
HAL Id: hal-04621662
https://univ-angers.hal.science/hal-04621662v1

Submitted on 5 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A new proposal prototype dedicated to validate
unknown parameter identification method of heating

source
Sara Fakih, Mohamed Salim Bidou, Thanh Phong Tran, L. Perez, Laurent

Autrique

To cite this version:
Sara Fakih, Mohamed Salim Bidou, Thanh Phong Tran, L. Perez, Laurent Autrique. A new proposal
prototype dedicated to validate unknown parameter identification method of heating source. 7th
international conference on Green Technology and Sustainable Development, Jul 2024, Ho Chi Minh
City, Vietnam. �hal-04621662�

https://univ-angers.hal.science/hal-04621662v1
https://hal.archives-ouvertes.fr


Experimental prototype to validate a method for
solving an inverse heat conduction problem

Sara FAKIH1, Mohamed Salim BIDOU1, Thanh Phong TRAN1, Laetitia
PEREZ1[0000−0001−6340−0317], and Laurent AUTRIQUE1[0000−0002−7611−4923]

LARIS, Polytech, University of Angers, 49000 Angers, France
{sara.fakih,mohamedsalim.bidou,thanhphong.tran,laetitia.perez,

laurent.autrique}@univ-angers.fr

Abstract. This paper focuses on developing a prototype for identifying
specific unknown parameters in real experimentation. The initial objec-
tive involves validating a mathematical model representing a 2D thermal
system and governed by parabolic partial differential equations. This is
achieved by refining the error between temperature measurements from
an infrared camera in a real experimental setup, and the mathemati-
cal model outputs. The final objective of this research is the parametric
identification of a stationary heat source using an iterative regularization
method (the conjugate gradient minimization algorithm). The latter is
chosen for its effectiveness in addressing challenges inherent in the in-
verse heat conduction problems, well-known as ill-posed in the Hadamard
sense.

Keywords: conjugate gradient method · experimental prototype · in-
verse problems · parametric identification · thermal process.

1 Introduction

Mathematical models formulated through partial differential equations (PDEs)
are widely employed in industrial and thermal engineering sciences to accurately
describe experimental processes behavior and ensure precise parametric identifi-
cations for complex systems as obtained in [1–5]. In this context, solving inverse
heat conduction problems (IHCPs) emerges as a crucial objective when certain
parameters are unknown, often due to the limitations in measurement capabil-
ities or the complexity of the system under investigation, [6–9]. However, it is
well known that such IHCPs are ill-posed, as low measurement noises can highly
affect the identification quality [10]. To address this, the conjugate gradient reg-
ularization method has been developed [11–13], which guarantees convergence
toward an admissible value of the unknown parameter by minimizing the error
between the observed and predicted data.

This approach has gained significant attention in numerous research papers
dedicated to identifying and controlling unknown parameters in a finite time
and across multidimensional domains. For instance, [14–20] explored control and
identification of heat fluxes and trajectories in the context of 1D systems. In 2D
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geometries, offline methodologies also involved finding the flux and trajectory,
detecting failure time for heat sources, and identifying the control for finite time
temperature stabilization [8,21–28]. Whereas quasi-online approaches have inte-
grated real-time data over sliding intervals for the adaptive selection of sensors
for unknown mobile heat flux estimation, the identification of thermal conductiv-
ity, control, heat flux and trajectory, and failure times [15,29–33], providing more
precise and up-to-date information into the system dynamics. Similar strategies
have been employed in 3D domains [34–36].

This paper primarily aims to validate a mathematical model of an experi-
mental prototype, which then paves the way for identifying the heat flux of a
fixed disk located on the lower face of an aluminum plate, using temperature
data captured by infrared camera sensors and in the presence of measurement
noise. The heat flux identification is solved using the conjugate gradient method
by addressing its well-posed direct, adjoint, and sensitivity problems [13]. The
paper is organized as follows: section 2 outlines the studied experimental pro-
cess, its mathematical model and the inverse method for estimating the unknown
parameter, while section 3 delves into the temperature data acquisition method
and the numerical results of simulated temperature compared to real collected
data. Finally, conclusions and future perspectives are proposed in section 4.

2 Physical system and mathematical model

2.1 Prototype description

The goal is to develop an experimental device in order to validate methods
dedicated to parametric identifications (see for example [37]). This prototype
matches with a proposed mathematical thermal model in a 3D space, which is
equivalent to 2D under the condition of negligible heat transfers along the plate
thickness, thus reducing computational time [37, 38]. A thin metal plate with
high thermal conductivity is considered. To accommodate the budget in reality,
the proposed material is aluminum (copper, silver, and gold cannot be used).
Accordingly, an aluminum plate of reasonable thickness and size is placed on a
heat-insulating support (Fig.1a).

The heat source used is an RS Pro plate consisting of coiled resistance wire
and protected by a sturdy steel (Fig.1b). When conventional heating elements are
too wide, this thin plate is employed in fitting into narrow spaces. It is supplied
with insulated connectors and earth conductors for quick and safe installation,
and the wires are reinforced where they meet the plate to increase durability
and resistance to pressure. The heat source dimension is 70×75 mm, the supply
voltage is 230 V a.c with a rated output of 220 W , and can provide a maximum
temperature of 260°C.

The Optris PI 640i is a small infrared thermal camera (Fig.1c). With housing
size of only 46× 56× 90 mm and a weight of 320 g (lens included), it is among
the market’s most compact thermal cameras, available from 6, 800€ (excl. VAT),
software and I/O interface are included. With an optical resolution of 640× 480
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pixels, it provides very sharp real-time thermal images. It is connected with
the comprehensive Optris PIX Connect analysis software, and can work over
temperature range of −20°C to 900°C (optional up to 1500°C), with the spectral
range of 8 to 14 µm. Its refresh rate is up to 125 Hz.

(a) Prototype description (b) Heat source (c) Infrared camera

Fig. 1. The experimental prototype main devices.

2.2 Mathematical model

In order to validate and model the experimental prototype, an aluminum plate
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dimension L, thickness e, and boundary Γ = ∂Ω ⊂ R2. The space variables
(each measured in m) are (x, y, z) ∈ Ω, and the time variable (in s) is t ∈
T = [0, tf ], where tf is the final time. The surface of Ω is heated by a thermal
flux density ϕ(t) (in Wm−2) acting on a homogeneous fixed disk D of center
I (xs(t), ys(t), zs(t)) and radius r. Therefore, the plate temperature denoted by
θ(x, y, z, t) (in °C), varies continuously ∀(x, y, z, t) ∈ Ω × T , [38]. Heat source
total density function is defined by:

Φ (x, y, z, t) =

{
ϕ(t) if (x, y, z) ∈ D (I(t), r)
0 otherwise

and could be expressed continuously and differentiably as in Eq.1 (see Table 1),
where the regularized parameter η ∈ R+ is related to the heat flux discontinuity
at the disk boundary. Without loss of generality, the time interval T = [0, tf ] =
Nt−1
∪
i=0

[ti, ti+1] is divided into Nt segments, with ti = τi and τ = tf/Nt. Thus, the

density function is discretized as ϕ(t) =
Nt−1∑
i=0

ϕisi(t), where ϕi = ϕ(ti), and the

basis of hat functions for time discretization is ∀i = 0, . . . , Nt − 1:

si(t) =

1 + t/τ − i if t ∈ [ti−1, ti]
1− t/τ + i if t ∈ [ti, ti+1]

0 otherwise
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Table 1. Literature of equations for unknown parameter identification based on the
conjugate gradient method

No. Description Formula Reference

Eq.1 Total heat flux Φ(x, y, z, t) =
ϕ(t)

π
arccot

(
η
√

(x− xs(t))2 + (y − ys(t))2 + (z − zs(t))2 − r
)

[35, 36]

Eq.2 Laplace operator ∆θ(x, y, z, t) =
∂2θ(x, y, z, t)

∂x2
+
∂2θ(x, y, z, t)

∂y2
+
∂2θ(x, y, z, t)

∂z2
[35, 36]

Eq.3 Direct problem


ρC

∂θ (x, y, t)

∂t
− λ∆θ (x, y, t) =

Φ (x, y, t)− 2h (θ (x, y, t)− θ0)

e
on Ω × T

θ(x, y, 0) = θ0(x, y) on Ω

− λ
∂θ(x, y, t)

∂
→
n

= 0 on Γ × T

[30–33,37–39]

Eq.4 Cost function J(θ;Φ) =
1

2

∫
T

Nc∑
n=1

(
θ(Cn, t;Φ)− θ̂(Cn, t)

)2
dt, at sensors Cn=1,...,Nc [30–33,37–39]

Eq.5 Adjoint problem


ρC

∂ψ(x, y, t)

∂t
+ λ∆ψ(x, y, t) = E(x, y, t) +

2hψ(x, y, t)

e
on Ω × T

ψ(x, y, tf ) = 0 on Ω

− λ
∂ψ(x, y, t)

∂
→
n

= 0 on Γ × T

[30–33,37–39]

Eq.6 Descent direction dk+1 = −∇J(θ;Φk) +

∥∥∇J(θ;Φk)
∥∥2

∥∇J(θ;Φk−1)∥2
dk [30–33,37–39]

Eq.7 Sensitivity problem


ρC

∂δθ(x, y, t)

∂t
− λ∆δθ(x, y, t) =

δΦ(x, y, t)− 2hδθ(x, y, t)

e
on Ω × T

δθ(x, y, 0) = 0 on Ω

− λ
∂δθ(x, y, t)

∂
→
n

= 0 on Γ × T

[30–33,37–39]

Eq.8 Descent depth γk+1 =

∫
T

Nc∑
n=1

(
θ(Cn, t;Φ

k)− θ̂(Cn, t)
)
δθ(Cn, t;Φ

k)dt

∫
T

Nc∑
n=1

δθ(Cn, t;Φ
k)2dt

[30–33,37–39]

Eq.9 Flux update ϕk+1 = ϕk − γk+1dk+1 [30–33,37–39]
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The heat transfer equation for the 3D aluminum plate is modeled by the following
PDE:


ρC

∂θ

∂t
− λ∆θ = 0 in Ω × T

θ(x, y, z, 0) = θ0(x, y, z) in Ω

− λ
∂θ

∂
→
n

= h(θ − θ0)− Φ on Γ × T

where ∆ is the Laplace operator defined in Eq.2, and
→
n is the boundary unit

external normal vector. Thermophysical parameters {ρ, C, λ, h, θ0} are given in
Table 2, and are assumed constant. In fact, if the material used is heterogeneous,
numerical resolution becomes more complex. The convective heat transfer coeffi-
cient h is in general difficult to determine as it highly depends on the particular
environment surrounding the heat conductor (related to Navier-Stokes equa-
tions). However, this will be addressed in other articles.

To numerically evaluate the reliability of the proposed system for the un-
known heat flux identification, fixed number of sensors aiming to collect tem-
perature data during the experiment are positioned on Ω surface. However, the
measurements are affected by Gaussian noises N (0, 1), thus rendering errors in
the data collection process. Due to the plate negligible thickness, this study will
focus on a 2D geometry defined now as:

(x, y) ∈ Ω =
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with Γ = ∂Ω ⊂ R, and the corresponding PDE in Eq.3. Thus, Eq.1 and Eq.2
are regarded without the inclusion of the variable z.

2.3 Inverse problem

The heat flux density ϕ(t) is unknown, and is estimated by implementing the
Conjugate Gradient Method (CGM), [37,40]. In fact, the aluminum plate is ex-
perimentally heated by a heat source, and the Optris infrared camera performs
acquisition by capturing images and converting them into pointwise temperature
measurements θ̂(x, y, t), which are then compared with the temperature simu-
lated on COMSOL Multiphysics connected to MATLAB to calculate the cost
function in Eq.4. Then, the CGM algorithm is iterated to identify ϕ(t), which
is added into the mathematical model simulated again to compare the resulting
temperature with the measured data until the cost function reaches the desired
value Jstop, and thus the identification process stops (see Fig.2).
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Fig. 2. Presentation of the CGM inverse problem.

A thermal engineering application is presented in [11] and its regularization
properties are studied in [13]. The CGM is based on three well posed problems:

– Direct problem (Eq.3) for calculating temperature θ(x, y, t) corresponding to
the estimated flux ϕ(t) at iteration k, then deducing criterion J(θ, ϕ) (Eq.4)
using measured temperature θ̂(x, y, t).

– Adjoint problem (Eq.5) (written in terms of the Lagrangian ψ(x, y, t) and
E(x, y, t) defined in [30–33, 37–39]) for deducing the cost function gradient
and the descent direction (Eq.6).

– Sensitivity problem (Eq.7) for calculating the sensitivity function δθ(x, y, t)
defined as the variation of temperature induced by variation of the heat flux
in the descent direction, and then deducing the descent depth (Eq.8).

After solving these problems, the flux value ϕ(t) is updated (Eq.9).

3 Prototype validation results and discussions

3.1 Data acquisition results

Methods for temperature acquisition have been widely discussed in papers in-
cluding analog temperature sensors connected to Arduino boards [1, 4], tem-
perature measurement via snapshot hyper-spectral imaging systems [2], dis-
tributed fiber optic sensors [20], contact pyrometers [3, 5], and non-contact py-
rometers [39].

In this study, an experiment was applied on an aluminum plate heated by a
fixed centered heat source. The Optris PI 640i camera measured continuously the
temperature on the plate surface by capturing heat propagation and providing
a high-resolution thermal map. The collected data was visualized through coded
images, with each pixel color corresponding to the temperature at a specific point
on the plate. These infrared images were converted to matrices in MATLAB, each
matrix element representing a pixel’s temperature data (see Fig.3). Figure 4a
shows the aluminum plate temperature at a recorded data instant corresponding
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Fig. 3. Presentation of Optris software for the connecting infrared camera.

to 10 minutes of heating. Additionally, Fig.5a provides a time-series plot of the
temperature at the plate center and progressively farther points. This indicates
how the central area reaches a higher temperature faster than the peripheral
regions.

After detailing the data acquisition methodology using the Optris PI 640i
infrared camera to capture real-time temperature distributions, the focus now
shifts to the modeling phase of the study. In fact, the precise experimental data
served as a foundational benchmark for validating the subsequent theoretical
frameworks.

3.2 Direct problem simulation results

The constructed model replicates the experimental setup, where a fixed heat
source is centrally placed on an aluminum plate, and relevant parameters such
as {ρC, λ, h, θ0, tf} are defined based on the experimental prototype conditions
(see Table 2). Thus direct problem in Eq.3 for predicting temperature distribu-
tion over time is numerically simulated by the Finite element method (FEM)
implemented with COMSOL Multiphysics and MATLAB. Therefore, the results
after 10 minutes of central heating are shown in Fig.4b.

Table 2. Mathematical model input parameters

Symbol Definition Value
ρC Volumetric heat capacity 2.421.106 J ·m−3 ·K−1

h Natural convection 10 W ·m−2 ·K−1

λ Thermal conductivity 237 W ·m−1 ·K−1

θ0 Initial temperature 21 ◦C
tf Final time 600 s
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(a) Real temperature distribution. (b) Simulated temperature distribution.

Fig. 4. Temperature distribution at final time.

Model structure validation is crucial in ensuring the accuracy of the simu-
lation and the proposed system parameter identification methods. Figures 4a
and 4b illustrating respectively temperature distribution during the experiment
and direct problem simulation, are similar. However, it is necessary to perform
various tests to ensure the theoretical model precision.

3.3 Theoretical modeling validation results

The simulated temperature evolution over time at specific points on the alu-
minum plate is compared with real measurements in Fig.5b, corresponding to
the sensor located at the center of the plate.

(a) Real sensors variation. (b) Real and simulated data comparison.

Fig. 5. Temperature sensors variation for model validation.
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This proves that the proposed prototype can satisfy the theoretical model. How-
ever, it is necessary to calculate the multi-sensors temperature residuals to de-
termine the errors between simulated and measured temperatures (Fig.6).

Fig. 6. Multi-sensor temperature residuals overview.

Even if the structure model (direct problem in Eq.3) is validated, an accu-
rate identification has to be investigated in order to determine the heat spa-
tial domain, the heat flux versus time, and the delay. Accordingly, several sys-
tem parameter identification campaigns will be proposed including offline mode,
quasi-online mode, quasi-online mode with prediction. Elaborate studies will be
discussed, and their results will be published in the next articles.

4 Conclusions and perspectives

The successful validation of the direct problem model using COMSOL Multi-
physics and MATLAB has provided a solid foundation for advancing to more
complex thermal analyses, notably the inverse heat conduction problem (IHCP).
The latter poses unique challenges, primarily due to its ill-posed nature. In fact,
by leveraging the accuracy of our validated direct problem model, stability and
reliability of inverse problems could be enhanced.

In the forthcoming work, the aim is to control and implement regularization
techniques for identifying temporal variation of the unknown heat flux applied
to the aluminum plate, thus ensuring a robust convergence of the simulated
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temperature to the measured data. This is critical in applications requiring pre-
cise control of thermal processes, and helps in smoothing out the IHCPs noises.
Furthermore, comparative analysis of different regularization methods will be
conducted to determine the optimal approach for this specific application. Ul-
timately, the progression from model validation to solving IHCPs not only en-
hances the understanding of thermal behaviors but also improves the capability
to manipulate them in practical scenarios.
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