in realis-
tic problems. In this set of instances, the number
of vehicles varies between 2, 3, 8 and 10 vehicles
while the number of customers ranges from 1001
to 5395.

6.2. Parameters

As previously mentioned, our LNS is composed
of numerous parameters. A summary of their no-
tations and definitions can be found in table 2. To
evaluate our algorithm, these parameters values
need to be fixed. As our main goal is to show
that our algorithm is competitive to tackle big in-
stances, a subset of 14 instances from the large
and the newly introduced very large scale set are
used. These instances are selected to cover dif-
ferent types of instances based on the depot posi-
tion, and all kinds of profit generation are consid-
ered. They range from 195 to 3795 customers.
The algorithm is applied 10 times on each se-
lected instance with different parameters values
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picked from the literature. Parameters’values are
fixed one by one based on their impact on the so-
lution’s quality and the computational time. Final
results are also summarized in table 2. A similar
task is done to evaluate the interest of our destroy
and repair operators. Table 3 sums the remain-
ing operators used in the final algorithm. It is
noteworthy that, even if random operators man-
age to bring slightly better solutions, we chose
not to use them as they have low chances to be of
interest when applied to the very large scale set
of instances.

According to the results, local search is applied
differently based on the set of instances tack-
led: it is only applied when a new best solution
is found for the small and large scale set of in-
stances, while it is applied each time the obtained
solution is better than the solution before the de-
stroy & repair process for the very large scale set.
To ensure consistency in computational time, the
stopping criterion is 250 000 iterations or 100 000
iterations without improvement for the small and
large scale set, and 100 000 iterations for the very
large scale set. This high number of iterations
without improvement is explained by the time
needed to extend the neighborhood lists which
enables a larger exploration. The maximal com-
putational time allowed is one hour but we aim to
obtain very good solutions in a budget time of 10
minutes.

6.2.1. Clustering

The proposed clustering is based on three terms
associated to the compactness (corresponding to
the classical k-medoids function), the balance
and the cost for a vehicle to reach its associated
cluster. Figure 4 shows two examples of differ-
ences between the clustering method proposed by
Berndbe-Loranca et al. (2014) and our adapted
method. As can be seen, vehicles are closer to
their depot using our method than the clustering
function used by Berndbe-Loranca et al. (2014).
To have a better view of the impact of each part
of the proposed function, we apply our cluster-
ing algorithm to the large scale set of instances.
We ignore instances that only differs in the profit
generation as the clustering function would then
yield the same clusters. Results reported in table
4 show the average value of each part and for dif-
ferent weights. These values need to be the small-



Parameters Description Value

Winedoids Weight of the medoids cost in the k-medoids function 0.2
Clustering Whomogeneity Weight of the balance cost in the k-medoids function 0.7

Wdepot Weight of the depot-to-cluster cost in the k-medoids function 0.1
Destroy [Gseqgins Dseqme.] Number of customers removed by destroy operators (%) [1,20]
operators (G sequin> Dseqmar] Number of customer removed by sequential destroy operators (%) [1,20]

0 Degradation used to compute the initial temperature (%) 1
SA framework ¢ Cooling factor 0.99975

stepSize Cooling step size 50

CPU, ux Maximum computational time (s) 3600
Stopping Maximum number of iterations for small scale and large instances 250 000
criterion itermax Maximum number of iterations for very large scale instances 100 000

Nolmpax Maximum number of iterations without improvement 100 000

Bo Initial sparsification parameter 1

Bunax Maximum sparsification parameter 15
Neighborhood S, Value of increment of 8 0.5
lists n Minimum number of neighbors per customer 10

vy Maximum number of neighbors per customer 25

K Number of non-improving iteration before increasing the size of 1000

neighborhood lists

© Number of customers considered in local search (%) 5

wp Weight applied to the profit value used to evaluate a customer 1
Local search We Weight applied to the cost value used to evaluate a customer 1

Wiy Weight applied to the width value used to evaluate a customer 1

Wy Weight applied to the depth value used to evaluate a customer 1

Table 2: Parameters description and values after the calibration phase.

Type of operator Operator State Score

Worst Cost Destroy

Worst Cost Sequence Destroy

Random Destroy

Random Sequence Destroy

Shaw Destroy

Rectangle Destroy

Worst Profit Destroy

Worst Profit Sequence Destroy

Worst Cost-efficiency Destroy

Worst Cost-efficiency Sequence Destroy

Destroy Operator

1

— R = W= =

Best Cost Insertion

Random Insertion

Order Insertion

Reverse Order Insertion

Best Profit Insertion

Best Cost-efficiency Insertion
Regret Cost-efficiency Insertion

Repair Operator

LARRAAX X [RAax AN NAx S

ENEIF NS

Table 3: Results for the operator selection.
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est possible. Overall, it shows that each compo-
nent add a control over the associated criterion,
thus confirming the relevance of the latter one in
a routing context. The impact of the weights on
the final solution is evaluated in table 5 based on
the relative percentage error (RPE), the average
relative percentage error (ARPE) and the compu-
tational time. RPE and ARPE are computed as:

RPE — 2(S Bks) — 2(S Best) (15)

2(S ks)

ARPE = 2(S Bxs) — 2(S mean) (16)

(S Bks)

with z(S pks) the objective function of the best
known solution, z(S pess) the profit of the best
found solution, and z(S ,..,) the average profit
obtained along the whole set of executions. Note



that, for the very large scale instances of the sub-
set of calibration, z(S pxs) values are computed
using the best value obtained while modifying the
parameter’s value.

Results show how each term may change the
quality of the average solution found and the as-
sociated computational time. In particular, con-
sidering all three terms of the function gives
slightly better solutions in average while also be-
ing faster to compute. Final weights used in this
paper can be found in table 2.

Weights C | B | DtC
(1,00)  713.16 3.22 514.98
(0.1,0)  1007.38 0.47 568.60
0.0.1)  1063.48 4.88 236.63
(0.3,0.7.0)  807.85 0.75 662.38
(0.2,0.7.0.1) 870.84 0.55 656.62

Table 4: Summary results of the clustering function when
applied on the large scale set of instances with different
Weights (WmednidsyWhvumg@wi!ys Wdepor)~ Cornpactness (C> is
associated to the classical k-medoids function, balance (B)
to the added part of Berndbe-Loranca et al. (2014), and
depot-to-cluster (DtC) to the cost for a vehicle to reach its
associated cluster. Values are computed for each clusters in-
dependently and then averaged. Values reported correspond
to the average across the whole set of instances. For each
criterion, we aim for the smallest value possible.

Parameters RPE (%) ARPE (%) CPU (s)
wer = (1,0,0) 1.09 2.98 344.99
wer = (0,1,0) 0.88 1.88 306.86
wer = (0,0,1) 0.88 1.92 296.55
wer = (0.3,0.7,0) 0.50 2.00 302.36
wer = (0.2,0.7,0.1) 0.17 1.78 293.62

Table 5: Impact of the weight used in the cluster-
ing function on the calibration subset, with wg =
(Wiedoids» Whomogeneitys Wdepor)-

6.2.2. Adaptive layer

LNS can be extended to the ALNS by adding
an Adaptive layer. In the ALNS framework,
operators are attributed a score based on their
past performance in the algorithm. Although
this might be interesting to prioritize specific op-
erators which might be different based on the
instance tackled, a recent study (Turkes$ et al.,
2021) showed that the added value was quite
small. Nevertheless, during the calibration phase,
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we also tried using the adaptive layer. Results
showed that the adaptive layer is not useful for
our algorithm as better results were obtained
without it (table 6). As LNS can have better
results by fixing operators’score (Dumez et al.,
2021), several values were tested for the best op-
erators according to both their performance and
their computational time. Final score for each op-
erator can be found in table 3.

Parameters RPE (%) ARPE (%) CPU (s)
LNS 0.25 1.87 293.62
o =(33,9,13) 0.98 2.87 525.09
o =(33,20,13) 0.49 2.85 511.75
o=(,1,1) 0.98 2.58 491.66

Table 6: Impact of the adaptive layer on the calibration sub-
set.

6.2.3. Blink

The blink process is evaluated. In our algorithm,
it consists in skipping a new best candidate for
both deletion and insertion in our destroy & re-
pair process. Results on the calibration subset are
summarized in table 7. Note how this process is,
in average, beneficial as it improves the quality of
the algorithm (+0.12%) by adding more diversi-
fication while also decreasing the computational
time needed to compute the solution (-20s).

Parameters RPE (%) ARPE (%) CPU (s)

Blink = 0.0 0.68 1.96 370.77
Blink = 0.1 0.22 1.84 349.90
Blink = 0.3 0.65 1.98 385.18

Table 7: Impact of the blink process on the calibration sub-
set.

6.2.4. Restricted candidate list

The RCL is also evaluated in table 8 where its
use and different cost function are considered.
In particular, we compare the classical function
used to evaluate a customer and only based on
its cost, the function introduced by Arnold et al.
(2019) which adds relevant metrics, and ours
which adapts the latest to the TOP context. Re-
sults show that the RCL is beneficial for the algo-
rithm, and that our adapted function also bring a
better gain to the process. RCL reduces the com-
putational time of more than 600 seconds while
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Figure 4: Examples of differences between Loranca’s clustering (right) and the adapted function used in this paper (left).

improving the quality of obtained solutions of
0.31% in average. Note that for the biggest in-
stances (3795 customers), when the RCL is not
used, the stopping criterion is the maximum com-
putational time (3600s). Results also confirm
that Arnold et al. (2019) cost function is better
than the classical cost used to evaluate a customer
(+0.4%), while the addition of the profit further
increases the solution’s quality (+0.25%).

6.3. Benchmark

6.3.1. Small scale instances

We first test our algorithm on the small scale set
of instances. Our method, named LNS2, is com-
pared with several algorithms (described in table
1) based on their results: a throughout compari-
son can be seen in figures 5 and 6. The best so-
lutions obtained for each set of instances are re-
ported in tables 17 to 20. On these instances, our
algorithm finds 152 out of the 157 best known
solutions (BKS) in a smaller computational time

than methods obtaining similar results. Our algo-
rithm is indeed very good on this criterion with
respect to the number of best known solutions
found, outperforming existing literature. The rel-
ative percentage error (RPE) is then computed
and compared with existing literature. Results are
summarized in tables 9 to 11 and also show that
our algorithm is competitive to quickly get very
good solutions. Figures 5 and 6 show that our
algorithm (LNS2) belongs to the pareto front on
both the number of BKS found and the RPE, de-
pending on the computing time. In fact, our algo-
rithm, the SkKVNS (Vansteenwegen et al., 2009b)
and the HALNS (Hammami et al., 2020) com-
pose the pareto front on both criteria as at least
one of these methods dominates the others. Over-
all, results are particularly good as the algorithm
parameters were not trained on this set of in-
stances.
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Parameters RPE (%) ARPE (%) CPU (s)
¢ =100 0.78 2.15 1045.88
wrs = (0,1,0,0) 0.51 2.49 326.57
wrs =(0,1,1,1) 0.44 2.09 379.52
wrs = (1,1,1,1) 0.22 1.84 349.90

Table 8: Impact of the Restricted Candidate List framework on the calibration subset. We compare the use of restricted
candidate list with different values for each weight w;g = (w,, we, w,,, wg). In particular, we compare the algorithm without
RCL (¢ = 100), the use of RCL only considering the cost of a customer in the route (w.s = (0, 1,0,0)), the RCL with the

function of Arnold et al. (2019) (w5 = (0, 1, 1, 1)) and with ours (w.s = (1, 1,1, 1)). When considering a RCL, value of ¢ is 5.
Instances SkKVNS GLS FPR MA  AuLNS PSOiA UHGS MS-ILS MS-LS PMA LNS HALNS HISS-SD LNS2
4 7.4 114 86 18236 773 218.58 236.35 202.68 159 1093 218.02 3224 80.39 5.16
5 1.5 35 29 3533 22.1 49.5 138.02 89.34 3.36 229 66.39 11.63 50.24 3.72
6 1.9 43 2.1 39.07 12.3 47.08 91.02 56.35 1.97 36.4 4279 9.67 62.02 3.65
7 43 12.1 63 11275 66.8 97.47 228.01 201.87 9.76 54.6 15295 30.89 120.39 5.34
Avgset 378 783 498 9238 44,63 103.16 173.35 137.56 7.75 55.8 120.04 21.1 78.26 4.47
Avg 4.63 924 6.1 11477 5596 128.76 192 156 9.29  66.85 140 23.8 80.95 4.65

Table 9: Average CPU time (s) based on the small scale data set considered.
Instances BKS SkVNS GLS FPR MA AuLNS PSOiA UHGS MS-ILS MS-LS PMA LNS HALNS HISS-SD LNS2
4 54 1470 2967 0.725 0029 0.000 0.000 0004 0012 0.190 0.000 0.000 0000  0.001 0.034
5 45 0622 2515 0230 0062 0.000 0000 0.000 0.000 0057 0.000 0.007 0000  0.000 0.000
6 15 0.520 1.776 0.112 0.000 0.000 0.000 0.000 0.000 0.032 0.000 0.000 0.000 0.000  0.000
7 43 1.309 3.079 0.540 0.013 0.000 0.000 0.000 0.000 0.142  0.000 0.000 0.000 0.007 0.071
AVG set 157 0980 2.584 0.402 0.026 0.000 0.000 0.001 0.003 0.105  0.000 0.002 0.000 0.002 0.026
AVG all 157 1.089 2719 0473 0.031 0.000 0.000 0.001 0.004  0.123  0.000 0.002 0.000 0.002 0.031
Table 10: Average RPE to the best known solution based on the small scale data set considered.
Instances BKS SkVNS GLS FPR MA AuLNS PSOiA UHGS MS-ILS MS-LS PMA LNS HALNS HISS-SD LNS2
4 54 7 6 17 49 54 54 52 50 30 54 54 54 53 52
5 45 21 9 33 40 45 45 45 45 40 45 44 45 45 45
6 15 10 4 12 15 15 15 15 15 14 15 15 15 15 15
7 43 6 2 16 42 43 43 43 43 31 43 43 43 41 40
All 157 44 21 78 146 157 157 155 153 115 157 156 157 154 152

Table 11: Number of best known solutions found for each set of the small scale instances.

6.3.2. Large scale instances

The algorithm is then tested on the set of
large scale instances. Results can be seen in
table 21 where they are compared with PSOiA
(Dang et al.,, 2013a), PAM (Ke et al., 2016)
and HALNS (Hammami et al., 2020), these
algorithms being the only ones applied on this
set. Our algorithm finds 54 out of 82 best known
solutions among which three new best known
solutions for gr229_gen2_m4, gr229_gen3_m4
and rd400_genl_m?2. A detailed descrip-
tion of these solutions, i.e. ordered sets of
customers visited by each vehicle, is avail-
able at https://github.com/CharlyChgn/
VLS-Team-Orienteering-Problem. A
checker of solution is also joined to verify the
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integrity of constraints, such as tour duration.
In average, it finds solutions which are most of
the time very close to the best known solutions
while doing so very quickly as shown by its
RPE value and its computational time (table
12). When finding the best known solution, our
algorithm is clearly faster than any of the other
methods. Out of the 4 compared methods, results
for the ARPE value are slightly worse but stay
very good as, in average, solutions are less than
0.7% worse than the best known solution of the
problem. In average, for a computational time 40
times lower, results are only 0.4% worse when
compared to the HALNS. Overall, for the large
scale set of instances, based on preferences, both
HALNS and our LNS are good options as seen



in figure 7, while PSOiA and PMA are both
dominated by HALNS. Nevertheless, we believe
that our algorithm is more suitable to be used in
industrial context as it finds these solutions very
quickly at a very low cost of solutions’s quality.

6.3.3. Very large scale instances

Finally, we apply the algorithm to the new set of
instances ranging from 1001 to 5394 customers,
and from 2 to 10 vehicles. As the set is newly in-
troduced to the TOP context, we can only judge
the performance of the algorithm based on two
values: the average deviation and the time needed
to compute the solution. Table 22 reports for
each instance the best solution obtained, the CPU
time (s) associated, the average solution, the av-
erage CPU time (s) and the ARPE value of the
algorithm on the instance. Out of the 288 built
instances, in three instances the total profit col-
lected is O, thus are not considered in the re-
sults. Overall, the algorithm remains quite fast
to compute since for most of the instances it ends
in less than one hour, the average computational
time being even smaller than the actual process-
ing time of HALNS on the large scale set while
having no less than 9.3 times more customers in
average. As can be seen in table 13, the ARPE
value is higher than in the prior set of instances
(1.52%) but is still relevant for such big instances.

6.4. Results analysis based on the number of ve-
hicles

The impact of the number of vehicles is also stud-
ied and results are summarized in table 14. Re-
sults are interesting as in both the small and large
scale sets, the worse results are obtained when
the number of vehicles is m = 3 while the best
results are obtained with the highest number of
vehicles m = 4. For the newly introduced set of
instances, worse results are also obtained when
m = 3 while results are similar for instances with
a higher number of vehicles. We can also note
the impact of the number of customers per route
on the computational time as the average CPU is
higher when considering a smaller number of ve-
hicles. This shows that longer routes take more
time to optimize using our algorithm.

6.5. Results analysis based on profit generation
We also study the impact of the profit generation
on the results obtained by the algorithm. Re-
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sults are summarized in table 15. For the large
scale set of instances, it shows that the algo-
rithm is in average better on the generation 2 in-
stances corresponding to the random distributed
profit on every criterion. When applied to gener-
ation 1 instances, where every customer has the
same profit of 1, the algorithm performs better
than on generation 3, where every customer has
a profit depending on its distance from the depot.
As both of these types of instances are particular
cases of the generation 2, if given more freedom
(for example in our neighborhood lists or our re-
stricted candidate list), the algorithm might be
able to obtain solutions that are at least as good
as in generation 2. On the very large scale set
of instances, the algorithm shows similar perfor-
mances on generation 1 and 2 even if it is slower
on generation 1 instances. Worse results are
again obtained for generation 3 instances. This
behavior might be caused by the clustering that
partitions the area and which might not be rele-
vant for this specific kind of instances. Overall,
our algorithm remains very competitive on every
kind of profit distributed instances.

6.6. Convergence

We then analyse the average convergence of the
algorithm based on the set of instances tack-
led. Results are very interesting as our algorithm
quickly converge independently of the set of in-
stances tackled: for the small scale set, solutions
reach 99% of the profit of the final solution in
0.075s. For the large scale set, the same value
is reached in 0.39s while it is reached in 125s
for the very large scale set. Overall, initial so-
Iutions worsen with the increase in size of the in-
stance tackled, going from 88.43% for the small
scale set to 75.18% for the very large scale set.
This shows that the heuristic used to build the ini-
tial solution doesn’t scale well with the instance
size, which seems reasonable as these instances
are harder to solve. For every set of instances,
most of the time the algorithm does not improve
much the solution’s quality when getting close
to one of the stopping criterion, thus confirming
their relevance. It is also of interest to note that,
based on its convergence, our algorithm can be
stopped earlier in an industrial context where a
bigger compromise between the solution’s qual-
ity and its associated computational time may be
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Figure 7: RPE based on the average computational time and the algorithm used for the large scale set of instances.

Criteria PSOiA PMA  HALNS LNS2
# BKS 70 78 79 54*
RPE (%) 0.04688  0.00722 0.00712 0.14027
ARPE (%) 0.50529  0.42899 0.30205 0.68628

Average CPU (s) 11,031.04 1,004.15 783.36  20.58

*3 new best known solutions

Table 12: Summary results for the set of large scale instances.

20



Instances # ARPE (%) CPU (s)
1000-1500 117 1.571 164.891
1500-2000 60 1.496 259.342
2000-3000 48 1.248 400.172
3000-6000 60 1.670 1699.364
All 285 1.521 547.449

Table 13: Summary results for the set of very large scale instances.

Instance set m # RPE (%) ARPE (%) Average CPU (s)
2 60 0.031 0.252 4.492
Small scale 3 52  0.051 0.237 4.583
4 45  0.009 0.177 4.940
2 29 0.151 0.701 19.320
Large scale 329 0.190 0.799 20.565
4 24  0.067 0.532 22.138
2 72 - 1.617 705.736
Verv 1 I 3 72 - 2.068 588.653
erylargeseale ¢ 7o - 1214 442.164
10 69 - 1.173 449.145

Table 14: Impact of the number of vehicles.

Instance set Profit generation # RPE (%) ARPE (%) Average CPU (s)
Gen 1 17 0.120 0.807 21.910
Large scale Gen 2 45 0.096 0.523 18.612
Gen 3 20  0.207 0.952 22.920
Gen 1 95 - 1.298 566.911
Very large scale Gen 2 95 - 1.373 539.418
Gen 3 95 - 1.893 536.017

Table 15: Impact of profit generation.

needed. Thus, the algorithm meets the require-
ments linked to the computational time that we
were aiming for.

7. Numerical results on industrial instances

Our algorithm is then evaluated on industrial in-
stances. In this context, each vehicle has its own
depot and they don’t need to finish their route on
their depot. The algorithm is adapted to solve
MDOTOP instances from TOP ones: each depot
is specific to each vehicle, and final depots are
dummy points having no cost to reach.
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7.1. Industrial instances

Our algorithm is tested on 10 industrial instances
ranging from 3133 to 7358 customers and consid-
ering 6 to 18 vehicles. We consider a time limit D
of two hours with vehicles moving at an average
speed of 4 km/h. Industrial solutions considered
are computed based on geographical information
as in practice, and validated by an industrial ex-
pert. As our goal is to propose new solutions ev-
ery 10 minutes, the associated parameter is set to
this value. This won’t degrade much the qual-
ity of the proposed solution as our algorithm is
very fast to converge. Moreover, in our industrial
context, computing time is as important as the



solution’s quality since hazards regularly change
the initial planning. Thus, stopping the algorithm
at 10 minutes is reasonable to tackle subsurface
imaging instances. The set of parameters intro-
duced for the very large scale set of instances is
used for the other parameters as these instances
are similar. An example of instance is illustrated
figure 8.

7.2. Benchmark

To evaluate the method, we compare 10 execu-
tions of our algorithm on all industrial instances
considered. The ARPE value, based on the best
solution found, is compared for both industrial
and algorithmic methods. Results can be seen in
table 16 where industrial solutions are compared
with solutions obtained using our metaheuristic.

It shows that our algorithm outperforms the tra-
ditional way to build solutions used in this indus-
trial context. In particular, the number of points
visited is 38% lower using industrial solutions
based on LNS2 results. The algorithm is, most
of the time, stopped by the maximum computa-
tional time of 10mn which is higher than the algo-
rithm based on pre-computed geographical infor-
mations used to build industrial solutions, which
is immediate. Our algorithm obtains similar re-
sults among the executions, as shown by the aver-
age ARPE value (0.47%), showing that the bud-
get time of 10 minutes doesn’t have much effect
on the convergence of the algorithm for an in-
dustrial application. Overall, the results obtained
using our metaheuristic are way more interesting
than the classical way to build solutions in the
subsurface imaging field, improving in average
by 62% the number of visited points.

8. Conclusion and perspectives

We proposed a LNS to tackle the very large scale
MDOTOP. To our knowledge, this is the first
time this problem is treated in the literature. Our
LNS is paired with mechanisms which aim at re-
ducing the number of evaluations during the al-
gorithm. Results on literature instances for the
TOP are promising since it finds a good number
of the best known solutions while being much
quicker than state-of-the-art algorithms. Three
best-known solutions were improved for the large
scale set of instances. Our LNS is also applied on
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a new set of very large scale instances based on
OP instances. Results show that our algorithm
is fast for most of these instances but is slower
the longer the routes are. The algorithm is shown
to be very good independently of the type of in-
stance tackled, even if worse results are obtained
when customers’profit is based on their distance
from the depot.

Our algorithm is then applied on industrial in-
stances from the subsurface imaging field. On
these instances, our algorithm greatly improves
the performance of vehicles, increasing in aver-
age by 62% their productivity. Overall, the sim-
plicity of our method associated to the quality of
the obtained results based on its computational
time makes our algorithm very interesting to be
applied in most industrial contexts with large size
problems.

Perspectives includes the application of our al-
gorithm on different industrial contexts. The use
of Static Move Descriptors should also be inter-
esting to avoid some evaluations and may bring
more diversification in the process. Finally, fur-
ther work can be done around pre-processing and
memory management to avoid some computa-
tions and better scale with the instance size. Both
these mechanisms might be needed to tackle in-
stances even bigger like it is done in the VRP.
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Figure 8: Example of instance considered when solving the subsurface imaging problem.
Instance N m Inldl:.strlal LNS2 ARPE (%)
soul'® Best Average CPU(s) Industrial LNS2
Instance 1 3133 8 1424 2297 2290 587.53  38.01 0.3
Instance 2 3155 7 1299 2042 20334 60691 36.39 0.42
Instance 3 3673 6 1052 1749 17409 61446 39.85 0.46
Instance 4 3745 11 2005 3102 30879 603.67 3536 0.45
Instance 5 3953 9 1675 2588 2572.1 607.84  35.28 0.61
Instance 6 4116 10 1897 2899 28855 606.75 34.56 0.47
Instance 7 4144 9 1383 2535 25262 608.02 4544 0.35
Instance 8 4836 17 2881 4628 4617.6 60422  37.75 0.22
Instance 9 6116 18 3365 5092  5058.7 608.01 33.92 0.65
Instance 10 7358 10 1550 2864 28423  650.58  45.88 0.76
Average 44229 10.5 1853.1 2979.6 2965.46 609.8 38.24 0.47

Table 16: Results on industrial instances. CPU time higher than 600s are met when the algorithm is stopped from the CPU
stopping criterion.
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9. Appendix

9.1. Results on the small scale set of instances

Instances BKS SkVNS GLS FPR MA AuLNS PSOiA UHGS MS-ILS MS-LS PMA LNS HALNS HISS-SD LNS2

p4.2.a 206 202 206 206 206 206 206 206 206 206 206 206 206 206 206
p4.2b 341 341 303 341 341 341 341 341 341 341 341 341 341 341 341
p4.2.c 452 452 447 452 452 452 452 452 452 452 452 452 452 452 452
p4.2d 531 528 526 531 531 531 531 531 531 531 531 531 531 531 531
p4.2.e 618 593 602 612 618 618 618 618 618 618 618 618 618 618 618
p4.2.f 687 675 651 687 687 687 687 687 687 687 687 687 687 687 687
p4.2.g 757 750 734 757 757 757 757 757 757 752 757 757 757 757 757
p4.2.h 835 819 797 835 835 835 835 835 835 825 835 835 835 835 827
p4.2.i 918 916 826 918 918 918 918 918 918 918 918 918 918 918 918
p4.2j 965 962 939 962 965 965 965 965 965 964 965 965 965 965 965

p4.2k 1022 1007 994 1013 1022 1022 1022 1022 1022 1022 1022 1022 1022 1022 1013
p4.21 1074 1051 1051 1064 1074 1074 1074 1074 1074 1073 1074 1074 1074 1074 1074
p4.2.m 1132 1051 1051 1130 1132 1132 1132 1132 1132 1132 1132 1132 1132 1132 1132
p4.2.n 1174 1124 1117 1161 1174 1174 1174 1174 1174 1172 1174 1174 1174 1174 1174
p4.2.0 1218 1195 1191 1206 1218 1218 1218 1218 1218 1213 1218 1218 1218 1218 1218
p4.2.p 1242 1237 1214 1240 1242 1242 1242 1242 1242 1239 1242 1242 1242 1242 1242
p4.2q 1268 1239 1248 1257 1268 1268 1268 1267 1267 1262 1268 1268 1268 1267 1268
p4.2r 1292 1279 1267 1278 1292 1292 1292 1292 1287 1285 1292 1292 1292 1292 1292
p4.2.s 1304 1295 1286 1293 1304 1304 1304 1302 1304 1301 1304 1304 1304 1304 1304

p4.2.t 1306 1305 1294 1299 1306 1306 1306 1306 1306 1306 1306 1306 1306 1306 1306
p4.3.c 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193
p4.3d 335 331 335 333 335 335 335 335 335 335 335 335 335 335 335
p4.3.e 468 460 444 468 468 468 468 468 468 468 468 468 468 468 468
p4.3.f 579 556 564 579 579 579 579 579 579 579 579 579 579 579 579
p4.3.g 653 651 644 653 653 653 653 653 653 653 653 653 653 653 653
p4.3.h 729 718 706 725 729 729 729 729 729 728 729 729 729 729 729
p4.3. 809 807 806 797 809 809 809 809 809 809 809 809 809 809 809
p4.3j 861 854 826 858 861 861 861 861 861 861 861 861 861 861 861
p4.3k 919 902 864 918 919 919 919 919 919 919 919 919 919 919 919
p4.31 979 969 960 968 979 979 979 979 979 979 979 979 979 979 979

p4.3.m 1063 1047 1030 1043 1063 1063 1063 1063 1063 1051 1063 1063 1063 1063 1063
p4.3.n 1121 1106 1113 1108 1121 1121 1121 1121 1121 1121 1121 1121 1121 1121 1121
p4.3.0 1172 1136 1121 1165 1172 1172 1172 1172 1172 1170 1172 1172 1172 1172 1172
p4.3.p 1222 1200 1190 1209 1222 1222 1222 1222 1222 1208 1222 1222 1222 1222 1222
p4.3.q 1253 1236 1210 1246 1253 1253 1253 1253 1253 1253 1253 1253 1253 1253 1253
p4.3.r 1273 1250 1239 1257 1273 1273 1273 1273 1272 1271 1273 1273 1273 1273 1273
p4.3.s 1295 1280 1279 1276 1295 1295 1295 1295 1295 1290 1295 1295 1295 1295 1295

p4.3.t 1305 1299 1290 1294 1305 1305 1305 1305 1304 1301 1305 1305 1305 1305 1305
p4.de 183 183 183 183 183 183 183 183 183 183 183 183 183 183 183
p4.4f 324 319 312 324 324 324 324 324 324 324 324 324 324 324 324
p4.4.g 461 461 461 461 461 461 461 461 461 461 461 461 461 461 461
p4.4h 571 553 565 571 571 571 571 571 571 571 571 571 571 571 571
p4.4i 657 657 657 653 657 657 657 657 657 657 657 657 657 657 657
p4.4j 732 723 691 732 732 732 732 732 732 732 732 732 732 732 732
p4.4k 821 821 815 820 821 821 821 821 821 821 821 821 821 821 821
p4.4l 880 876 852 875 880 880 880 880 880 880 880 880 880 880 880
p4.4.m 919 903 910 914 919 919 919 919 919 919 919 919 919 919 919
p4.4.n 976 948 942 953 976 976 976 976 976 967 976 976 976 976 976

p4.4.0 1061 1030 ~ 937 1033 1061 1061 1061 1061 1061 1057 1061 1061 1061 1061 1061
pd4p 1124 1120 1091 1098 1124 1124 1124 1124 1124 1124 1124 1124 1124 1124 1124
p4.4q 1161 1149 1106 1139 1161 1161 1161 1161 1161 1159 1161 1161 1161 1161 1161
p4.dr 1216 1193 1148 1196 1216 1216 1216 1216 1216 1207 1216 1216 1216 1216 1216
p4.ds 1260 1213 1242 1231 1260 1260 1260 1260 1260 1259 1260 1260 1260 1260 1260
p4.4.t 1285 1281 1250 1256 1285 1285 1285 1285 1285 1280 1285 1285 1285 1285 1285

Table 17: Results for the small scale instances set 4.
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Instances BKS SkVNS GLS FPR MA AuLNS PSOiA UHGS MS-ILS MS-LS PMA LNS HALNS HISS-SD LNS2

p5.2.h 410 395 385 410 410 410 410 410 410 410 410 410 410 410 410
p5.2.j 580 580 580 580 580 580 580 580 580 580 580 580 580 580 580
p5.2.k 670 670 665 670 670 670 670 670 670 670 670 670 670 670 670
p5.21 800 770 760 800 800 800 800 800 800 800 800 800 800 800 800
p5.2.m 860 860 830 860 860 860 860 860 860 860 860 860 860 860 860
p5.2.n 925 920 920 925 925 925 925 925 925 925 925 925 925 925 925

p5.2.0 1020 1020 1010 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020
p5.2.p 1150 1150 1030 1150 1150 1150 1150 1150 1150 1150 1150 1150 1150 1150 1150

p5.2q 1195 1195 1145 1195 1195 1195 1195 1195 1195 1195 1195 1195 1195 1195 1195
p5.2r 1260 1260 1225 1260 1260 1260 1260 1260 1260 1260 1260 1260 1260 1260 1260
p5.2.s 1340 1325 1325 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340

pS.2.t 1400 1380 1360 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400
p5.2.u 1460 1450 1460 1460 1460 1460 1460 1460 1460 1460 1460 1460 1460 1460 1460

p5.2.v 1505 1500 1500 1505 1505 1505 1505 1505 1505 1505 1505 1505 1505 1505 1505
p5.2.w 1565 1560 1560 1560 1565 1565 1565 1565 1565 1560 1565 1560 1565 1565 1565
p5.2.x 1610 1600 1610 1610 1610 1610 1610 1610 1610 1610 1610 1610 1610 1610 1610

pS.2y 1645 1630 1630 1645 1645 1645 1645 1645 1645 1640 1645 1645 1645 1645 1645
p52.z 1680 1665 1680 1670 1680 1680 1680 1680 1680 1680 1680 1680 1680 1680 1680

p5.3k 495 495 470 495 495 495 495 495 495 495 495 495 495 495 495
p5.3.1 595 595 545 595 595 595 595 595 595 595 595 595 595 595 595
p5.3.n 755 755 720 755 755 755 755 755 755 755 755 755 755 755 755
pS.3.0 870 870 870 870 870 870 870 870 870 870 870 870 870 870 870
p5.3.q 1070 1065 1045 1070 1070 1070 1070 1070 1070 1070 1070 1070 1070 1070 1070
p5.3.r 1125 1125 1090 1125 1125 1125 1125 1125 1125 1125 1125 1125 1125 1125 1125
p5.3.s 1190 1185 1145 1185 1190 1190 1190 1190 1190 1190 1190 1190 1190 1190 1190
p5.3.t 1260 1260 1240 1260 1260 1260 1260 1260 1260 1260 1260 1260 1260 1260 1260
p5.3.u 1345 1345 1305 1335 1345 1345 1345 1345 1345 1345 1345 1345 1345 1345 1345

p5.3.v 1425 1425 1425 1420 1425 1425 1425 1425 1425 1425 1425 1425 1425 1425 1425
p5.3.w 1485 1475 1460 1465 1485 1485 1485 1485 1485 1480 1485 1485 1485 1485 1485
pS.3.x 1555 1535 1520 1540 1555 1555 1555 1555 1555 1535 1555 1555 1555 1555 1555
p5.3.y 1595 1580 1590 1590 1595 1595 1595 1595 1595 1590 1595 1595 1595 1595 1595

p5.3.z 1635 1635 1635 1635 1635 1635 1635 1635 1635 1635 1635 1635 1635 1635 1635
p5.4.m 555 550 550 555 555 555 555 555 555 555 555 555 555 555 555
p5.4.0 690 690 680 690 690 690 690 690 690 690 690 690 690 690 690
pS.4.p 765 760 760 760 765 765 765 765 765 765 765 765 765 765 765
pS.4.q 860 835 830 860 860 860 860 860 860 860 860 860 860 860 860
p5.4.r 960 960 890 960 960 960 960 960 960 960 960 960 960 960 960
pS.4.s 1030 1020 1020 1005 1030 1030 1030 1030 1030 1030 1030 1030 1030 1030 1030
p5.4.t 1160 1160 1160 1160 1160 1160 1160 1160 1160 1160 1160 1160 1160 1160 1160
p5.4.u 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300

pS.4.v 1320 1320 1245 1320 1320 1320 1320 1320 1320 1320 1320 1320 1320 1320 1320
p5.4.w 1390 1380 1330 1380 1390 1390 1390 1390 1390 1390 1390 1390 1390 1390 1390
pS.4.x 1450 1440 1410 1430 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450 1450
p5.4.y 1520 1500 1485 1520 1520 1520 1520 1520 1520 1520 1520 1520 1520 1520 1520
p5.4.z 1620 1600 1590 1620 1620 1620 1620 1620 1620 1620 1620 1620 1620 1620 1620

Table 18: Results for the small scale instances set 5.

Instances BKS SkVNS GLS FPR MA AuLNS PSOiA UHGS MS-ILS MS-LS PMA LNS HALNS HISS-SD LNS2

p6.2.d 192 192 180 192 192 192 192 192 192 192 192 192 192 192 192
p6.2.j 948 948 948 942 948 948 948 948 948 948 948 948 948 948 948
p6.2.1 1116 1116 1104 1110 1116 1116 1116 1116 1116 1116 1116 1116 1116 1116 1116
p6.2.m 1188 1188 1164 1188 1188 1188 1188 1188 1188 1188 1188 1188 1188 1188 1188
p6.2.n 1260 1248 1254 1260 1260 1260 1260 1260 1260 1254 1260 1260 1260 1260 1260
p6.3.g 282 276 264 282 282 282 282 282 282 282 282 282 282 282 282
p6.3.h 444 444 444 444 44 444 444 444 444 444 444 44 444 444 444
p6.3.i 642 642 642 642 642 642 642 642 642 642 642 642 642 642 642
p6.3.k 894 894 882 894 894 894 894 894 894 894 894 894 894 894 894
p6.3.1 1002 996 990 1002 1002 1002 1002 1002 1002 1002 1002 1002 1002 1002 1002

p6.3.m 1080 1080 1068 1080 1080 1080 1080 1080 1080 1080 1080 1080 1080 1080 1080
p6.3.n 1170 1152 1140 1164 1170 1170 1170 1170 1170 1170 1170 1170 1170 1170 1170

p6.4.j 366 366 360 366 366 366 366 366 366 366 366 366 366 366 366
p6.4.k 528 528 528 528 528 528 528 528 528 528 528 528 528 528 528
p6.4.1 696 678 678 696 696 696 696 696 696 696 696 696 696 696 696

Table 19: Results for the small scale instances set 6.
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Instances BKS SkVNS GLS FPR MA AuLNS PSOiA UHGS MS-ILS MS-LS PMA LNS HALNS HISS-SD LNS2

p7.2d 190 182 190 190 190 190 190 190 190 190 19 190 190 190 190
p7.2e 290 289 279 290 290 290 290 290 290 290 290 290 290 290 290
p7.2f 387 387 340 387 387 387 387 387 387 387 387 387 387 387 387
p7.2.g 459 457 440 459 459 459 459 459 459 459 459 459 459 459 459
p7.2.h 521 521 517 521 521 521 521 521 521 521 521 821 521 521 521
p7.2.i 580 579 568 578 580 580 580 580 580 580 580 580 580 580 580
p7.2.j 646 632 633 646 646 646 646 646 646 646 646 646 646 646 646
p7.2.k 705 700 691 702 705 705 705 705 705 705 705 705 705 705 705
p7.21 767 758 748 759 767 767 767 767 767 767 767 767 767 767 767
p7.2.m 827 827 798 816 827 827 827 827 827 827 827 827 827 827 827
p7.2.n 888 866 861 888 888 888 888 888 888 884 888 888 888 888 888
p7.2.0 945 928 897 932 945 945 945 945 945 945 945 945 945 945 945
p7.2.p 1002 955 954 993 1002 1002 1002 1002 1002 1002 1002 1002 1002 1002 1002
p7.2.q 1044 1029 1031 1043 1044 1044 1044 1044 1044 1044 1044 1044 1044 1043 1044
p7.2x 1094 1069 1075 1076 1094 1094 1094 1094 1094 1085 1094 1094 1094 1094 1094
p7.2.s 1136 1118 1102 1125 1136 1136 1136 1136 1136 1133 1136 1136 1136 1136 1136
p7.2.t 1179 1154 1142 1168 1179 1179 1179 1179 1179 1170 1179 1179 1179 1179 1179
p7.3.h 425 425 418 425 425 425 425 425 425 425 425 425 425 425 425
p7.3.i 487 480 480 485 487 487 487 487 487 487 487 487 487 487 487
p7.3.j 564 543 539 560 564 564 564 564 564 564 564 564 564 564 560
p7.3k 633 633 586 633 633 633 633 633 633 633 633 633 633 633 633
p7.3.1 684 681 668 684 684 684 684 684 684 684 684 684 684 684 684
p7.3.m 762 743 735 762 762 762 762 762 762 762 762 762 762 762 762
p7.3.n 820 804 789 813 820 820 820 820 820 820 820 820 820 820 804
p7.3.0 874 841 833 859 874 874 874 874 874 874 874 874 874 874 874
p7.3.p 929 918 912 925 929 929 929 929 929 925 929 929 929 927 929
p7.3.q 987 966 945 970 987 987 987 987 987 984 987 987 987 987 987
p7.3.x 1026 1009 1015 1017 1026 1026 1026 1026 1026 1024 1026 1026 1026 1026 1026
p7.3.s 1081 1070 1054 1076 1081 1081 1081 1081 1081 1074 1081 1081 1081 1081 1081
p7.3.t 1120 1109 1080 1111 1120 1120 1120 1120 1120 1113 1120 1120 1120 1120 1120
p7.4.g 217 217 209 217 217 217 217 217 217 217 217 217 217 217 217
p7.4h 285 283 285 285 285 285 285 285 285 285 285 285 285 285 285
p7.4.i 366 364 359 366 366 366 366 366 366 366 366 366 366 366 366
p7.4k 520 518 511 518 520 520 520 520 520 520 520 520 520 520 518
p7.4.1 590 575 573 581 590 590 590 590 590 590 590 590 590 590 590
p7.4.m 646 639 638 646 646 646 646 646 646 646 646 646 646 646 646
p7.4.n 730 723 698 723 730 730 730 730 730 726 730 730 730 730 730
p7.4.0 781 778 761 780 781 781 781 781 781 777 781 781 781 781 781
p7.4.p 846 841 803 842 846 846 846 846 846 846 846 846 846 846 846
p7.4.q 909 896 899 902 909 909 909 909 909 904 9209 909 909 909 909
p7.4r 970 964 937 961 970 970 970 970 970 970 970 970 970 970 970
p7.4.s 1022 1019 1005 1022 1022 1022 1022 1022 1022 1022 1022 1022 1022 1022 1022

p7.4.t 1077 1073 1020 1066 1077 1077 1077 1077 1077 1077 1077 1077 1077 1077 1077

Table 20: Results for the small scale instances set 7.
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9.2. Results on the large scale set of instances

Instance Best known PSOiA PAM HALNS LNS2

Solution  CPU (s) Best Mean CPU (s) Best Mean CPU (s) Best Mean CPU (s) Best Mean CPU (s)
bier127_genl_m2 106 7.233 106 104.8 1153.87 106 105 673.5 106 105.5 207.2 106 105.35 7.233
bier127_genl_m3 103 10.52 103 102.4 591.89 103 102.5 470.1 103 102.6 209.55 103 102.15 10.52
bier127_gen2_m?2 5464 7.572 5464  5446.8 1132.57 5464 54549 398.8 5464  5460.2  301.33 5464 544245 7.572
bier127_gen2_m3 5393 5.457 5393  5376.2 648.08 5393  5386.9 359.3 5393  5390.1 227.51 5393 5392.6 5.457
bier127_gen2_m4 5123 355.99 5122 5119.2 657.57 5123 51202 383.8 5123 5121 355.99 5122 5121.15 7.081
bier127_gen3_m?2 2885 6.168 2885 28843 1301.27 2885  2884.7 296.7 2885 28845 184.99 2885  2872.85 6.168
bier127_gen3_m3 2706 6.164 2706  2703.8 711.74 2706 27052 509.6 2706  2705.6 69.36 2706 2703.7 6.164
bier127_gen3_m4 2402 5.746 2402  2384.6 680.79 2402  2398.6 227.7 2402 23994 2224 2402 2402 5.746
cmt10lc_m3 1300 4.816 1300 1299 111.11 1300 1299 42 1300 1299.4 23.1 1300 1288 4.816
cmtl51b_m3 1385 10.015 1385 1373.8 754.01 1385 1374.5 169.9 1385 1384 164.65 1385 1382.45 10.015
cmtl51c_m2 1964 13.971 1963 1962 1799.64 1964 1962 368.5 1964 1962.2 131.96 1964 1960.6 13.971
cmtlSlc_m3 1916 355.61 1916 1909.1 1376.24 1916 1909.2 441.5 1916 19144  355.61 1911 1908.95 12.14
cmtl51c_m4 1880 9.371 1880 1875.6 881.11 1880 1877.6 826.5 1880 1878.2 107.89 1880 1875.5 9.371
cmt200b_m2 2096 17.186 2096 2088.2  4180.99 2096  2086.8 669.4 2096  2090.2 183.28 2096 2094.2 17.186
cmt200b_m3 2019 21.687 2019 2005 2711.66 2019  2009.4 1351.7 2019 20044  386.33 2019 2011.5 21.687
cmt200b_m4 1894 12.826 1894 1889.7 1515.19 1894 1891.6 974.5 1894 1891 324.31 1894 1892.75 12.826
cmt200c_m2 2818 368.424 2818  2810.1 732026 2818  2810.6 1048.3 2818 2810 368.42 2809 2801.3 22.181
cmt200c_m3 2766 16.684 2766  2751.2 421729 2766  2751.8 1200 2766  2751.8  273.01 2766 2756.3 16.684
cmt200c_m4 2712 395.91 2712 2700.6 3004.1 2712 2703.3 1411.4 2712 27044 39591 2711 2703.3 23.224
eill01b_m3 916 5.893 916 913.8 134.39 916 914.6 160.6 916 915.8 69.44 916 910.5 5.893
eill0lc_m2 1305 4.705 1305 1304.8 452.79 1305 1304.8 250.5 1305 1304.7 153.85 1305 1305 4.705
eill0lc_m3 1251 10.159 1251 1244.1 227.61 1251 1244.2 95 1251 1248.6 116.15 1251 1247.4 10.159
gil262_genl_m3 101 13.271 101 100.9 1769.31 101 100.2 482.6 101 100.8 709.66 101 100.9 13.271
gil262_genl_m4 78 11.605 78 77.1 155.76 78 77 123.5 78 77.95 76.98 78 719 11.605
gil262_gen2_m2 7498 16.072 7498  7457.8  7356.65 7498  7458.4 742.1 7498  7466.2 387 7498 7444.5 16.072
gil262_gen2_m3 5615 352386 5615  5608.2  3304.55 5615  5604.9 1163.8 5615 5609.7 35239 5614 5590.1 22.556
gil262_gen3_m2 7183 14.639 7183  7182.8 9129.3 7183 7180 284.2 7183 71825 532.11 7183 7168.4 14.639
gil262_gen3_m4 2507 11.092 2507  2499.8 276.42 2507  2500.1 308.8 2507 2501.2  227.15 2507  2505.25 11.092
gil262a_m?2 4078 451.764 4078 40564 590729 4078  4066.3 2100 4078  4068.8  451.76 4038  4016.15 17.931
gil262a_m4 3175 10.696 3175 31742 271.83 3175 3175 222.6 3175 3175 13379 3175 3175 10.696
gil262b_m2 8081 545.166 8081 8061.1 7473.18 8081 8074.1 1267.8 8081 8078.5 545.17 8072  8071.75 15.836
gil262b_m3 7585 463.187 7585 75749 7276.8 7585  7566.6 10272 7585 7569 463.19 7544 741195  29.904
gil262b_m4 6781 329.098 6781 6742 4878.64 6781 6756.7 912.6 6781  6761.3 329.1 6780  6760.55 31.56
gil262¢_m2 11030 731.25 11030 11020  27500.87 11030 11016.5 1309 11030 110224  731.25 11008 10934.85  29.83
gil262¢c_m3 10757 650.871 10757 10714.6 14553.76 10757 10715.2  1375.6 10757 10713.1 650.87 10755 10683.7 31.52
gil262c_m4 10281 516497 10281 10259.4  8472.01 10281 10267.3 1997 10281 10262.8  516.5 10280  10264.5 31.707
2r229_genl_m4 223 46.6 223 220.8 11922.02 223 220.3 46.6 223 221 344.28 222 220.7 23.234
gr229_gen2_m3 11566 20.222 11566 11551.3 14197.21 11566 11557.8 1665.3 11566 11559.2  441.8 11566 11563.25  20.222
2r229_gen2_m4* 11359 20.572 11355 112553  18799.5 11355 11328.1 2272 11355 11355 377.28 11359 1133445  20.572
2r229_gen3_m3 8056 19.351 8056  8051.6  14090.06 8056  8052.2 10653 8056 80554  938.75 8056 8047.5 19.351
2r229_gen3_m4* 7660 19.833 7621 7600 11399.71 7651 7610.5 781.5 7651 7622.9 828.68 7660  7610.75 19.833
kroA150_gen2_m2 4335 7.697 4335 43344 892.98 4335 4335 495.9 4335 43332 392.3 4335 4335 7.697
kroA150_gen3_m3 2726 168.809 2726  2719.6 538.01 2726 27252 597.2 2726  2725.8 168.81 2710  2664.15 14.682
kroA200_genl_m4 81 9.827 81 80.4 560.29 81 80.6 503.4 81 81 114.61 81 80.45 9.827
kroB200_gen1_m?2 111 10.339 111 110.4 2344.53 111 110.3 663.9 111 111 295.3 111 111 10.339
kroB200_gen2_m?2 6185 12.176 6185 61822  3467.26 6185 61834 426.7 6185 6184.8 43832 6185 6181.5 12.176
kroB200_gen2_m4 4944 8.506 4944 49422 640.66 4944 49424 582.4 4944 49425 360.44 4944 4944 8.506
kroB200_gen3_m2 4765 470.103 4765  4757.8  6306.62 4765  4762.4 513.9 4765 4765 470.1 4703 4669.5 17.803
kroB200_gen3_m3 3028 9.103 3028 3016 1713.88 3028 30224 741.5 3028 30229 54722 3028 3014.8 9.103
1in318_genl_m2 180 26.906 180 170.1 20667.24 180 175.3 1168.3 180 174.5 2702.83 180 173.7 26.906
1in318_genl_m3 149 203.513 149 148.6 9014.64 149 147.9 721.4 149 148.4 203.51 148 148 16.169
1in318_gen2_m2 9544 21.127 9544  9533.8 23804.82 9544  9537.5 19246 9544  9539.2 1962.14 9544 949395  21.127
1in318_gen2_m3 7807 28.337 7786 7782.1 9773.63 7807  7769.6 1413.5 7807 77758 1600.58 7807 7741 28.337
1in318_gen3_m2 7936 19.965 7936  7905.6 44029 7936 79233 15473 7936 79192  581.27 7936  7842.45 19.965
1in318_gen3_m4 3797 22.165 3797 37964 1446.26 3797 37955 970.7 3797 3796 128.84 3797  3796.05  22.165
pr136_genl_m?2 63 8.055 63 62.7 451.13 63 62.8 107.5 63 62.9 70.72 63 63 8.055
pr136_gen2_m?2 3646 6.444 3641 3631.8 601.31 3646 36374 281.6 3646  3642.8 95.62 3646 3639.1 6.444
pr264_genl_m4 107 12.052 107 106.6 503.07 107 106.7 289.8 107 106.6 195.83 107 106.65 12.052
pr264_gen2_m?2 6635 642978 6635  6634.2 2048.2 6635 6632 719 6635 66344 64298 6631 6627.1 15.713
pr264_gen2_m3 6420 11.334 6420 64107 938.39 6420 6417 859 6420 6418 527.27 6420 6400.5 11.334
pr264_gen2_m4 5584 25.988 5584  5564.5 590.79 5584  5565.1 663.2 5584  5566.2 294.7 5584 5566 25.988
pr264_gen3_m3 2772 16.526 2772 2770 1037.51 2772 2769.8 922.5 2772 2770 1490.82 2772 2761.65 16.526
pr299_genl_m?2 139 14.544 139 138.5 4775.93 139 138.3 573.4 139 138.8 355.26 139 138.25 14.544
pr299_genl_m3 111 33.519 111 110.1 1303.73 111 109.2 506 111 110.2 413.78 111 109.2 33.519

(To be continued)
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Instance Best known PSOiA PAM HALNS LNS2

Solution  CPU (s) Best Mean CPU (s) Best Mean CPU (s)  Best Mean CPU (s) Best Mean CPU (s)
pr299_genl_m4 84 34.302 84 83.6 383.48 84 83.6 340.3 84 834 191.29 84 83.8 34.302
pr299_gen2_m3 6018 690.41 6018  5966.7 1446.05 6018  5979.2 909.7 6018 59785 69041 6005 5961.6 32.493
pr299_gen2_m4 4457 32.49 4457 4453 59341 4457 44552 7677 4457 44548 25775 4457 44462 32.49
pr299_gen3_m?2 5729 692.124 5729  5728.6 11872.55 5729  5709.8 1489.5 5729 5729 692.12 5728 571595  41.758
pr299_gen3_m3 3655 31.122 3655 3611 2705.82 3655  3611.6 1058.2 3655 3648.2  644.38 3655 3607.8 31.122
pr299_gen3_m4 2268 29.293 2268 2258 455.64 2268  2261.8 402.4 2268 22623 27194 2268  2183.65  29.293
rat195_gen2_m2 5148 335533 5148 51456 215698 5148 51459 886.6 5148 5147.6  335.53 5145 513575 17.739
rat195_gen3_m3 2574 15.321 2574 25712 721.82 2574  2569.9 369.5 2574  2570.2  276.84 2574 2574 15.321
rd400_genl_m2* 233 51.437 230 2278  56767.29 232 228.5 3066.6 232 2279 392558 233 230.7 51.437
rd400_genl_m3 224 2844 222 2217  62476.08 224 221.3 2844 224 221.4 4178 223 221.65 48.846
rd400_genl_m4 213 1985.4 213 210.6 34744.8 213 209.9 1985.4 213 210.8 3000.9 212 210 40.603
rd400_gen2_m2 13045 3220.6 12993  12787.5 77049.22 13045 12873 3220.6 13045 128724 4035.08 13018 12873.15  49.308
rd400_gen2_m3 12646 2814.581 12645 12372.1 53707.14 12645 125439 28527 12646 12555.8 2814.58 12362 122994  51.986
rd400_gen2_m4 12032 3299.3 12032 119535 42001.58 12032 11969.7 3299.3 12032 11981.2 407044 12031 11895.65 50.686
rd400_gen3_m?2 12431 2418.4 12428 12274.1 96178.7 12431 12312.2 24184 12431 12308  2814.66 12291 1224045 47.492
rd400_gen3_m3 11639 3500 11639 11629.5 68074.77 11639 11549.8 3500 11639 11609.8 3811.24 11579 11291.65 46.578
rd400_gen3_m4 10436 3500 10417 10383.1 48462.77 10436 103454 3500 10436  10392.6 361546 10374 1028295 46.846
ts225_gen2_m2 5859 18.454 5859 58585 299843 5859 5859 759.6 5859  5858.6  686.54 5859 5728.1 18.454

Table 21: Summary results for the set of large scale instances.
9.3. Results on very large scale set of instances

Instance Best Mean CPU (s) Instance Best Mean CPU (s) Instance Best Mean CPU (s)
pr1002_genl_m10 215 21045 104.118 fl1400_gen1_m3 538 529.85 211.396 u2152_genl_m2 1079 1067.55  448.405
pr1002_genl_m2 550 529.9 117.181 f11400_genl_m8 288 281 148.402 u2152_genl_m3 1069  1056.15  381.973
pr1002_genl_m3 496 490.05 109.458 f11400_gen2_m10 5331 5331 117.348 u2152_genl_m8 844 836.4 331.438
pr1002_genl_m8 265 260.3  115.722 fl1400_gen2_m2 45519 454599 307.618 u2152_gen2_ml0 39930 39612.05 329.565
pr1002_gen2_ml0 11928 11711.05 102.929 f11400_gen2_m3 29911 29110.05 187.739 u2152_gen2_m2 60946 6013145 415.845
pr1002_gen2_m?2 30461 28949.05 125.856 fl1400_gen2_m8 14594 14579.6 162.858 u2152_gen2_m3 58881 58499.5 391.487
pr1002_gen2_m3 27175 26791.75 108.35 f11400_gen3_m10 1450 14347 123.051 u2152_gen2_m8 45701 45311.3 316.243
pr1002_gen2_m38 14183 13868.45 111.789 fl1400_gen3_m2 38339 36457.65 295.203 u2152_gen3_ml10 20347 200759 328.789
pr1002_gen3_ml10 5565 5548.15 103.095 fl1400_gen3_m3 20796 16407.65 217.344 u2152_gen3_m2 67950 67022  405.896
pr1002_gen3_m?2 34637 34092.3 115.28 fl1400_gen3_m8 5112 5094  154.688 u2152_gen3_m3 61520 60683.1  345.428
pr1002_gen3_m3 27333 26701.6 101.344 ul432_genl_ml0 641  633.55 189.197 u2152_gen3_m8 26383 26053.85 320.334
pr1002_gen3_m8 7739  7518.8 104.374 ul432_genl_m2 740 735.1  237.625 u2319_genl_ml10 1067 1062 451.098
ul060_genl_m10 292 288.5  127.988 ul432_genl_m3 728 722.1  217.797 u2319_genl_m2 1166 1164.3 615.41
ul060_genl_m2 605 59525 142.994 ul432_genl_m8 667 659.4  201.458 u2319_genl_m3 1163 11612 576.607
ul060_genl_m3 563  553.85 138.828 ul432_gen2_ml0 34889 34591.5 202.634 u2319_genl_m8 1109 1102.75  472.08
ul060_genl_m8 391 384.6  117.293 ul432_gen2_m2 45074 44655.75 224.796 u2319_gen2_ml0 65270 64825.6  433.703
ul060_gen2_m10 15174 14963.6 132918 ul432_gen2 m3 44406 43812.15 214.047 u2319_gen2_m2 77763 7731575 576.063
ul060_gen2_m?2 33655 33051.8 138.517 ul432_gen2_m8 37724 37344.5 191.346 u2319_gen2_m3 77407 767947  539.57
ul060_gen2_m3 31283 30470.35 128.437 ul432_gen3_ml0 18759 18559.7 172.361 u2319_gen2_m8 70603 69863.05 405.996
ul060_gen2_m8 20607 20502.15 123.422 ul432_gen3_m2 44906 44695.95 248.799 u2319_gen3_ml0 45807 45428.4  455.556
ul060_gen3_m10 5718 5633 120.408 ul432_gen3_m3 42393 42118.8 191.488 u2319_gen3_m2 76452 76013.15 757.645
ul060_gen3_m2 33931 32963.1 122.56 ul432_gen3_m8 23179 22914.95 175.678 u2319_gen3_m3 73609 732469 567.175
ul060_gen3_m3 27044 26607.25 103.197 fl1577_genl_ml0 294 290.3  198.441 u2319_gen3_m8 54524 54219.25 414.717
ul060_gen3_m8 9040 8991.55 111.938 fl1577_genl_m2 821 810.7  238.721 pr2392_genl_ml10 780 775.4 366.129
vmm1084_genl_ml10 422 420.25 161.439 fl1577_genl_m3 775 7454 217.173 pr2392_genl_m?2 1267 1252.5 567.095
vm1084_genl_m2 739 7332 190.626 fl1577_genl_m8 397 387.6  201.181 pr2392_genl_m3 1228 1216.55  491.994
vm1084_genl_m3 690 685.7  161.704 fl1577_gen2_ml10 15676 15586 206 pr2392_genl_m38 916 905.75  383.213
vm1084_genl_m8 465 460.3  159.598 fl1577_gen2_m2 43958 42670.1 224.016 pr2392_gen2_ml0 41579 411232  396.523
vm1084_gen2_ml10 21134 209764 183.81 fl1577_gen2_m3 40608 39831.9 218.282 pr2392_gen2_m2 71250 699464  556.238
vml1084_gen2_m2 40141 38879.15 193.154 fl1577_gen2_m8 22309 222227 198.312 pr2392_gen2_m3 68643 67748.05 478.978
vm1084_gen2_m3 37038 36381.15 170.173 fl1577_gen3_m10 4748 4732.55 194.489 pr2392_gen2_m8 49361 48963.25 418.866
vm1084_gen2_m8 23703 23550.35 159.189 fl1577_gen3_m2 33172 32952.15 267.03 pr2392_gen3_ml0 24484 24220.55 380.322
vm1084_gen3_ml10 7892  7859.9 163.761 fl1577_gen3_m3 26374 25044.8 193.18 pr2392_gen3_m2 79487 78705.55 570.504
vml084_gen3_m2 34872 34566.3 164.207 fl1577_gen3_m8 8462 8376.25 221.178 pr2392_gen3_m3 74225 73293.25 439.969
vml1084_gen3_m3 32582 32157.6 136.939 d1655_genl_m10 16 16 104.819 pr2392_gen3_m8 33824 33360.25 370.884
vml1084_gen3_m8 10047 99442 152.159 d1655_genl_m2 755 742 225.14 pcb3038_genl_ml10 1231 12214 615.156
pebl173_genl_ml10 319  318.15 130.556 d1655_genl_m3 592 580 205.651 pcb3038_genl_m2 1615 1599.95  1054.969
pcbl173_genl_m2 633 629 165.288 d1655_genl_m8 107 105.8  125.122 pcb3038_genl_m3 1617 15949  828.263
peb1173_genl_m3 612 605.6  163.247 d1655_gen2_ml10 698 698 109.471 pcb3038_genl_m8 1350  1338.05 616.676
pcbl1173_genl_m8 417 41545 135.601 d1655_gen2_m2 41425 40941.65 222.491 pcb3038_gen2_ml10 67239  66686.65 577.361

(To be continued)
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Instance Best Mean CPU (s) Instance Best Mean CPU (s) Instance Best Mean CPU (s)
pcb1173_gen2_ml0 16665 16556.4 134.288 d1655_gen2_m3 34701 33707.4 192.853 pcb3038_gen2_ m2 91808  91013.2  886.666
pcb1173_gen2_m2 34723 34391.65 160.813 d1655_gen2_m8 5490 5447.05 137.195 pcb3038_gen2_m3 90632 901504  781.123
pcb1173_gen2_m3 33706 33230.3 1524 d1655_gen3_ml10 511 511 105.376 pcb3038_gen2_m8 75638  74826.6  617.63
pcb1173_gen2_m8 21921 21714.8 142.331 d1655_gen3_m2 48683 45426.3 199.828 pcb3038_gen3_ml10 44547 44179.85 665.562
pcb1173_gen3_m10 8953 8894.25  129.79 d1655_gen3_m3 35146 33708.15 169.953 pcb3038_gen3_m2 101395 100463.4 1063.779
pcb1173_gen3_m2 37660 37225.5 156.218 d1655_gen3_m8 3827 3793.05 127.774 pcb3038_gen3_m3 96597  95961.4  777.048
pebl173_gen3_m3 33994 33435.05 130.341 vml748_genl_ml0 603  599.65 272.704 pcb3038_gen3_m8 56937 56345.05 562.118
pcb1173_gen3_m8 13463 13405.85 136.932 vm1748 _genl_m2 1230 1221.35 426.532 f13795_genl_m10 410 410 793.287
d1291_genl_m2 598  593.85 136.857 vm1748_genl_m3 1230 1224 358.198 f13795_genl_m2 1989 1917.25 1300.893
d1291_genl_m3 486 479.4 123.49 vm1748 genl_m8 793 785.2  268.893 f13795_genl_m3 1859  1762.45 1041.273
d1291_genl_m8 39 39 82.937 vm1748_gen2_m10 32540 31870.35 283.007 f13795_genl_m38 565 560.35  724.526
d1291_gen2_m2 31656 31121.05 140.718 vm1748_gen2_m2 65707 65370.4 424.636 f13795_gen2_ml10 24311 234644  787.527
d1291_gen2_m3 25419 24897  129.694 vm1748_gen2_m3 65731 65053.8 352.004 f13795_gen2_m2 106336 105453.9 1042.231
d1291_gen2_m8 2013 2013 82.029 vm1748 gen2_m8 42184 41231  285.625 f13795_gen2_m3 100818 99137.2  826.789
d1291_gen3_m2 31965 310455 119.418 vml1748_gen3_ml10 18111 17768.1 259.586 fl3795_gen2_m8 34262 340319 619.511
d1291_gen3_m3 23942 22953.6 107.009 vm1748_gen3_m2 69111 68818.05 529.487 f13795_gen3_m10 7518 72747 943.546
d1291_gen3_m8 1166 1166 80.31 vm1748_gen3_m3 66755 66326.15 391.11 f13795_gen3_m2 77042 7555225 648.336
r11304_genl_m10 463 4584  196.221 vm1748_gen3_m8 28302 27693.05 298.117 f13795_gen3_m3 57135 54359.05 783.672
r11304_genl_m2 774 759.4  234.356 ul817_genl_ml0 542  536.75 257.277 fl3795_gen3_m8 12286  12083.6  795.271
r11304_genl_m3 760 738 186.646 ul817_genl_m2 919  906.05 303.575 fnl4461_genl_ml10 2138  2119.75 1424.848
r11304_genl_m8 537 53435  172.057 ul817_genl_m3 890  880.35 262.182 fnl4461_genl_m2 2414 2391.2  2445.002
r11304_gen2_ml10 24416 24085.4 180.04 ul817_genl_m8 637  630.35 229.776 fnl4461_genl_m3 2400  2377.95 2076.616
r11304_gen2_m?2 41120 39766.15 217.164 ul817_gen2_ml0 28636 28413.9 253.325 fnl4461_genl_m8 2232  2214.65 1458.891
r11304_gen2_m3 39157 38405.6 194.536 ul817_gen2_m2 50796 50100.4 292.257 fnl4461_gen2_m10 123087 121837.7 1240.387
r11304_gen2_m8 28708 28278.7 175.155 ul817_gen2_m3 49486 48839.3 275.61 fnl4461_gen2_m2 141676 140707.25 1935.007
r11304_gen3_m10 9502 9373.15 187.925 ul817_gen2_m8 34042 33731.85 247.567 fnl4461_gen2_m3 140947 139495.15 1684.085
r11304_gen3_m?2 39532 38334.65 160.461 ul817_gen3_ml10 14054 13650.7 258.418 fnl4461_gen2_m8 129519 128014.85 1303.958
r11304_gen3_m3 36891 34841.5 185.188 ul817_gen3_m2 57808 57417.85 262.001 fnl4461_gen3_m10 96728  94751.3 1129.311
r11304_gen3_m8 13141 12831.1 154.157 ul817_gen3_m3 49806 49253.15 224.523 fnl4461_gen3_m2 139885 139169.1 2573.647
r11323_genl_m10 352 348 174.686 ul817_gen3_m8 18583 17939.55 238.898 fnl4461_gen3_m3 136181 135203.15 1757.353
r11323_genl_m?2 769 7587  196.641 r11889_genl_ml10 462 45295  286.04 fnl4461_gen3_m8 110719 109059.65 1046.82
r11323_genl_m3 723 707.85 182.443 r11889_genl_m2 1138 11147 369.783 r15915_genl_ml10 2733 2690.9  2077.884
r11323_genl_m8 457 45535 182.067 r11889_genl_m3 1091 1080.15 355.116 r15915_genl_m?2 3477 3405.5 3568.756
rl1323_gen2_ml10 18296 18128.8 178.89 r11889_genl_m8 636 62855 283.385 r15915_genl_m3 3457 3393.9  3050.192
r11323_gen2_m?2 41481 40466.3 202.354 r11889_gen2_ml10 24728 24453.7 290.245 r15915_genl_m8 3040  2966.85 2263.107
r11323_gen2_m3 38791 38536.7 180.256 r11889_gen2_m2 59936 59136.45 377.037 r15915_gen2_ml10 144675 142173  2110.743
r11323_gen2_m8 23830 23644 176.487 r11889_gen2_m3 57521 56929.85 327.585 r15915_gen2_m2 182690 180305.8 3469.629
r11323_gen3_ml10 7351 7273.65 164.084 r11889_gen2_m8 33968 33566.95 287.128 r15915_gen2_m3 182018 178997.85 3010.962
r11323_gen3_m?2 43907 42881.75 197.115 r11889_gen3_ml10 10700 10587.8 271.358 r15915_gen2_m8 159789 156982.4 2039.985
r11323_gen3_m3 38072 37123.85 159.29 11889 _gen3_m2 64900 64271.6 370.993 r15915_gen3_ml10 104482 101300.65 1848.89
r11323_gen3_m8 11491 11434.65 170.393 r11889_gen3_m3 58696 58236.1 289.093 r15915_gen3_m2 198737 195990.35 3600.635
nrwl379_genl_ml0 629  620.35 204.062 r11889_gen3_m8 18359 17891.75 293.784 r15915_gen3_m3 195470 192648.05 2873.377
nrwl379_genl_m2 785  774.05 258.487 d2103_genl_ml0 191 188.6 191.32 r15915_gen3_m8 140636 135635.05 1861.404
nrwl379_genl_m3 774  760.05 224215 d2103_genl_m2 1017 1001.5 351.286 r15934_genl_ml10 2370 23142 1758.814
nrwl379_genl_m8 677 67145 199.835 d2103_genl_m3 916 889.6  281.483 r15934_genl_m?2 3363 3276.7  3600.345
nrw1379_gen2_ml10 33914 33688.2 217.036 d2103_genl_m8 323 321.5 224.683 r15934_genl_m3 3341 3270.45 2964.668
nrwl379_gen2_m2 45225 45019.25 259.447 d2103_gen2_ml10 10548 10303.05 213.89 r15934_genl_m38 2642 25804  1979.486
nrwl1379_gen2_m3 44463 44138.35 220.819 d2103_gen2_m2 56431 53576.65 363.469 r15934_gen2_ml10 122321 120639.2 1739.486
nrwl379_gen2_m8 37552 37259.4 202.48 d2103_gen2_m3 48508 46559.7 295.177 r15934_gen2_m2 180470 177031.95 3601.828
nrw1379_gen3_ml10 15375 15070.9 206.396 d2103_gen2_m8 18498 18355.55 218.114 r15934_gen2_m3 178631 174893.4 2867.982
nrwl379_gen3_m2 40448 40200.1 223.57 d2103_gen3_ml0 5887 5829.6 198.967 r15934_gen2_m8 138437 135501.75 1913.607
nrwl379_gen3_m3 38276 37916.15 179.829 d2103_gen3_m2 69480 68094.3 369.836 r15934_gen3_ml10 87227 84321.75 1622.863
nrw1379_gen3_m8 19178 18707.95 175.773 d2103_gen3_m3 57293 54366.55 257.5 r15934_gen3_m2 205202 202564.65 3600.209
f11400_genl_m10 103 102.25 117.246 d2103_gen3_m8 10038 9985.7 208.133 r15934_gen3_m3 197516 195185.2 3062.074
f11400_gen1_m?2 865  864.25 236.562 u2152_genl_ml0 751  746.95 332.637 r15934_gen3_m8 120936 117290.95 2045.778

Table 22: Results for the set of very large scale instances.
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