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Stabilization in finite time for a thermal system described by a
parabolic partial differential equation in a 2D geometry

Sara FAKIH1, Laetitia PEREZ1, and Laurent AUTRIQUE1

Abstract— In thermal engineering, maintaining the temper-
ature precisely at a desired setpoint is an essential objective
for many processes. When heating actuators act locally and a
few point sensors provide observations at different locations,
the problem is complex. This communication deals with the
control of a thermal system whose evolution is described by
a parabolic partial differential equation (the domain is a thin
steel plate subjected to heat sources on its upper surface, and
to natural convection on its boundaries). The mathematical
model remains valid in a 2D domain under the condition of
negligible plate thickness. Equilibrium is reached when the
combined effects of heat supplied by the sources and cooling
induced by the surrounding environment balance out. The
aim of this study is to achieve this state of equilibrium in a
finite time by appropriately controlling the heat sources. The
challenge of identifying these flows is addressed in the form
of an inverse heat conduction problem (known to be ill-posed),
and the implementation of the conjugate gradient regularization
method is discussed.

I. INTRODUCTION

Optimal control of systems described by partial differential
equations (PDEs) remains a significant challenge, especially
in the fields incorporating thermal sciences, where the precise
manipulation of control inputs is crucial in achieving desired
temperature outputs [3], [4], [6], [8]. The development of
methods for synthesizing controllers is difficult for non-
academic cases due to the need to address diverse complex
requirements, while simultaneously aiming to balance ther-
mal system performance. For example, ISS output feedback
synthesis of disturbed reaction–diffusion processes using
non-collocated sampled-in-space sensing and actuation is
recently investigated in [7].

The motive behind this study lies in addressing the thermal
scenario of a thin steel plate (characterized by its known
material properties) in a two-dimensional geometry, where it
is subjected to heating from four stationary disks along with
natural convection across its surface. Nine pointwise sensors
measure its temperature variation, and the equilibrium in-
duced between the heating and cooling effects is considered
the desired target temperature for these sensors. The primary
objective is to achieve this stabilized state in a finite time by
controlling the flux for each source, thus minimizing the cost
function defined as the quadratic difference between the plate
temperature and the desired target. This control problem can
be easily formulated as a zero-stabilization problem, and the
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method developed in this context can be also implemented
for compliance with a setpoint that varies in time and may be
subjected to random disturbances. The range of applications
is thus very broad.

The search for a control law is treated as an identifi-
cation problem and formulated as an inverse one. In the
context of inverse heat conduction, problems are ill-posed
due to small perturbations on the observed states, leading
to prohibitive errors on identified parameters [9]. In the
specific framework of systems described by PDEs (linear
or not), the Conjugate Gradient Method (CGM) is a pow-
erful computational algorithm. The development of a global
methodology based on its adaptation has garnered particular
attention in various recent studies, including [1], [2], [5],
[10], [11] and [12], for estimating unknown parameters
such as physical properties, disturbances, and control laws
in 1D domains. Required iterative steps are respectively
outlined in the well-posed: direct problem - adjoint problem
- sensitivity problem. Through this paper, CGM extends
beyond parametric problems and control in 1D domains,
providing an attractive approach for controller identification
in 2D geometries. This numerical method provides a relevant
and efficient approach in stabilizing complex processes in
thermal engineering. Alongside fundamental research, often
carried out in an academic context with sometimes reductive
hypotheses, it is essential to develop constructive approaches
based on robust numerical methods to synthesize control
laws outside the framework of existing theories.

This document is structured as follows: notations and
problem formulation are exposed in section II. Simulation
results to achieve the target temperature are shown in section
III. Developments related to the CGM implementation are
detailed in section IV. An overview of the CGM algorithm
is provided in section V. The CGM simulation results for
the steel plate temperature stabilization in finite time are
exposed in section VI. Concluding insights and perspectives
are then proposed in section VII, offering valuable reflections
on future research directions and potential applications.

II. NOTATIONS AND DIRECT PROBLEM FORMULATION

Following notations are adopted in this paper: the spatial
domain is a 1 m2 squared steel plate Ω = [0, 1]2 ⊂ R2,
where the space variables are (x, y) ∈ Ω (each measured
in m). It is important to notice that this is not an academic
configuration: in our research institute, such plate will be
soon employed in testing several configurations. In fact,
setting its thickness as negligible, this study focuses on a
2D analysis. The boundary of Ω is Γ ⊂ R, and the time



Fig. 1: Sensors and actuators locations.

variable (in s) is t ∈ T = [0, tf ], where tf is the final
time. With the above indications, the temperature varying on
(x, y, t) ∈ Ω × T is denoted by θ(x, y, t) (in °C), and as
in [12] work, its evolution is characterized by the following
well-posed direct problem:

ρC
∂θ

∂t
− λ∆θ =

−h(θ − θ0) + u(x, y)

e
on Ω× T (1)

θ(x, y, 0) = θ0(x, y) on Ω (2)

where ρC is the volumetric heat capacity (J.m−3.K−1), λ is
the thermal conductivity (W.m−1.K−1), ∆ = ∂2x+∂

2
y is the

Laplace operator, h is the convective heat transfer coefficient
(W.m−2.K−1), θ0(x, y) is the ambient temperature (°C),
and u(x, y) is the heating flux (W.m−2). Homogeneous
Neumann boundary condition exists on Γ:

−λ ∂θ
∂n⃗

= 0 on Γ× T (3)

where n⃗ is the outward unit normal vector on Γ. Heating
stationary disks are defined as follows:

D1 = {(x, y) ∈ Ω; (x− 0.5)2 + (y − 0.2)2 ≤ 0.12}
D2 = {(x, y) ∈ Ω; (x− 0.5)2 + (y − 0.5)2 ≤ 0.052}
D3 = {(x, y) ∈ Ω; (x− 0.8)2 + (y − 0.7)2 ≤ 0.12}
D4 = {(x, y) ∈ Ω; (x− 0.2)2 + (y − 0.8)2 ≤ 0.12}

The heating flux is spatially constant on each disk and is
denoted by ui for i = 1, . . . , 4. Thus:

u(x, y) =

4∑
i=1

ui1Di(x, y)

where 1Di
(x, y) is the indicator function (equal to 1 if

(x, y) ∈ Di and 0 elsewhere). Nine pointwise sensors Ai

detecting temperature evolution are arbitrarily distributed in
Ω (see table I and fig. 1).

TABLE I: Sensors locations

Sensor A1 (0.8,0.1) Sensor A2 (0.2,0.2)

Sensor A3 (0.65,0.3) Sensor A4 (0.25,0.4)

Sensor A5 (0.85,0.5) Sensor A6 (0.15,0.6)

Sensor A7 (0.5,0.75) Sensor A8 (0.8,0.9)

Sensor A9 (0.35,0.95)

III. DIRECT AND CONTROL PROBLEMS

A. Direct problem simulation and desired target
In table II, the steel plate material properties and other

model input parameters are given.

TABLE II: Input parameters

Parameter Value
Volumetric heat capacity ρC = 2× 106 J.m−3.K−1

Thermal conductivity λ = 44 W.m−1.K−1

Convective heat transfer coefficient h = 10 W.m−2.K−1

Heating fluxes u1 = 4× 103, u2 = 104

in W.m−2 u3 = 5× 103, u4 = 6× 103

Plate thickness e = 2× 10−3 m

Initial temperature θ0(x, y) = 20 °C

Final time tf = 3600 s

Knowing {ρ, C, λ, h, u1, u2, u3, u4, e, θ0, tf}, direct prob-
lem could be solved: find θ(x, y, t) solution of (1)-(3). This
operation is carried out using the finite element method
implemented with COMSOL Multiphysics and MATLAB.
Temperature distribution is illustrated in fig. 2 and evolution
for each sensor is shown in fig.3. One can observe from
(fig. 2d) that after one hour, steady state is obtained. In what
follows, this steady state is considered as the desired target.

(a) At 60 s (b) At 300 s

(c) At 600 s (d) At 3600 s

Fig. 2: Temperature distribution for several times.



Fig. 3: Temperature evolution at Si (Sensors Ai).

In fact, notate the following: θ(x, y, tf ) = θtarget(x, y),
for all (x, y) ∈ Ω, and θ(Ai, tf ) = θtarget(Ai), for i =
1, . . . , 9.

B. Control problem definition
Figure 3 clearly highlights that in the last quarter of an

hour, the temperature of each sensor is close to the desired
target state. This is not the case in the first half-hour: the
effect of the initial state (which can be considered here as a
disturbance) is still perceptible.

In the following, the objective is to obtain the steady state
earlier, i.e. in a reduced fixed time. Denote t∗f ∈ [0, 300]
and define T ∗ = [0, t∗f ]. The control problem is employed
in finding the control law (varying heating flux) u(x, y, t)
needed to achieve θ(Ai, t

∗
f ) ≃ θtarget(Ai). This control is

added to (1) instead of u(x, y), and ∀(x, y, t) ∈ Ω× T ∗:

u(x, y, t) =

4∑
i=1

ui(t)1Di
(x, y) (4)

The objective is to identify the appropriate time-varying
control laws ui(t), which are spatially constant on each
corresponding disk Di as defined in (4). Choosing t∗f = 300 s
serves a dual purpose because of the temperature’s significant
divergence at this time from the steady state, and as it
allows sufficient time for the conduction phenomena from
the controlled disks to the sensors Ai. Thus, the identified
heating fluxes (controls) remain in a realistic range. In order
to achieve thermal steady state for θ(Ai, t

∗
f ), the problem

could be formulated as a stabilization to zero for ψ(Ai, t
∗
f ).

Indeed, for (x, y, t) ∈ Ω× T ∗, define the error function:

ψ(x, y, t) = θ(x, y, t)− θtarget(x, y)

From (1)-(3), it can be easily verified that it is the solution
of the following PDE on Ω× T ∗:

ρC
∂ψ

∂t
− λ∆ψ = λ∆θtarget +

−h(ψ − ψ0) + u(x, y, t)

e
(5)

with the initial condition for (x, y) ∈ Ω:

ψ(x, y, 0) = ψ0(x, y) = θ0(x, y)− θtarget(x, y) (6)

and the Neumann boundary condition:

−λ∂ψ
∂n⃗

= 0 on Γ× T ∗ (7)

The inverse heat conduction problem dedicated in identi-
fying the controls {ui(t)}i=1,...,4 is solved in the next section
considering the Conjugate Gradient Method (CGM).

IV. THE CONJUGATE GRADIENT METHOD

A. Formulation and notations
The objective of CGM is to identify the control flux

u(x, y, t) in (4) required for minimizing the cost function
(criterion) J defined at the final time t∗f = 300 s as:

J(ψ;u) =
1

2

9∑
i=1

ψ(Ai, t
∗
f ;u)

2 (8)

where ψ(x, y, t) satisfies (5)-(7) and sensors Ai locations
are given in table I. For the implementation of CGM, each
{ui(t)}i=1,...,4 is discretized, without loss of generality, as a
piecewise linear continuous function. For i = 1, . . . , 4:

ui(t) =

Nt∑
j=1

uijsj(t) (9)

where Nt is the number of time discretizations, and uij =
ui(tj) at the discretized instants tj , for j = 1, . . . , Nt.
Moreover, {sj(t)}j=1,...,Nt

is the basis of hat functions for
time discretization. Substituting (9) in (4), control law is
defined ∀(x, y, t) ∈ Ω× T ∗ as:

u(x, y, t) =

4∑
i=1

Nt∑
j=1

uijsj(t)1Di
(x, y) (10)

Based on (10), u(x, y, t) is perfectly determined by the
knowledge of u = [uij ] i=1,...,4

j=1,...,Nt

. Criterion J is minimized

by an iterative descent algorithm: J(ψ;un+1) < J(ψ;un).
At each new iteration n+ 1, u is modified according to the
values obtained at the previous iteration n as:

un+1 = un − γndn

un+1
ij = unij − γndnij ∀i = 1, . . . , 4, ∀j = 1, . . . , Nt

(11)

where γn is the descent depth and dn is the descent direction
such that:

dn = −∇Jn + βndn−1

dnij = − ∂J

∂unij
+ βndn−1

ij ∀i = 1, . . . , 4, ∀j = 1, . . . , Nt

(12)

with β0 = 0 and βn =
∥∇Jn∥2F

∥∇Jn−1∥2F
, ∀n ≥ 1 (∥.∥F is the

Frobenius norm). At each new iteration of the minimization



algorithm, it is crucial to evaluate the cost function value
Jn = J(ψn;u), the descent direction dn (based on the cost
function gradient ∇Jn), and the descent depth γn. In such
a context, three well-posed problems must be solved.

B. Direct problem
Direct problem (5)-(7) is solved on Ω × T ∗ considering

un(x, y, t). Then, once error function ψn is numerically
obtained, cost function J(ψn;un) defined in (8) is estimated.

C. Sensitivity problem
The sensitivity function is defined ∀(x, y, t) ∈ Ω×T ∗ as:

δψ = lim
ε→0

ψ+(x, y, t;u)− ψ(x, y, t;u)

ε
(13)

where ψ+(x, y, t;u) = ψ(x, y, t;u+) results from the control
variation u+ = u+ εδu, and is the solution of the following
PDE system on Ω× T ∗:

ρC
∂ψ+

∂t
− λ∆ψ+ = λ∆θtarget +

−h(ψ+ − ψ0) + u+

e
(14)

ψ+(x, y, 0) = ψ0(x, y) on Ω (15)

with the Neumann boundary condition:

− λ
∂ψ+

∂n⃗
= 0 on Γ× T ∗ (16)

Subtracting (5)-(7) from (14)-(16) respectively, and consider-
ing (13), sensitivity function δψn at iteration n is the solution
of the following sensitivity problem:

ρC
∂δψ

∂t
− λ∆δψ =

−hδψ + δu

e
on Ω× T ∗ (17)

δψ(x, y, 0) = δψ0(x, y) = 0 on Ω (18)

with the Neumann boundary condition:

− λ
∂δψ

∂n⃗
= 0 on Γ× T ∗ (19)

Descent depth is defined by:

γn = argmin
γ∈R

J(un+1) = argmin
γ∈R

J(un − γdn) (20)

= argmin
γ∈R

1

2

9∑
i=1

ψ(Ai, t
∗
f ;un − γdn)2 (21)

Equation (20) implies that
∂J(un − γdn)

∂γ
= 0. Utilizing

it in the Taylor approximation for (21), this yields:

γn =

9∑
i=1

ψ(Ai, t
∗
f ;un)δψdn(Ai, t

∗
f ;un)

9∑
i=1

(δψdn(Ai, t
∗
f ;un))2

(22)

where δψdn is the variation of ψ induced by the variation
of the control in the descent direction dn. Thus sensitivity
problem resolution leads to the numerical evaluation of the
descent depth γn.

D. Adjoint problem
Define the Lagrangian at iteration n as:

L = J +

∫
T∗

∫
Ω

(
ρC

∂ψn

∂t
− λ∆ψn − λ∆θtarget

− −h(ψn − ψ0) + un

e

)
φn dxdydt

(23)
where φn(x, y, t) is its multiplier. Lagrangian differential is:

δL =
∂L
∂φn

δφn +
∂L
∂ψn

δψn +
∂L
∂un

δun

If φn is fixed, then
∂L
∂φn

δφn = 0. Note that the sum in

(8) could be reformulated as an integral thanks to the Dirac
distribution function δAi

(x, y) related to the pointwise sensor
Ai. Indeed, it is rewritten as:

J(ψn;un) =
1

2

9∑
i=1

∫
Ω

ψ(x, y, t∗f ;u
n)2δAi(x, y)dxdy

Substituting it in (23), thus

∂L
∂ψn

δψn =

9∑
i=1

∫
Ω

ψn(x, y, t∗f )δψ
n(x, y, t∗f )δAi

(x, y)dxdy

+ I1 + I2 +

∫
T∗

∫
Ω

hδψn

e
φn dxdydt

where

• I1 =

∫
T∗

∫
Ω

(
ρC

∂δψn

∂t

)
φn dxdydt

• I2 = −
∫
T∗

∫
Ω

λ∆δψnφn dxdydt

Integrating I1 and I2 by parts, and utilizing the sensitivity
problem initial and boundary conditions (18)-(19), it comes:

∂L
∂ψn

δψn =∫
Ω

( 9∑
i=1

ψn(., t∗f )δAi
(.) + ρCφn(., t∗f )

)
δψn(., t∗f ) dxdy

−
∫
T∗

∫
Ω

(
ρC

∂φn

∂t
+ λ∆φn − hφn

e

)
δψn dxdydt

−
∫
T∗

∫
Γ

δψnλ
∂φn

∂n
dxdydt

with the notation (.) = (x, y). Lagrangian multiplier φn

is fixed in order to satisfy
∂L
∂ψn

δψn = 0. Therefore, the

following (backward) adjoint problem (24)-(26) is obtained
such that on Ω× T ∗:

ρC
∂φn

∂t
+ λ∆φn =

hφn

e
(24)

and ∀(x, y) ∈ Ω:

φn(x, y, t∗f ) = −(ρC)−1
9∑

i=1

ψn(x, y, t∗f )δAi
(x, y) (25)



with the Neumann boundary condition on Γ× T ∗:

− λ
∂φn

∂n⃗
= 0 (26)

Consequently,

δL =
∂L
∂un

δun = −
∫
T∗

∫
Ω

δun
φn

e
dxdydt (27)

If ψn is solution of the direct problem (5)-(7), then
δL = δJ . Using it in (27), this implies:

δJ =
∂J

∂un
δun =

4∑
i=1

Nt∑
j=1

∂J

∂unij
δunij

= −
∫
T∗

∫
Ω

δun
φn

e
dxdydt

= −
4∑

i=1

Nt∑
j=1

∫
T∗

∫
Di

δunijsj(t)
φn

e
dxdydt

Thus for all i = 1, . . . , 4 and j = 1, . . . , Nt

∂J

∂unij
= −

∫
T∗

∫
Di

φn(x, y, t)

e
sj(t) dxdydt (28)

Therefore, the adjoint problem resolution led to the numer-
ical evaluation of the cost function gradient at iteration n.
Consequently, the descent direction in (12) is deduced.

V. ALGORITHM

The CGM iteratively relies on the three well-posed prob-
lems:

■ direct problem (5)-(7) for cost function (criterion) esti-
mation in (8)

■ adjoint problem (24)-(26) for computing the criterion
gradient in (28)

■ sensitivity problem (17)-(19) for obtaining the descent
depth in (22)

The algorithm implemented for this paper is as follows:

➢ Step 1 (Initialization)
■ at iteration n = 0, set the control u0(x, y, t) = 0

➢ Step 2 (Direct problem)
■ solve the direct problem (5)-(7) with control un and

deduce J according to (8)
- if J ≤ Jstop (the stopping criteria) or n = nmax

(the maximum number of iterations), stop the
CGM and consider un as the unknown approx-
imation

- if not, move to Step 3
➢ Step 3 (Adjoint problem)

■ solve the adjoint problem (24)-(26)

■ calculate ∇Jn =

[
∂J

∂unij

]
i=1,...,4
j=1,...,Nt

in (28)

■ deduce the descent direction dn in (12)
➢ Step 4 (Sensitivity problem)

■ solve the sensitivity problem (17)-(19)
■ deduce the descent depth γn in (22)

➢ Step 5 (Control update)
■ update the control un+1 = un − γndn in (11)
■ increment the iteration n = n+1 and return to Step

2
Usually Jstop is a key parameter in the CGM regularization
property. For ”classical” identification purposes (see for ex-
ample [5], [10], [11], [12]), observations are noisy disturbed
(noises are mainly induced by measurement errors). In such
a context, if Jstop is too small, the algorithm could not
converge or will converge towards an identified control which
is critically affected by the measurement noise. However if
Jstop is too large, identification process is not accurate and
leads to an erroneous estimation. In the specific control of
this communication, disturbances on the desired target are
neglected. Then Jstop is only related to the mean square
deviation between the obtained state and the desired target. It
is therefore chosen according to our knowledge of magnitude
orders of the target temperature.

VI. STABILIZATION IN FINITE TIME: NUMERICAL
RESULTS

In the following, simulation results are attained with a
final time t∗f = 300 s and a stopping criterion Jstop = 1. The
cost function minimization algorithm implemented under the
condition J ≤ Jstop is well executed, where the correspond-
ing CPU time took about 10 minutes for 15 iterations (see
fig. 4). Table III demonstrates the error function for the 9
sensors at the time t∗f . The control identification strategy is
quite relevant as the controlled error function absolute mean
is 0.36 °C, compared to 21.4 °C for the uncontrolled one. In
fig. 5, temperature variation is illustrated for all the sensors
on T ∗ = [0, 300]. Its evolution without control (dotted line)
and the desired target (dashed line) respectively correspond
to those obtained in fig. 3 at t = 300 s and t = 3600 s. For
each sensor, the controlled temperature (solid line) converges
at t = 300 s towards the desired target. Last but not least, the
identified control laws (leading to significant results in table
III and fig. 5) are shown in fig. 6. It is crucial to recognize
that negative values play a vital role in stabilizing the system
close to the desired target, particularly following significant
positive heating fluxes inducing rapid temperature increase.

Fig. 4: Cost function evolution versus iteration.



TABLE III: Error function ψ(Ai, t
∗
f )

A1 A2 A3 A4 A5

without control -7.82 -8.42 -26.92 -14 -24.42

with control -0.9 0.63 -0.09 -0.16 0.57

A6 A7 A8 A9

without control -28.12 -24.1 -24.84 -33.92

with control 0.35 -0.07 -0.41 -0.02

Fig. 5: Temperature evolution at Si (Sensors Ai): controlled
versus uncontrolled.

Fig. 6: Controllers variation.

VII. CONCLUDING REMARKS

This paper highlights the interest of the conjugate gradient
regularization method (governed by PDEs) to efficiently deal
with ill-posed inverse identification problems and achieve
finite-time stabilization in 2D thermal geometries. The aim
is not only to extend recent research on control mainly
focused on 1D domains (see [1], [2]), but also to go beyond
simulations concerned with parametric identifications (see
[5], [12]) and provide control synthesis strategies different
from those proposed in [3], [7], [8]. This is particularly
interesting for non-academic situations, where no theoretical
results could be considered (these being generally obtained
with reductive assumptions). Stabilization in finite time pro-
vides a comprehensive interpretation of the advantages of
the conjugate gradient method and a significant insight into
various scenarios. In particular, the method shows promise
for temperature control in complex 3D domains, without
the limitations imposed by thin plate thickness. In addition,
the application extends to the control of moving disks and
the identification of trajectories for rejecting forced moving
disturbances, where this could require fewer controllers.
A necessary adaptation by a quasi-online determination of
control laws (in small sliding intervals in real time) would
make it possible to reduce CPU time.
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