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Abstract. Given an optimization problem, combining knowledge from
both (i) structural or algorithmic known results and (ii) new solving tech-
niques, helps gain insight and knowledge on the aforementioned problem
by tightening the gap between lower and upper bounds on the sought
optimal value. Additionally, this gain may be further improved by iter-
ating (i) and (ii) until a fixed point is reached.

In this paper, we illustrate the above through the classical Cyclic
Bandwidth problem, an optimization problem which takes as input an
undirected graph G = (V, E) with |V | = n, and asks for a labeling ϕ of
V in which every vertex v takes a unique value ϕ(v) ∈ [1; n], in such a
way that Bc(G, ϕ) = max{minuv∈E(G){|ϕ(u)−ϕ(v)|, n−|ϕ(u)−ϕ(v)|}},
called the cyclic bandwidth of G, is minimized.

Using the classic benchmark from the Harwell-Boeing sparse matrix
collection introduced in [16], we show how to combine (i) previous results
from the Cyclic Bandwidth literature, and (ii) new solving techniques,
which we first present, and then implement, starting from the best results
obtained in step (i). We show that this process allows us to determine
the optimal cyclic bandwidth value for half of the instances of our bench-
mark, and improves the best known bounds for a large number of the
remaining instances.

Keywords: Graph Labeling · Cyclic Bandwidth · Lower Bounds ·
Upper Bounds · Constraint Programming · Solver

1 Introduction

The classical Cyclic Bandwidth problem is an optimization problem that
takes as input an undirected graph G = (V,E) with |V | = n and asks for a
labeling ϕ of V in which every vertex v takes a unique value ϕ(v) ∈ [1;n], in
such a way that Bc(G,ϕ) = max{minuv∈E(G){|ϕ(u) − ϕ(v)|, n − |ϕ(u) − ϕ(v)|}}
(i.e., the cyclic bandwidth of G) is minimized.
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The Cyclic Bandwidth problem was first presented in [11] within the
framework of creating a ring interconnection network for a group of com-
puters. This problem can be regarded as a modification of the widely recog-
nized Bandwidth Minimization problem, originally proposed by Harper [6]
in 1964. For a comprehensive historical overview, readers can refer to the sur-
vey by Chinn et al. [2]. The Bandwidth Minimization problem also asks
for a labeling ϕ, i.e., a bijection from V to [1;n], using a computed value of
B(G,ϕ) = maxuv∈E{|ϕ(u) − ϕ(v)|}. The Bandwidth Minimization problem
asks for a labeling ϕ∗ such that B(G,ϕ∗) is minimized. It can be seen that both
problems are related in the sense for any graph G, we have Bc(G) ≤ B(G).

The Cyclic Bandwidth has been extensively studied. Its complexity has
been established as NP-hard, even in the scenario of trees with a maximum
degree of 3 [13]. Furthermore, the specific value of Bc(G) has been ascertained
for graphs within distinct categories, including paths, cycles, Cartesian products
of paths (or cycles, or a combination of both), full k-ary trees, complete graphs,
complete bipartite graphs, and unit interval graphs [3,8,12,13].

More recent papers are concerned with designing efficient heuristics for
Cyclic Bandwidth (see, e.g., [19,20,22]) or Bandwidth Minimization (see,
e.g., [15,17,18]). For both problems, execution time, upper bounds, or lower
bounds are considered, examined, and tested on a subset of the classical Harwell-
Boeing sparse matrix collection1.

Other investigations studied the correlation between Bc(G) and B(G), with
a specific focus on identifying conditions that guarantee the equality B(G) =
Bc(G) [4,9,14]. Another set of results focuses on establishing bounds for Bc(G),
particularly lower bounds, in the context of general graphs [4,25]. Initially, it
is evident that for any graph G, Bc(G) ≥ Δ(G)

2 , where Δ(G) represents the
maximum degree of G. Furthermore, across all graphs G, the relationship B(G)

2 ≤
Bc(G) ≤ B(G) holds, with the leftmost bound stemming from [14]. Various other
lower bounds have been derived in the literature, many of which are grounded in
density (“propagation”) considerations, or a relevant cycle basis of the examined
graph (refer to, e.g., [4,25]).

In this paper, we propose the Recycling algorithm, orchestrating some exist-
ing results, both experimental and theoretical, based on bandwidth and cyclic
bandwidth. For the 113 Harwell-Boeing graph instances proposed in [16], the
Recycling algorithm is either able to tighten bounds, prove optimization, and
find the optimum of the bandwidth or cyclic bandwidth.

Constraint programming (CP) [23] is a problem-solving paradigm for solv-
ing combinatorial problems using techniques issued from artificial intelligence,
computer science, and operations research. In CP, rather than describing how
to solve the problem, users formulate the problem by defining decision variables
interconnected by constraints. As said by E. Freuder, “Constraint Programming
represents one of the closest approaches computer science has yet made to the
Holy Grail of programming: the user states the problem, the computer solves it.”

1 see, e.g., https://math.nist.gov/MatrixMarket/collections/hb.html and https://
sparse.tamu.edu/HB

https://math.nist.gov/MatrixMarket/collections/hb.html
https://sparse.tamu.edu/HB
https://sparse.tamu.edu/HB
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The constraints encompass various types of variables (such as Boolean, bounded
integers, etc.) and constraint types (including linear, non-linear arithmetic, sym-
bolics, etc.). In CP, a model represents a problem, and an instance is given by
a model and some data. In our case, the problem consists of generating a graph
labeling minimizing the cyclic bandwidth of graphs, and an instance is the instan-
tiation of the model with a given graph. The direct modeling in CP of the cyclic
bandwidth problem is very close to its mathematical formulation. However, this
model is not well-suited for CP, and not efficiently solved.

Here, we propose a more original model, taking advantage of the strengths of
CP. This model is based on constraints in extension [1], i.e., table constraints [10]
considering the candidate labelings of two vertices linked by an edge to respect
a given cyclic bandwidth value. This model is thus a satisfiability model for
computing a labeling value less or equal to a given k. This k can easily be
minimized by an efficient dichotomy algorithm considering a property of the
problem: if there is a cyclic labeling of value k, there is also one of size k + 1,
and if there is no labeling of value k, none of value k − 1 exists. This model is
solved more efficiently than the direct model and may improve the results of the
Recycling algorithm, which in turn offers the possibility to better solve the CP
model. A fixed-point application of the sequence Recycling algorithm, CP model
solving, is thus beneficial.

Experimentally, on the 113 instances selected in [16], our method proves
highly powerful, as it optimally solves half of the 113 instances. More precisely,
the fixed point of our Recycling algorithm and CP model solving proves the
optimality of 63 instances, determines the optimal value of 56 instances, and
improves the bounds of one instance.

This paper is organized as follows: Sect. 2 presents the Cyclic Bandwidth
problem along with some existing results for it, or for its related problem, Band-
width Minimization. Section 3 presents the Recycling algorithm and how
it orchestrates the existing results from literature. Section 4 presents an opti-
mization function for the Recycling Algorithm, using constraint programming.
Finally, Sect. 5 presents the results obtained using the Recycling algorithm and
its optimization.

2 The Cyclic Bandwidth Problem and Existing Results

2.1 The Problem

The Cyclic Bandwidth problem is a graph labeling problem that can be
formulated as follows. Let G(V,E) be a finite undirected graph (called the guest
graph) of order n, and Cn(V ′, E′) be a cycle graph (called the host graph) with
|V ′| = n. An embedding of G in Cn is an injection φ : V → V ′. The cyclic
distance dc between two vertices u, v ∈ V linked by an edge of E is defined by:

dc(u, v) = min{|φ(u) − φ(v)|, n − |φ(u) − φ(v)|} (1)
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The cyclic bandwidth of an embedding φ : V → V ′ is the maximum distance
between two vertices:

Bc(G,φ) = maxu,v∈E{dc(u, v)} (2)

The cyclic bandwidth problem consists in finding an embedding φ∗ among the
set E of embeddings from G to Cn such that Bc(G,φ∗) is minimum:

B∗
C(G) = minφ∈E{Bc(G,φ)} (3)

2.2 Metaheuristics Results

Cyclic Bandwidth and Bandwidth Minimization are both NP-complete
problems. Solving any of these two problems requires exploring very large search
spaces, hence it is not surprising that most of the methods developed to solve
them are metaheuristics. In this section, we present some relevant algorithms
and results that lately will become inputs for our Recycling algorithm. The first
three metaheuristics solve Bandwidth Minimization (also known as Matrix
Bandwidth Minimization, or MBMP), while the last one is a recent algorithm
developed for Cyclic Bandwidth.

Mart́ı’s enhanced Branch-and-Bound [15]. This is one of the few exact meth-
ods proposed to solve MBMP. It takes advantage of a solution provided by a
GRASP method to reduce the size of the tree to explore, focusing only in the
branch for bt = bup − 1, with bup being the solution provided by GRASP. It is
also the first exact method to provide upper and lower bounds for some large
instances (|V | > 500).

Mladenovic’s VNS. In [17] the authors propose a local search algorithm
known as Variable Neighborhood Search (VNS) that combines reduced neighbor-
hoods, fast local search procedures, and specific neighborhood structures (from
[21]). Additionally, they use the number of critical vertices as a secondary objec-
tive function, to deal with several neighborhoods having the same bandwidth.
Their results outperform several other heuristics in terms of solution quality and
computing time required, and they improve the best-known solutions for 42 (out
of the 113) Harwell-Boeing instances.

Pop’s genetic algorithm [18]. Using a list of interchange of rows or columns
as individuals and a problem-specific genetic operator called pruning, this algo-
rithm was successfully tested in the 113 Harwell-Boeing instances. Their results
improve the best-known bandwidth values for almost a third of the graphs, and
outperforming methods like the already described VNS [17] and Mart́ı’s branch-
and-bound [15].

Ren’s New Iterated Local Search (NILS). This is a metaheuristic proposed in
[20] to solve the Cyclic Bandwidth problem. Starting from a random initial
solution, it iterates over a local optimization (a dedicated Tabu search, DTS)
and adds two perturbation strategies, to escape local optimum traps and explore



Best of Both Worlds for Cyclic Bandwidth 201

unvisited areas. When the DTS stagnates, a Direct perturbation is triggered to
modify the current solution, using a randomized shift-insert operator. If this
perturbation also stagnates, then a Strong perturbation is triggered to apply
a destruction-reconstruction heuristic, moving some uncritical vertices closer to
the critical ones.

The NILS algorithm was applied to 85 standard graphs (paths, cycles, cater-
pillars, etc.) and 28 Harwell-Boeing instances; from these 28 graphs, NILS
improved 4 existing results (compared against [19,22]) and matched all other
best results obtained.

2.3 Theoretical Structural Results

We summarize here three structural properties about B∗
c (G) (and possibly

B∗(G)) that apply to any graph G, and that rely on polynomial time com-
putations [4]. They allow to: (i) obtain lower bounds for B∗

c (G), (ii) determine
conditions under which B∗

c (G) = B∗(G) and, in certain conditions, (iii) given
a labeling for Cyclic Bandwidth, provide a labeling for Bandwidth Min-
imization, of same value. All these properties will be used in our Recycling
algorithm (see Sect. 3).

Extended density. Theorem 1 in [4] gives a lower bound for B∗
c (G) based on

the neighborhood “up to distance i” for any vertex u ∈ V (G) and any (relevant)
value of i. It can be seen as a generalization of the obvious Δ(G)

2 lower bound.
Theorem 3 in [4] is in the same spirit, but considers the neighborhood (up to
distance i) of any any pair of vertices connected by an edge in G.

Cycle basis considerations. Lower bounds on B∗
c (G) can also be obtained by

computing the length � of the longest cycle in a cycle basis of G (the notion of
cycle basis being a classical graph-theoretical notion, see e.g. [5]). This is the
purpose of Theorem 9 in [4], which actually contains two results: a lower bound
for B∗

c (G) based on �, and a condition under which B∗
c (G) = B∗(G).

Relabeling. Another interesting result from [4] is its Algorithm 1, which pro-
vides a labeling φ′ for the Bandwidth Minimization problem, given a labeling
φ for the Cyclic Bandwidth problem, in such a way that B(G,φ′) ≤ Bc(G,φ).
Note that this result is only guaranteed under some conditions described in
Lemma 8 in [4]. This result may be useful as it may decrease upper bounds
on B∗(G), which in turn, may lead us to conclude that B∗(G) = B∗

c (G) (see
Algorithms 2 and 4 in Sect. 3 for more details).

3 Recycling Algorithm: Orchestration of Existing Results

The Recycling algorithm we propose here is based on results of previous works,
and part of its structure is directed by some theorems of [4] (see Sect. 2.3). For
sake of readability, from now on (and if clear from the context), we will denote
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by B∗
c (resp. B∗) the optimal value B∗

c (G) (resp. B∗(G)). The inputs for the
Recycling algorithm are described in Table 1, whereas the Recycling algorithm
is described in Algorithms 1 to 4.

Table 1. Inputs for the Recycling algorithm

input description

Graph G A graph

n Order of G

� Length of the longest cycle in a cycle basis of G

Bandwidth lbB Marti Bandwidth lower bound from Mart́ı et al. [15]

ubB Marti Bandwidth upper bound from Mart́ı et al. [15]

ubB Pop Bandwidth upper bound from Pop et al. [18]

ubB Mladenovic Bandwidth upper bound from Mladenovic et al. [17]

Cyclic Bandwidth ubC NILS Cyclic Bandwidth upper bound from Ren et al. [20]

lb density Cyclic Bandwidth lower bound from the extended
density notion [4]

4 Cyclic Bandwidth as an Optimization Constrained
Problem

Constraint programming [23] (CP) is a paradigm for solving combinatorial prob-
lems using a wide range of methods issued from artificial intelligence, computer
science and operations research. In CP, users focus on the “what”, not on the
“how”: this means that users declaratively state the problem, not how to solve
it. Hence, a problem is described as a constraint satisfaction problem (CSP) or
constrained optimization problem (COP): a CSP is defined by some decision
variables, each one with its domain (its candidate values) and constraints (rela-
tions) linking these variables; a COP is given by a CSP and an objective function
to be optimized.

To model the Cyclic Bandwidth problem, we consider finite domain deci-
sion variables, i.e., bounded integer variables, and arithmetic constraints. A label
corresponds to a finite domain variable ranging from 1 to n, i.e., N = {1, . . . , n}
is a set of n labels, and for each v ∈ V , the variable φv represents the label of v:

∀v ∈ V, φv ∈ N (4)
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Algorithm 1. The Recycling Algorithm
� Collect all knowledge about lower and upper bounds for B∗ and B∗

c

lbC ← max{lb density, min{lbB Marti, �n
�
�}}

ubC ← ubC NILS

lbB ← lbB Marti

ubB ← min{ubB Marti, ubB Pop, ubB Mladenovic}

� Compare the lower (resp. upper) bounds and adjust
if lbB < lbC then

lbB ← lbC

end if
if ubB < ubC then

ubC ← ubB

end if

� If ubC < lbB then B∗
c �= B∗, otherwise check whether equality holds

if ubC ≥ lbB then
eq or unknown()

end if

Algorithm 2. eq or unknown()

if ubB ≤ �n
�
� then

update bounds() � In that case, B∗
c = B∗ and bounds should be updated

else
try relabeling() � B∗

c =? B∗ Relabeling is then tested.
end if

4.1 Arithmetic (or Direct) Model

This model is a direct translation of the mathematical definition of the problem.
The constraints of the arithmetic model are:

– All the labels must be unique:

AllDifferent{φv|v ∈ V } (5)

with AllDifferent [7] being the standard global constraint1 which states
that all variables in this constraint must be pairwise different.

– Cyclic bandwidth of the current labeling φ:

Bc(G,φ) = max
(u,v)∈E

{dc(φu, φv)} (6)

where Bc(G,φ) is a finite domain variable ranging from 1 to n− 1. Note that
dc has been defined in Sect. 2.1.

1 A global constraint provides some abstractions to improve expressiveness, but also
are treated more efficiently by the solver using some dedicated algorithms.
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Algorithm 3. update bounds()

� Note: this algorithm is invoked only if B∗ = B∗
c

� Note: if ubC improved ubB , relabeling gives a labeling of value ubB for bandwidth

ubB , ubC ← min{ubB , ubC}
lbB , lbC ← max{lbB , lbC}
if ubB = lbB then � We have reached the optimum for both problems

B∗, B∗
c ← lbC

end if

Algorithm 4. try relabeling()
if ubB > ubC then � Relabeling useful only in this case

ub′
B ← apply relabeling() � Algorithm 1 from [4] – see Section 2.3

if ub′
B < ubB then � Relabeling has improved bandwidth upper bound

ubB ← ub′
B

eq or unknown() � We can test again whether B∗ = B∗
c

end if
end if

– Optimization to find the labeling φ∗ that minimizes the cyclic bandwidth:

B∗
C(G) = minimize BC(G,φ) (7)

where BC(G) is a finite domain variable ranging from 1 to n − 1.

The arithmetic model M�
A is thus:

M�
A = (4) ∧ (5) ∧ (6) ∧ (7)

However, in terms of efficiency, a constraint solver uses dynamically and
intensively the constraints to prune/reduce the search space, and it cannot take
full advantage of this formulation since most of the problem is in the objective
function.

4.2 Finite Domain Extensional Constraint Model for Satisfiability

We now consider finite domain extensional constraints (see, e.g., [1]), also known
as table constraints [10]: a constraint is defined by enumerating the allowed (resp.
forbidden) tuples of constants satisfying (resp. violating) it. Then, we enforce a
tuple of variables to be an element of this table (using the in keyword). There
are several types of table constraints and we use the classic one.

We have first to change the problem into a satisfiability problem: given an
integer k, find a labeling φ such that BC(G,φ) ≤ k. Now, let us consider L(k),
the set of possible pairs of labels for pairs of vertices linked by an edge:

L(k) = {(�, �′) | �, �′ ∈ N 2, � �= �′,min{|� − �′|, n − |� − �′|} ≤ k}
The finite domain variables we need are the same as for the MA model. The
constraints are the following:
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– All labels must be different. For this, we use the AllDifferent constraints
as above (see (5)).

– Labels must respect the cyclic bandwidth of cost k w.r.t. distance dc, i.e.

∀(u, v) ∈ E, (φu, φv) in L(k) (8)

Thus, the finite domain extensional constraint satisfiability model is:

ME = (4) ∧ (5) ∧ (8)

4.3 Possible Improvements

To break symmetries, i.e., to remove some symmetric solutions that could be
derived from remaining solutions, we can add the constraint:

φuΔ = 1 (9)

where uΔ is the vertex of highest degree. This constraint removes n−1 cyclic
permutation solutions that can be recovered later on (if necessary) by rotation
of the remaining solution. This constraint thus reduces the search space. Note
that we could assign 1 to the label of any vertex. However, intuitively, we feel
that fixing the vertex of highest degree is more efficient.

As the labeling is cyclic, this means that we can turn one way (counterclock-
wise for example) or the other (clockwise). This symmetry can be broken to
enforce one direction by ordering any two labels:

φu ≥ φv (10)

Note that u and v can be any label, but fixing u = uΔ and v the vertex having
the second highest degree seems a good intuition. Constraints (9) and (10) can
be added to models ME and M�

A.
Some redundant constraints can also be added. For example, consider all

the cycles of size 3 in G. Then, we can build a table of 3-uples representing
the “legal” labeling of 3 vertices for a cyclic bandwidth of cost k. Although too
expensive in the general case, this kind of redundant constraint can be added
beneficially only around the vertex of the highest degree for example.

4.4 From Satisfiability to Optimization Models

It is obvious that if there is a cyclic labeling of cost k, there is also one of cost
k + 1 and, using the contraposition, if there is no labeling of cost k, then none
of cost k − 1 exists. We propose to use the satisfiability model ME inside a
dichotomy algorithm (see Algorithm 5) benefiting from the above property.

This optimization function (as described in Algorithm 5) can be called
with the lower bound lb = 	Δ/2
 (where Δ is the maximum degree of G) and
the upper bound ub = 	n/2
. When knowing better bounds, such as the ones
returned by our Recycling Algorithm, this function will be more efficient and
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Algorithm 5. optimization()
kbest ← ub
while lb < ub do

k ← (ub + lb) div 2
L ← {(�, �′) ∈ N 2 | � �= �′, min{|� − �′|, n − |� − �′| ≤ k}}
if solve(ME , L) is SAT then

ub ← k
kbest ← ub

else
lb ← k + 1

end if
end while
return k

will succeed more often in a reasonable time. The solve function creates the
required model and solves it with an appropriate solver, i.e., a finite domain
(FD) solver for ME .

Iterating Recycling and Optimization algorithms. Both the Recycling and
Optimization algorithms aim at reducing the search interval, whose extremi-
ties are respectively the lower and upper bounds for B∗

c (G), for any instance
G. Obviously, if this interval is reduced to one value, then we have determined
the optimal value B∗

c (G). If not, then it is possible to iteratively apply Algo-
rithms 1 and 5, aiming at further reducing the search interval, until a fixed
point is reached.

5 Results

The benchmark we use here to evaluate performances of both our Recycling
algorithm (Algorithm 1) and our Optimization algorithm (Algorithm 5) on the
Cyclic Bandwidth problem, is the classic 113 Harwell-Boeing benchmark [16],
extracted from the Harwell-Boeing sparse matrix collection.

The results are shown Table 2 (33 medium-sized instances of our bench-
mark), along with Tables 3 and 4 (remaining 80 instances). In these three tables,
we describe, in the three first columns, the name of each instance, its number
of vertices and edges. The four subsequent columns, collectively called inputs,
respectively provide the best lower and upper bounds for the Bandwidth Mini-
mization and the Cyclic Bandwidth problems. These four values correspond
to the ones obtained by applying lines 1–4 of Algorithm 1. The two following
columns, collectively called Recycling algorithm, respectively indicate whether
B∗

c = B∗, and the search interval (lower bound/upper bound) for B∗
c obtained

after applying Algorithm 1. Finally, the rightmost column value indicates either
the optimal value B∗

c computed by Algorithm 5, or a lower/upper bound interval
for B∗

c . In this column, ‘–’ indicates that the Optimization algorithm timed out.
Results obtained by our Recycling algorithm. Algorithm 1 (lines 1–4), by sim-

ply gathering the best knowledge from literature and (when applicable) by rely-
ing on the fact that B∗

c = B∗, can provide optimal values B∗
c , or drastically
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Table 2. Results for 33 medium Harwell-Boeing instances. The results with an * in the
Recycling algorithm column indicates a discrepancy between the Recycling algorithm
and the optimization function

Inputs Recycling algorithm Opt. algorithm

Instance vertices edges lbB ubB lbC ubC B∗
c = B∗? value value

pores 1 30 103 7 7 7 7 yes 7 7

ibm32 32 90 11 11 8 9 no [8, 9] 9

bcspwr01 39 46 5 5 4 4 no 4 4

bcsstk01 48 176 16 16 12 12 no 12 12

bcspwr02 49 59 7 7 7 7 yes 7 7

curtis54 54 124 10 10 8 8 no 8 8

will57 57 127 6 6 6 6 yes 6 6

impcol b 59 281 19 19 14 17 no [14, 17] 17

steam3 80 424 7 7 7 7 yes 7 7

ash85 85 219 9 9 9 9 yes 9 9

nos4 100 247 10 10 10 10 yes 10 10

gent113 104 549 25 25 20 23 no [20, 23] 23

bcsstk22 110 254 9 10 6 6 no 6 6

gre 115 115 267 20 22 20 23 yes* [20, 23] 23

dwt 234 117 162 11 11 11 11 yes 11 11

bcspwr03 118 179 9 9 9 10 yes* [9, 10] 10

lns 131 123 275 18 20 18 20 yes [18, 20] 20

arc130 130 715 63 63 62 63 unknown [62, 63] 63

bcsstk04 132 1758 36 37 33 37 unknown [33, 37] 37

west0132 132 404 23 28 23 31 unknown [23, 31] 31

impcol c 137 352 23 27 23 24 unknown [23, 24] 24

can 144 144 576 13 13 7 7 no 7 7

lund a 147 1151 19 23 19 23 yes [19, 23] 23

lund b 147 1147 19 23 19 23 yes [19, 23] 23

bcsstk05 153 1135 19 20 19 20 yes [19, 20] 20

west0156 156 371 33 33 23 32 no [23, 32] –

nos1 158 312 3 3 3 3 yes 3 3

can 161 161 608 18 18 18 18 yes 18 18

west0167 167 489 31 34 28 34 unknown [28, 34] 34

mcca 168 1662 32 32 32 37 yes 32 –

fs 183 1 183 701 52 58 52 58 unknown [52, 58] 58

gre 185 185 650 17 19 17 21 yes* [17, 21] 21

will199 199 660 55 65 34 50 no [34, 50] –

reduce the search interval. Indeed, we immediately conclude optimality for 28 of
the 113 studied instances. Among the 85 remaining instances, the search interval
is of length 2 (resp. 3) for 12 (resp. 9) instances.
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Table 3. Results for 80 large Harwell-Boeing instances (part 1 )

Inputs Recycling algorithm Opt. algorithm

Instance vertices edges lbB ubB lbC ubC B∗
c = B∗? value value

impcol a 206 557 24 32 23 32 unknown [23, 32] –

dwt 209 209 767 20 23 20 23 yes [20, 23] 23

gre 216a 216 660 17 21 17 21 yes [17, 21] 21

dwt 221 221 704 11 13 11 13 yes [11, 13] 13

impcol e 225 1187 34 42 34 42 unknown [34, 42] –

saylr1 238 445 12 14 12 14 yes [12, 14] 14

steam1 240 1761 32 44 32 44 yes [32, 44] –

dwt 245 245 608 21 21 21 21 yes 21 21

nnc261 261 794 22 24 22 24 yes [22, 24] 24

bcspwr04 274 669 23 24 23 24 yes [23, 24] –

ash292 292 958 16 19 16 19 yes [16, 19] –

can 292 292 1124 34 36 34 38 yes [34, 36] –

dwt 310 310 1069 11 12 11 12 yes [11, 12] 12

gre 343 343 1092 23 28 23 28 yes [23, 28] –

dwt 361 361 1296 14 14 14 14 yes 14 14

plat362 362 2712 28 34 28 34 yes [28, 34] –

plskz362 362 880 14 18 14 18 yes [14, 18] –

str 0 363 2446 87 116 58 91 unknown [58, 91] –

str 200 363 3049 90 124 65 99 unknown [65, 99] –

str 600 363 3244 95 132 71 103 unknown [71, 103] –

west0381 381 2150 117 151 86 113 no [86, 113] –

dwt 419 419 1572 22 25 22 25 yes [22, 25] –

bcsstk06 420 3720 37 45 37 45 yes [37, 45] –

bcsstm07 420 3416 37 42 37 45 yes [37, 42] –

impcol d 425 1267 36 40 24 35 no [24, 35] –

hor 131 434 2138 46 55 46 55 yes [46, 55] –

bcspwr05 443 590 25 27 25 27 yes [25, 27] 26

can 445 445 1682 45 52 45 46 unknown [45, 46] –

pores 3 456 1769 13 13 13 13 yes 13 13

bcsstk20 467 1295 8 13 8 13 unknown [8, 13] –

nos5 468 2352 52 63 52 63 yes [52, 63] –

west0479 479 1889 81 118 80 105 unknown [80, 105] –

mbeacxc 487 41686 246 260 243 243 no 243 –

mbeaflw 487 41686 246 261 243 243 no 243 –

mbeause 492 36209 249 254 245 246 no [245, 246] –

494 bus 494 586 25 29 25 28 unknown [25, 28] –

west0497 497 1715 69 85 69 81 unknown [69, 81] –

dwt 503 503 2762 29 40 29 41 yes [29, 40] –

lns 511 503 1425 33 44 33 44 yes [33, 44] –

gre 512 512 1680 30 36 30 36 yes [30, 36] –
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Table 4. Results for 80 large Harwell-Boeing instances (part 2 )

Inputs Recycling algorithm Opt. algorithm

Instance vertices edges lbB ubB lbC ubC B∗
c = B∗? value value

fs 541 1 541 2466 270 270 270 270 unknown 270 –

sherman4 546 1341 21 27 21 27 yes [21, 27] –

dwt 592 592 2256 22 28 22 29 yes [22, 28] –

steam2 600 6580 54 63 54 63 yes [54, 63] –

nos2 638 1272 3 3 3 3 yes 3 3

west0655 655 2841 109 160 94 149 unknown [94, 149] –

662 bus 662 906 36 39 36 38 unknown [36, 38] –

shl 0 663 1682 211 226 211 212 unknown [211, 212] –

shl 200 663 1720 220 231 220 220 unknown 220 –

shl 400 663 1709 213 230 213 215 unknown [213, 215] –

nnc666 666 2148 33 40 33 41 yes [33, 40] –

nos6 675 1290 15 16 15 16 yes [15, 16] 16

fs 680 1 680 1464 17 17 17 17 yes 17 17

saylr3 681 1373 35 47 35 46 yes [35, 46] –

sherman1 681 1373 35 47 35 46 yes [35, 46] –

685 bus 685 1282 30 32 30 32 yes [30, 32] –

can 715 715 2975 54 72 52 60 unknown [52, 60] –

nos7 729 1944 43 65 43 65 yes [43, 65] –

mcfe 731 15086 112 126 112 126 yes [112, 126] [125, 126]

fs 760 1 760 3518 36 38 36 38 yes [36, 38] –

bcsstk19 817 3018 13 14 13 14 yes [13, 14] –

bp 0 822 3260 174 236 174 207 unknown [174, 207] –

bp 200 822 3788 186 258 186 218 unknown [186, 218] –

bp 400 822 4015 188 268 188 220 unknown [188, 220] 220

bp 600 822 4157 190 272 189 229 unknown [189, 229] 229

bp 800 822 4518 197 278 190 239 unknown [190, 239] 239

bp 1000 822 4635 197 287 191 241 unknown [191, 241] 241

bp 1200 822 4698 197 291 193 241 unknown [193, 241] 241

bp 1400 822 4760 199 290 193 242 unknown [193, 242] 242

bp 1600 822 4809 199 293 192 241 unknown [192, 241] 241

can 838 838 4586 75 86 57 58 no [57, 58] 58

dwt 878 878 3285 23 25 23 24 yes [23, 24] 24

orsirr 2 886 2542 62 84 62 85 yes [62, 84] –

gr 30 30 900 3422 31 31 31 32 yes 31 31

dwt 918 918 3233 27 32 27 32 yes [27, 32] –

jagmesh1 936 2664 24 27 20 20 no 20 20

nos3 960 7442 43 43 43 43 yes 43 43

jpwh 991 983 2678 82 90 82 88 yes [82, 88] –

west0989 989 3500 123 210 123 217 unknown [123, 217] –

dwt 992 992 7876 35 35 35 35 yes 35 35
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Results obtained by our Recycling algorithm along with the Optimization func-
tion. Tightening the search interval through Algorithm 1 is obviously advan-
tageous for our optimization() function (Algorithm 5), as it is based on
dichotomy. As a matter of fact, the results we obtain through “Recycling +
optimization”, prove very efficient. Indeed, among the 113 initial instances, Algo-
rithm 5 determines the optimal B∗

c value for half of them (56 cases), and the
search interval is reduced in one case. Note also that, every time B∗

c = B∗,
determining B∗

c or tightening its search interval also improves knowledge on B∗.
All experiments are run on a computer equipped with an Intel Xeon ES 2630,
2.66 GHz processor, and coded in Python using the PyCSP3 v2.2 library [24].
Each instance has up to 120 h to complete the optimization() function, which
can lead to several calls to the CSP solver (same instance, different k values).

6 Conclusions and Future Work

This paper shows how the combination of pre-existing knowledge and some solv-
ing techniques can help to improve results for some hard combinatorial problems,
such as the Cyclic Bandwidth problem. In our case, we leverage the close
relation between the Bandwidth Minimization and the Cyclic Bandwidth
problems to propose the Recycling algorithm. Our algorithm takes advantage
of existing knowledge and uses it in a way that no solver is required to tighten
bounds, prove optimization, or find the optimum at almost zero computational
cost. For instances that require long computational runtimes, the bound tight-
ening is a direct gain in the quest to find (or validate) optimums. In a second
step, we propose an optimization function, based on constraint programming, to
test the remaining values in the lower and upper bounds interval obtained in the
first step. The experimental results validated the proposed approach by obtain-
ing optimums for 56 (out of the 113) Harwell-Boeing instances and tightening
bounds for another instance. We also found three instances presenting discrep-
ancies between the Recycling algorithm and the optimization function; upon
reviewing the data and running a CP-based bandwidth minimization function,
it seems there may be errors in the reported values from Pop’s article. Our next
steps will involve: 1) a revision of bandwidth minimization values and, 2) the
study of graph properties or different modeling approaches in CP to overcome
the specificities of certain instances for which the solver could not find a solution.
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