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Abstract
Selecting a “useful” model among a set of competing candidate models is a com-
mon problem in many disciplines and particularly in engineering applications.
For a modeller, the best model fulfills a certain purpose best (e.g., the ability to
accurately predict newdata, good interpolation, precise estimates of lower/upper
percentiles, etc.), which is typically assessed by comparing model simulations to
the observed data. Approximate Bayesian computation (ABC) which is a statis-
tical learning technique is used in this work for reliability model selection and
parameter calibration using small/moderate fatigue life data sets. This is always
the case in material fatigue due to the high cost and low efficiency of fatigue
tests which are bottleneck problemwhen designing components/structures with
regard to fatigue. The ABC is a likelihood-free based method which means that
it needs only a generative model to simulate the data. The proposed method pro-
vides a formal rank of the competing reliability models by eliminating gradually
the least likely models in a parsimonious manner. It is flexible since it offers the
possibility to use different metrics to measure the discrepancy between simu-
lated and observed data. The choice of the appropriate distance function depends
essentially on the purpose of model selection. Through various examples, it
has been demonstrated that the ABC method has a number of very attractive
properties, which makes it especially useful in probabilistic risk assessment and
reliability analysis.

KEYWORDS
approximate Bayesian computation, fatigue life distributions, low percentiles, probabilistic
fatigue design, reliability model selection, risk assessment, simulation-based inference

1 INTRODUCTION

Model selection aims at identifying themost appropriatemodel(s) among a set of competingmodels with respect to a given
calibration data set. Despite the progress being made, model selection is still a subject of debate and a major challenge
for statisticians and practitioners. The problem is statistically and numerically more challenging when the data is limited.
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As it is well known, it is the requirement of fatigue reliability analyses to accurately determine the probability model of a
group of fatigue lives. Since the data are generally seldom sufficient to define a statistical distribution, we normally must
rely on assumed distributions which arise from convenience or, preferably, from relevant physical arguments. Among
the assumed distributions, which have been widely used in fatigue studies, are lognormal (LN), Birnbaum-Saunders and
Weibull distributions,1,2 to mention a few. These distributions are very similar but the predictions at lower/upper tails
which are usually the areas of interest for inference could be significantly different, for this reason a robust discrimination
technique according to a desired goal could be a useful alternative for practitioners.
Many different approaches have been proposed in the statistical literature to help select the “best” model among a

group of competing hypotheses. The Bayesian solution originates from Jeffreys3,4 and builds on the principles of Occam’s
razor is arguably the most popular and widely adopted is different domains particularly in fatigue.5–10 Bayesian inference
is aimed at computing a posterior probability distribution over a set of hypotheses or models, in terms of their relative
support from the data. In this discussion I shall present some of them. The Bayes factor (BF) proposed by Jeffreys et al.11
is referred to as the standard Bayesian solution to the hypothesis testing and model selection problems12 and the primary
tool used in Bayesian inference for hypothesis testing and model selection.13 A comprehensive review of BFs is presented
by Kass and Raftery.14 The idea is to select the model that presents the best point estimate of the posterior density ratios.
Nevertheless, themain drawback of BFs is their sensitivity to the choice of priors as well documented in the literature. The
method is also problematic if there aremany possiblemodels. To overcome the issues with the BF, other variants including
partial BF,15 the intrinsic BF,16 and the fractional BF17 have been proposed in the literature. These variants basically split
the data into a training sample and a testing sample. The training sample is used to update an uninformative prior to
obtain an informative prior. Unfortunately, they suffer from more or less arbitrary choices of training samples, weights
for averaging training samples, and fractions, respectively. Model selection criterions based on loss of information, the
well-known are the Akaike information criterion (AIC),18 Akaike information citerion with correction (AICc),19 Bayesian
information criterion (BIC)20 and Hannan-Quinn information criterion (HQIC)21 have been widely used as well. They
are based on a penalization of the likelihood function as the model becomes more complex, that is, models with more
parameters. Following Spiegelhalter et al.,22 the model whose information criterion has a smaller value is the better. This
is coherent with the principle of Occam’s razor which states that unnecessarily complex models should not be preferred
to simpler ones. The principle states that among competing theories that lead to the same prediction, the one that relies
on the fewest assumptions is the best. In particular, when choosing among a set of models, the simplest valid model is the
best choice. Exactly, how to quantify simplicity has been a subject of debate for centuries. In this study, the simplicity of a
model is assumed to be determined by the number of parameters in the model. An inherent problem with these criteria is
that they do not allow prior input for model choice. In a somewhat similar spirit, Spiegelhalter et al.22 devised a selection
criterion, called the deviance information criterion (DIC) based on Bayesian measures of the complexity level and of how
well the model fits the data. A lower value of DIC indicates a better model fit. The major limitation of these approaches is
that they undertake separately the competing models.
The reversible jump Markov chain Monte Carlo (RJMCMC) method, originally given by Green,23 is another strategy

that samples over the model and parameter spaces. The RJMCMC method offers an across-model simulation approach
for Bayesian estimation and model comparison, by exploring the sampling space that consists of several models of
possibly varying dimensions. A naive implementation of RJMCMC to models like Gibbs random fields suffers from
computational difficulties. To overcome the inefficiency of a standard RJMCMC algorithm, a noisy RJMCMC sampler24
has been developed. The Transitional Markov Chain Monte Carlo (TMCMC) algorithm proposed by Ching et al.25 has
been proven to outperform other approaches for its capability of estimating model evidence and smooth convergence
merit. However, it has potential problems in tackling higher dimension parameters,26 since its intermediate stage number
will augment for the need of more samples while the accuracy of estimators may decrease with increasing parameter
dimension.25 It should be noted that most of the proposed selection procedures converge to a single model. However
in some circumstances more than one model could explain the data. Thus, there is no need to choose one model and
it is possible to average the predictions from several models. Bayesian Model Averaging (BMA) is a technique designed
to incorporate the uncertainty inherent in the model selection process, which is often ignored by traditional statistical
analysis. As a statistical procedure to infer consensus predictions, BMA method weighs individual predictions based
on their posterior model probabilities, with the better performing predictions receiving higher weights than the worse
performing ones. BMA method can thus generate an averaged model, especially in cases where more than one model
has a non-negligible posterior probability.27 BMA is ideally suited to guide this search, because it implicitly honors the
principle of parsimony.4,28 The BMA ranking reflects an optimal tradeoff between goodness-of-fit and model complexity,
with model complexity being encoded in the prior probability distributions of the model parameters. Another selection
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procedure that is popular is the Nested sampling (NS) which is a highly efficient and easily implemented sampling
algorithm that has been successfully incorporated into Bayesian inference for model updating and model selection. The
key step of this algorithm lies in proposing a new sample in each step that has a higher likelihood to replace the sample
that has the lowest likelihood evaluated in the previous iteration. This process is a constrained sampling step which has
significant impact on the algorithm efficiency. It has been successfully applied to cosmological field,29 finite element
model updating and model selection,30 and surface flow problems.31,32 The main problem of the standard NS algorithm
lies in the constrained step in which a new sample with higher likelihood is proposed to replace the sample with the
lowest likelihood. This issue becomes even more challengeable after several iterations as the likelihood has reached a
higher value and the parameter space shrinks to a very sharp region.
In this paper, a simulation-based framework that simultaneously addresses parameter calibration and model selection

using the Approximate Bayesian computation (ABC) method is proposed. It offers the possibility to compare between
several reliability models and to estimate the marginal distributions of the model parameters in a straightforward way.
The ABC method belongs to the class of sequential particle filter methods which does not require the specification of a
likelihood function. Its basic idea is to compare simulated data to the observed data using an appropritae distance/metric;
if their difference is small, then the parameter values that generate the simulated data are selected as a sample from the
posterior distribution. Successful applications of the ABC algorithms can be found in various areas including structural
dynamics,33,34 biology,35 epidemiology36 and cosmology,37 to mention a few. The uniqueness of this study comes from
the fact that thus far, no attempt has been made to compare several competing models simultaneously by using a variety
of metrics/distances. It should be noted that the ABC algorithms take into account the complexity of the model (i.e.,
parameter number) automatically without the need to define a penalty term. In other words, the ABC algorithms promote
systematically the selection of the simpler model and switches to complex models only when a high accuracy is required.
It is similar to the classical penalised information criterions based on the log-likelihood whose penalise complex models,
especially to discourage overfitting. In addition, we will demonstrate through this study that the proposed strategy is
robust against model mis-specification (or at least could mitigate the effects of model mis-specification) compared with
the classical likelihood-based methods.
The outline of the paper is as follows. Section 2 introduces the Bayesian paradigm for parameter estimation and model

class selection and sets out the necessary background onABC algorithms. The distance functions/metrics that can be used
for Bayesian inference are given in the same section. In Section 3, we present a motivating problem with a focus on the
merits of the ABC method. In Section 4, we present three applications in which we propose several competing statistical
distributions tomodel lifetime data andwe illustrate the procedure for selecting themost likely reliabilitymodel. Section 5
summaries the conclusions of this paper and discusses future extensions of this research.

2 SIMULATION-BASED INFERENCE USING ABC

2.1 Background and details

ABC is employed in this work for simultaneous model selection and parameter estimation.35,38,39 Let us consider first the
problem of parameter estimation,35,40,41 where 𝜃𝜃𝜃 is the vector of model parameters. Thus, given the prior distribution for
the parameters, 𝜋(𝜃𝜃𝜃), the objective is to approximate the posterior distribution given by:

𝜋(𝜃𝜃𝜃|) ∝ (|𝜃𝜃𝜃)𝜋(𝜃𝜃𝜃)
where (|𝜃) is the likelihood function (conditional probability of observed data given the parameters 𝜃𝜃𝜃).
A simpler ABC algorithm for parameter estimation, which avoids the requirement of evaluating likelihood functions

directly(|𝜃𝜃𝜃) in order to obtain the posterior distributions of unknown parameters, can be summarized in general terms
as follows. By starting with 𝑘 = 0, repeat the following steps until a sufficiently large number of samples 𝜃𝜃𝜃𝑘 are accepted:

∙ Step 1: sample a parameter vector 𝜃𝜃𝜃⋆ from the prior distribution 𝜋(𝜃𝜃𝜃);
∙ Step 2: generate simulated data⋆ from a generative model (in this study, a parametric probability model);
∙ Step 3: compare the simulated data,⋆, with the observations,, utilising a user-selected distance function 𝜌(,⋆)

and a user-selected tolerance 𝜀 (the tolerance 𝜀 > 0 is the level of desired agreement between  and ⋆, measured by
𝜌(,⋆));

∙ Step 4: if 𝜌(,⋆)) ≤ 𝜀, accept 𝜃𝜃𝜃⋆, that is, make 𝑘 = 𝑘 + 1 and then set 𝜃𝜃𝜃𝑘 = 𝜃𝜃𝜃⋆. Otherwise, return to Step 1.

 10991638, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/qre.3497 by C

ochrane France, W
iley O

nline L
ibrary on [10/06/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



1858 BEN ABDESSALEM

Each output 𝜃𝜃𝜃𝑘 of the above algorithm is a sample of the distribution 𝑃(𝜃𝜃𝜃|𝜌(,⋆) ≤ 𝜀). If 𝜀 is sufficiently small and
𝜌(,⋆) is appropriately selected, it is expected that this distribution would be a good approximation to the true posterior
distribution 𝜋(𝜃𝜃𝜃|). Therefore, difficulties in the successful implementation of the above algorithm obviously include the
specification of the distance function 𝜌(,⋆), as well as of the tolerance 𝜀.
The concepts outlined in the above algorithm can be extended to incorporate model selection in addition to parameter

estimation.35,42,43 The marginal posterior distribution of a model𝑖 from the given observations is given by:

𝜋(𝑖|) = 𝜋(|𝑖)𝜋(𝑖)

𝜋() (1)

where 𝜋(|𝑖) is the marginal likelihood distribution and 𝜋(𝑖) is the prior probability function for model 𝑖 , 𝑖 =

1, 2, … , 𝑛. The posterior distribution in the combined space of models and parameters, which is sought in this work, is
𝜋(𝜃𝜃𝜃𝑖,𝑖|), where 𝜃𝜃𝜃𝑖 is the vector of parameters for model𝑖 . Such posterior distribution is approximately represented
in this work by a set of samples obtained from𝑃(𝜃𝜃𝜃𝑖,𝑖|𝜌(,𝑠) ≤ 𝜀), using amore efficient sampling technique. It should
be noted that the acceptance rate of ABC in its basic form is computationally prohibitive for small 𝜀. Several variants have
been proposed in the literature to overcome this issue and to gain in efficiency. In this work, the ABC algorithm based on
an ellipsoidal sampling technique and a reweighing scheme is used.34 It can be summarised in Algorithm 1.
The algorithm starts by selecting a candidate model from the competing models supposed to be equally probable. A

particle in then sampled from the prior over the model parameters, simulating the data using the model and accepted the
particle if 𝜌(,⋆) ≤ 𝜀1). The process is repeated until 𝑁 particles distributed over the competing models are obtained.
The particles are then weighted using a kernel and normalised according to each model. For the next population, a tol-
erance threshold 𝜀2 is defined based on the discrepancy values ranked in descending order. For each model, the particles
with 𝜌(,⋆) > 𝜀2) are dropped. From the retained particles, a proportion are randomly selected and propagated to the
next population. The remaining particles are then enclosed in an ellipsoid in which the masse centre and the covariance
matrix are based on the propagated particles. The ellipsoid are then enlarged by a factor 𝑓0 to ensure that the particles
on the borders will be inside. Finally, the population is replenished by re-sampling particles inside the ellipsoid asso-
ciated to each model. In the subsequent iterations, the threshold is updated adaptively in the same way and samples
selection are subjected to more stringent threshold. The priors on the models are also updated when one of the compet-
ing model is eliminated. Through the populations and as 𝜀 → 0, a larger number of particles are selected for the most
likely model(s) and the samples for the parameters better reflect the real posterior distributions as the most interesting
region in the parameter space is well identified. Several stopping criterions could be used to stop the algorithm. In this
work, the algorithm is stopped when the difference between two successive tolerance threshold values falls below a pre-
specified value. Let denote by 𝜉 this value. A detailed discussion concerning the effects of these settings can be found
in Ref. [34].
At the last population, the algorithmproduces aMarkov chain on (, 𝜃) forwhich themarginal distribution is𝜋(|).

The posterior model probability can then be estimated by:

ℙ̂(𝑖|) = 1

𝑁

𝑁∑
𝑘=1

𝕀((𝑘) = 𝑖), 𝑘 = 1,… , 𝑛 (2)

As shown in Algorithm 1, the ABC-NS algorithm requires to choose a number of hyper-parameters. In this study, the
algorithm is implemented with the following hyper-parameters:

∙ the initial threshold 𝜖1 is set to 1000.
∙ the number of particles per population is set to 1000.
∙ the proportion of dropped particles and surviving particles are set respectively, to 30% and 60%.
∙ The ellipsoid enlargement factor 𝑓0, is set to 1.1.
∙ The stopping criterion threshold value is equal to 10−6.

For further detail about ABC-NS in general as well as the concrete implementation, the interested reader can refer to
the following examples released in GitHub (the same notation has been used here): ABC-NS for model calibration and
ABC-NS for model selection.
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BEN ABDESSALEM 1859

ALGORITHM 1 ABC-NS for model selection and parameter estimation

Require: data:, initial tolerance: 𝜀1, distance function: 𝜌(⋅), prior distributions: p(𝜃), tuning parameters: (𝛼0, 𝛽0, 𝑓0),
𝑁: number of particles, 𝑇: number of populations
1: At iteration 𝑡 = 1

2: for 𝑖 = 1 to 𝑁 do
3: repeat
4: Draw⋆ from the prior p()

5: Sample 𝜃⋆ from the prior p(𝜃|⋆)

6: Simulate a candidate data set⋆ ∼ 𝐹(⋅|𝜃⋆,⋆)

7: until 𝜌(,⋆) ≤ 𝜀1

8: Store(𝑖)
𝑡 = ⋆, 𝜃(𝑖)𝑡 = 𝜃⋆, 𝑒(𝑖)𝑡 = 𝜌(,⋆)

9: end for
10: Evaluate weights for all particles: 𝜔𝑖 =

1

𝜀1
(1 − (

𝑒𝑖

𝜀1
)2), 𝑖 = 1, … ,𝑁

11: Sort 𝑒(𝑖)𝑡 in descending order and store them.
12: Compute the next tolerance threshold 𝜀2 = 𝑒

(𝛼0𝑁)
𝑡

13: Drop particles with 𝜌(,⋆) ≥ 𝜀2, {𝜔𝑘}
𝛼0𝑁

𝑘=1
= 0 ▹ A weight of zero is assigned to the dropped particles

14: Normalise the weights such that
∑(1−𝛼0)𝑁

𝓁=1
𝜔𝓁 = 1

15: Select𝑡 = 𝛽0𝑁 particles from the remaining based on the weights
16: For each model, define the ellipsoid by its centre of the mass and covariance matrix  (𝑘)

𝑡 = {𝜇
(𝑘)
𝑡 ,(𝑘)𝑡 }, 𝑘 = 1,… 𝜅

17: Enlarge the ellipsoids by 𝑓0 ▹ The same notation for the updated ellipsoids is kept
18: for 𝑡 = 2 to 𝑇 do
19: for 𝑗 = 1 to (1 − 𝛽0)𝑁 do
20: repeat
21: Draw⋆ from the prior p() ▹ updated through the iterations
22: Sample 𝜃⋆ inside the ellipsoid ⋆

𝑡−1

23: Simulate a candidate data set⋆ ∼ 𝐹(⋅|𝜃⋆,⋆),
24: until 𝜌(,⋆) ≤ 𝜀𝑡

25: Store(𝑗)
𝑡 = ⋆ and add 𝜃(𝑗)𝑡 = 𝜃⋆ to the population of particles of {𝜃(⋆)}, 𝑒(𝑗)𝑡 = 𝜌(,⋆)

26: end for
Store the new particles in 𝑡
Obtain the new particle set for each model,𝑛𝑒𝑤 = [𝑡−1;𝑡] with their correspondent distance value 𝑒𝑡
Sort 𝑒𝑡 and define 𝜀𝑡+1 = 𝑒

(𝛼0𝑁)
𝑡

Compute new weights for all particles as in step (10) and normalise them
Define the new set of selected particles𝑡 as in step (15)
Update the hyper-parameters of the ellipsoid using𝑡 , 𝑡 = {𝜇

(𝑘)
𝑡 ,(𝑘)𝑡 }, 𝑘 = 1,… , 𝜅 ▹ The same factor is used for all the simulations

27: end for
Ensure: Model posterior probabilities, Marginal distributions

2.2 Minimum distance estimators

A key ingredient in ABC procedure is the choice of a discrepancy function that describes how different the simulated and
observed data are. In this section we give the computational forms of some of the main distance functions which can be
used to deal with reliability model selection and parameter calibration.

∙ The Cramer-von-Mises distance
The Cramer-von-Mises (CM) distance measures the distance between the cumulative density function of the derived

distribution against the dataset’s cumulative histogram. It is defined by:

𝑊2
𝑛 = 𝑛 ∫

+∞

−∞

[𝐹(𝑡) − 𝑆𝑛(𝑡)]
2Ψ(𝑡)d𝐹(𝑡) (3)
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1860 BEN ABDESSALEM

whereΨ(𝑡) is a weight function such thatΨ(𝑡) = 1. For given ordered sample, 𝑡1, 𝑡2, … , 𝑡𝑛, from a statistical distribution,
the distance can be written as follows:

𝜌CM =
1

12𝑛
+

𝑛∑
𝑖=1

[
𝑧𝑖 −

2𝑖 − 1

2𝑛

]2
(4)

where 𝑧𝑖 = 𝐹(𝑡𝑖) is the predicted value for the 𝑖th observation. In the following, the same alphabets denote the same
meaning.

∙ The Anderson-Darling distance
The Anderson-Darling (AD) distance first introduced by Anderson & Darling44 to place more weight at the tails of

the distribution.45 It is defined by the following equation:

𝐴2
𝑛 = 𝑛 ∫

+∞

−∞

[𝐹(𝑡) − 𝑆𝑛(𝑡)]
2Ψ(𝑡)d𝐹(𝑡) (5)

where Ψ(𝑡) = [𝐹(𝑡)(1 − 𝐹(𝑡))]−1 is a non-negative weight function. Equation (5) can be written for a finite data sample
as:

𝜌AD = −𝑛 −
1

𝑛

𝑛∑
𝑖=1

(2𝑖 − 1)[ln(𝑧𝑖) + ln(1 − 𝑧𝑛+1−𝑖)] (6)

Two modified distances of the AD distance called ADL and AD2L which give more weight to the left-tail have been
tested. They are computed by the following formulas:

𝜌ADL = −
3𝑛

2
+ 2

𝑛∑
𝑖=1

𝑧𝑖 −
1

𝑛

𝑛∑
𝑖=1

(2𝑖 − 1) ln 𝑧𝑖 (7)

𝜌AD2L = 2

𝑛∑
𝑖=1

log 𝑧𝑖 +
1

𝑛

𝑛∑
𝑖=1

2𝑖 − 1

𝑧𝑖
(8)

Compared to the 𝜌AD distance, the 𝜌ADL distance gives more weight to the left-tail region. Similarly, the 𝜌AD2L assigns
larger weight to the left-tail region of the distribution compared to the 𝜌ADL.

3 MOTIVATING PROBLEM

In this section, I shall illustrate the potentiality offered by the ABC-NS algorithm for model selection and parameter cali-
bration bymeans of real data. The advantages of the simulation-based inferencemethod over themost popular maximum
likelihood (ML) based-methods will be highlighted.

3.1 Example 1. “endosulfan” data set

In this example a data named “endosulfan”46 is used to illustrate some of the merits of the ABC method very impor-
tant in risk assessment and reliability analysis particularly for designing against fatigue. Through this example, we will
show that the ABC method is flexible, robust against model mis-specification or at least, it can mitigate the effects of
model mis-specification through an appropriate choice of a distance function/metric and can be tailored according to the
user’s interest.
To demonstrate the usefulness of the ABC, we intend to estimate lower percentiles in a misspecified setting and we

make a comparison with a likelihood-based method. It is worthwhile to note that percentiles of the fatigue lifetime
distribution are often used as an indicators of reliability and structure safety. Consequently a precise estimates of some
important percentiles is of paramount importance for designer. This data set used in this example is taken from Refs. [46]
which contains acute toxicity values for the organochlorine pesticide endosulfan, tested onAustralian and non-Australian
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BEN ABDESSALEM 1861

TABLE 1 AIC and BIC scores for the different competing models.

Information criterion Lognormal Loglogistic Pareto Burr
AIC 1069 1069 1048 1046
BIC 1074 1075 1053 1054

Abbreviations: AIC, Akaike information criterion; BIC, Bayesian information criterion.

F IGURE 1 Empirical data and theoretical CDFs plot to compare the fit of four distributions with ML estimates (B5 and B̂5 indicate the
empirical and estimated 5th quantile, respectively.). CDF, cumulative distribution function; ML, maximum likelihood.

laboratory-species. A LN or a log-logistic distribution is often fitted in order to characterise the species sensitivity distri-
bution for a pollutant. A low percentile of the fitted distribution, generally the 5% percentile, is then calculated and called
the hazardous concentration 5% (HC5). It is interpreted as the value of the pollutant concentration protecting 95% of the
species.47 In addition, the two-parameter Pareto distribution and the three-parameter Burr distribution have been fitted.
The specifications of the competing reliability models are given in Appendix A. The four competing models are the same
considered in Ref. [48]. Model selection is first conducted by using a likelihood-based approach and through computing
two information criterions for comparison purpose. Our analysis will incorporate both Akaike’s and BICs. AIC balances
between the complexity of the model and the statistical goodness-of-fit of the model by imposing a penalty for increasing
the number of parameters in the reliability model. It is defined as:

AIC = −2(𝜃𝜃𝜃) + 2𝑝 (9)

where (𝜃) is the maximised log-likelihood function and 𝑝 is the number of parameters in the model.
The preferred model is the one corresponding to the lowest index. BIC is an improvement of the AIC in the sense that

BIC factors in the size of the sample data in determining the amount of penalty to impose on a model due to increased
number of parameters. It has been argued to penalise overfitting more effectively than the AICmeasure. It is defined as:

BIC = −2(𝜃𝜃𝜃) + 𝑝 ln(𝑛) (10)

where (𝜃𝜃𝜃) and 𝑝 are as defined above and 𝑛 is the sample size of the data.
As inAIC, the preferredmodel is the one corresponding to the lowest index.As one can see fromTable 1, theAICandBIC

criterions give the preference to the Burr distribution or the Pareto distribution. The choice between the two distributions
seems thus less obvious. Looking at classical penalised criterions based on the log-likelihood seems thus also interesting,
especially to discourage over-fitting. Figure 1 shows the data and the fitted cumulative distribution function (CDF), it can
be seen that the left-tail seems to be better fitted by the Burr distribution. Its use could then be considered to estimate the
HC5 value as the 5% quantile of the distribution. The LN and loglogistic reliability models seem the least likely models for
this data set.
The ABC-NS algorithm is now employed to deal first with parameter calibration. We compare the performance of the

Burr distribution (using the ML estimates) with the LN distribution calibrated using the distances given in Section 2.2 in
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1862 BEN ABDESSALEM

F IGURE 2 Empirical data and theoretical CDFs plot using different models and different distance functions. CDF, cumulative
distribution function.

TABLE 2 Empirical and predicted percentiles using a mis-specified reliability model coupled with different distances.

Empirical
percentile

Burr
model

Mis-specified model with different distances
𝝆𝐂𝐌 𝝆𝐀𝐃 𝝆𝐀𝐃𝐋 𝝆𝐀𝐃𝟐𝐋

0.2 0.2939 0.0783 0.0440 0.1959 0.2588

a simple misspecified setting. Based on the fact that many practitioners prefer to use simpler models, the LN distribution
is selected to fit the data and to predict the HC5 percentiles. We investigate now the efficiency of the ABC method for
mitigatingmodelmis-specification.Wewill show that by coupling a “wrong”model with an appropriate distance function
measuring the similarity between the real and simulated data, one may get good predictions as well. The choice of the
distance depends on the desired stated goal.
Figure 2 displays the empirical data and the fitted CDFs using the best model following the IC and the LN models

coupled with the different distances. One can clearly see from Figure 2 that the ML estimates cannot provide a good
fitting quality to the empirical data. In contrast the use of the mis-specified model coupled with an appropriate distance
function could provide a better fitting quality to the data. Through the following example, it has been demonstrated that
the likelihood-free approach using a suitable distance is robust against model mis-specification.
Comparing the 5% percentiles (HC5) calculated using these fits to the one calculated from the ML estimates fit to the

Burr distribution, we can observe on this example that fitting the LN distribution by maximising left-tail AD distances of
first or second order enables to approach the value obtained by fitting the Burr distribution using ML estimates. Table 2
displays the empirical and computed quantiles given by the best model based on the information criterions and the mis-
specified model with different distances. It has shown that the mis-specified model coupled with an appropriate distance
(i.e., 𝜌ADL, 𝜌AD2L) makes good predictions much better than the model that has been initially identified as the most likely
model (the Burr distribution). For this data set, the distances 𝜌CM and 𝜌AD show poor predictions. In conclusion, the
proposed likelihood-free method seems interesting when precise predictions of some percentiles is required which is a
main interest in fatigue.

4 APPLICATION TO FATIGUE DESIGN

4.1 Example 1. 16Mn steel welded specimens

In the first example, the test data of two kinds of 16Mn steel welded specimens whose tests were performed at Zhengzhou
Mechanical Institute49–51 are taken. The dimensions of the two kinds of specimens, machined under CO2 gas protective
welding procedures, are given in Figure 3. The tests was carried out under the four-point bending sine wave loading
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BEN ABDESSALEM 1863

F IGURE 3 Schematic diagrams of the two kinds of 16Mn steel welded specimens.

TABLE 3 Details of the test arrangements.

Ordinal of group, 𝒌 1 2 3 4 5
Stress range, Δ𝜎 (MPa) 320 290 260 230 202
Number of specimen, 𝑛 6 7 9 10 9

TABLE 4 Fatigue life data of the 16Mn steel welded plate specimens.

𝒌

𝑵𝒊, Cycles
1 2 3 4 5 6 7 8 9 10

1 290290 297000 327860 339560 406800 564400
2 359900 418680 440400 459500 499040 528480 635000
3 274000 501640 522270 685300 690390 730000 750000 894670 980580
4 436000 555000 786000 818000 838000 940000 1029000 1073000 1282000 1724000
5 912000 940000 1032000 1280000 1530000 1630000 2315000 2754000 3633000

mode and stress ratio of 0.1. The test arrangements, including the specimen joint pattern, ordinal of group 𝑘, number of
specimens 𝑛 and the corresponding stress amplitude level Δ𝜎, are given in Table 3.
Cycles to failure is defined to be the cycles for which themaximum of crack grows to the half the specimen thickness. At

this time, the deformation of specimens is too large to continue the normal testing and for the safety of the structure, this
definition is necessary for avoiding disaster accident. The test results of the considered specimen are given in Table 4 (for
illustrative purpose, only the tested welded specimens shown in Figure 3A are considered). For the data collected at each
stress range, one aims to identify a suitable reliability model from a number of competing models. Five competing models
widely used in fatigue have been considered: the LN, the two-parameter Weibull (W2P), the three-parameter Weibull
(W3P), the extrememaximum value (EMV) and the Birnbaum-Saunders (BS). The probability density function (PDF) and
the CDF of the candidate models are given in Appendix B. The ABC-NS algorithm using the different distance functions
is now employed to discriminate between the candidate reliability models. Equal prior probabilities are assigned to the
competing models and the same stopping criterion is used as in the previous example. Figure 4 shows the distributions

F IGURE 4 Particles repartition over the populations using 𝜌ADL distance.
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1864 BEN ABDESSALEM

F IGURE 5 Evolution of the model posterior probabilities over the populations for the different distances.

TABLE 5 Optimal estimates for Δ𝜎 = 320MPa using different distances for the considered competing models.

𝚫𝝈 Distance W2P LN EMV BS W3P
320 MPa 𝜌CM 𝛼̂ = 369996.5796 𝜇 = 12.7435 𝜇 = 320180.5229 𝛼̂ = 342314.0803 𝛾 = 287717.7348

𝛽 = 5.7065 𝜎 = 0.1904 𝜎 = 54102.9529 𝛽 = 0.1904 𝛼̂ = 74559.0656

𝛽 = 0.6802

𝜌AD 𝛼̂ = 403295.3929 𝜇 = 12.7758 𝜇 = 323689.8978 𝛼̂ = 353816.5250 𝛾 = 288236.0905

𝛽 = 3.4548 𝜎 = 0.2635 𝜎 = 71346.3097 𝛽 = 0.2652 𝛼̂ = 72715.0256

𝛽 = 0.6654

𝜌ADL 𝛼̂ = 345363.1880 𝜇 = 12.7301 𝜇 = 319998.2136 𝛼̂ = 337795.5389 𝛾 = 288798.9968

𝛽 = 10.7200 𝜎 = 0.1470 𝜎 = 44284.5634 𝛽 = 0.1472 𝛼̂ = 73669.6859

𝛽 = 0.6180

𝜌AD2L 𝛼̂ = 342246.0272 𝜇 = 12.7128 𝜇 = 317297.4637 𝛼̂ = 331968.6335 𝛾 = 289214.3754

𝛽 = 11.8135 𝜎 = 0.1180 𝜎 = 36260.4266 𝛽 = 0.1181 𝛼̂ = 75155.0137

𝛽 = 0.5740

Abbreviations: BS, Birnbaum-Saunders; EMV, extreme maximum value; LN, lognormal; W2P, two-parameterWeibull; W3P, three-parameterWeibull.

particle over the populations considering the data obtained under Δ𝜎 = 320MPa. One can clearly see that the algorithm
selects the W3P model as the most likely model to fit the available fatigue lives. The results are shown by using the 𝜌ADL
distance for illustrative purposes. The algorithm rules out the least likely models over the populations and selects the
model(s) which performs better. Figure 5 shows for the same stress level the evolution of the model posterior probabilities
over the populations using the different distances. The W3P model is selected as the most plausible model by minimising
the (𝜌CM, 𝜌AD, 𝜌ADL) distances while with the 𝜌AD2L distance, the algorithm converges to the EMV andW3P models with
a posterior probabilities equal to 0.645 and 0.355, respectively.
Next the ABC-NS algorithm is used to infer the competing models separately in order to compare the fitting quality.

Table 5 shows the optimal estimates for each model using the different distance functions. Figure 6 displays the failure
times and the fitted CDF, one can see that the W3P outperforms the other models for this data set. The W3P model pro-
vides the best fitting quality and has the ability to accurately describe the lower left-tail. Finally, it should be noted that he
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BEN ABDESSALEM 1865

F IGURE 6 A comparison between the fitted CDFs using the 𝜌ADL distance. CDF, cumulative distribution function.

ABC-NS algorithm converges for all the models despite the small sample size. For the selected model, one can see that
the shape parameter is less than 1 for all the distances which means that the hazard function is decreasing as the number
of cycles is increased which is not coherent with the physics of fatigue. It has been observed that for all the considered
sample sizes and for all the distance functions, the ABC-NS algorithm works very well and never displays any problem
with convergence.
Tomake a comparison, we employ the ABC-NS using the other distances and we estimate the posterior model probabil-

ities for all the tested specimens. Table 6 shows the model posterior probabilities at the last population using the different
distances. One can clearly see that the W3P and the EMV models perform equally well. From the same table, one can
clearly see that the W2P performs poorly. It is ranked the last for all the metrics. Table 6 shows the model ranking for the
other stress ranges, one can see that none of the models is always supported by the data. The selected model vary with
respect of the distance function and the collected data. For instance for specimen 3, the best model is the W2P while for
specimen 4, the best model is the EMV.

4.1.1 Fit effects in the left-tail region

After assessing how well each distribution fit to the overall data sets, the focus now is on the left-tail region of the distri-
bution since this is the region of importance to engineering design and planning applications. In order to describe the fit
effects in the tail regions, the error parameters 𝑑F1 and 𝑑F2 between the real value and theoretical value of two life data
(so-called fit-differences in the left-tail region)52–54 are, respectively, defined as:

𝑑F1 = 𝐹(𝑡1) − 𝐹(𝑡1) =
1 − 0.3

𝑛 + 0.4
− 𝐹(𝑡1) (11)

𝑑F2 = 𝐹(𝑡2) − 𝐹(𝑡2) =
2 − 0.3

𝑛 + 0.4
− 𝐹(𝑡2) (12)

where 𝑡1 and 𝑡2 are, respectively, the minimum life and sub-minimum life of a group of 𝑛 data.
The smaller the |𝑑F| value, the better the fit effects in the left-tail region. When 𝑑F < 0, this implies a conservative

evaluation. In contrast, when 𝑑F > 0, a non-conservative evaluation results. In addition, by comparing 𝑑F1 with 𝑑F2 , the
trend of the evaluation can be determined. In fact, when 𝑑F1 < 𝑑F2, the evaluation, as the fatigue life is less than 𝑡1, may
be conservative. But, when 𝑑F1 > 𝑑F2, the evaluation may be non-conservative. The calculated values of 𝑑F1 and 𝑑F2 for
the crack lengths given by the competing models are given in Table 7.
From Table 7, the following observations can be drawn:
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1866 BEN ABDESSALEM

TABLE 6 Posterior probabilities and the the corresponding model ranking (in parentheses) for specimens subjected to different stress
levels.

𝚫𝝈

[MPa]
Distance
function

Competing models
W2P LN EMV BS W3P

320 𝜌CM 0 (5) 0 (3) 0 (2) 0 (4) 1 (1)
𝜌AD 0 (5) 0 (3) 0.517 (1) 0 (4) 0.483 (2)
𝜌ADL 0 (4) 0 (5) 0 (2) 0 (3) 1 (1)
𝜌AD2L 0 (5) 0 (4) 0.767 (1) 0 (3) 0.233 (2)

290 𝜌CM 0 (5) 0 (3) 0 (2) 0 (4) 1 (1)
𝜌AD 0 (5) 0 (3) 0.517 (1) 0 (4) 0.483 (2)
𝜌ADL 0 (4) 0 (5) 0 (2) 0(3) 1 (1)
𝜌AD2L 0 (5) 0 (4) 0.767 (1) 0 (3) 0.233 (2)

260 𝜌CM 1 (1) 0 (4) 0 (5) 0 (3) 0 (2)
𝜌AD 1 (1) 0 (4) 0 (3) 0 (5) 0 (2)
𝜌ADL 1 (1) 0 (4) 0 (3) 0 5) 0 (2)
𝜌AD2L 0.715 (1) 0 (4) 0 (3) 0 (5) 0.285 (2)

230 𝜌CM 0.392 (2) 0(4) 0 (3) 0 (5) 0.608 (1)
𝜌AD 0 (5) 0(2) 1(1) 0(4) 0 (3)
𝜌ADL 0.702 (1) 0 (3) 0 (4) 0 5) 0.298 (2)
𝜌AD2L 0 (2) 0 (4) 0 (3) 0 (5) 1 (1)

202 𝜌CM 0 (5) 0 (3) 0 (4) 0.360 (2) 0.640 (1)
𝜌AD 0 (5) 0 (3) 0 (4) 0.441 (2) 0.559 (1)
𝜌ADL 0 (5) 0 (3) 0(4) 0 (2) 1 (1)
𝜌AD2L 0 (5) 0 (3) 0 (4) 0.730 (1) 0.270 (2)

Abbreviations: AD, Anderson-Darling; BS, Birnbaum-Saunders; CM, Cramer-von-Mises; EMV, extreme maximum value; LN, lognormal; W2P, two-
parameterWeibull; W3P, three-parameterWeibull.

∙ The W3P model provides the best fit in the left-tail region followed by the EMV model. The BS and the LN models are
quite similar while the W2P model provides a relatively poor fit.

∙ The predictions in the left-tail region of the W3P model shows the same trends: 𝑑F1 < 𝑑F2 except for Δ𝜎 = 260MPa.
∙ The predictions of the LN and EMV models shows the same trend 𝑑F1 < 𝑑F2 for all the stress ranges. This means that
the evaluation, as the fatigue life is less than 𝑡1, may be conservative for all the crack lengths.

∙ The results show that the EMV, LN and BS models give a conservative evaluations in the left-tail region.
∙ Overall, a better fitting quality of the left-tail region is observed by using the (𝜌AD, 𝜌ADL, 𝜌AD2L) distances compared
with the 𝜌AD2L distance which is expected.

Analysing all the data, one can see from the total fit effects that the W3P model is the best. The shape parameter is less
than 1 of all the crack lengths, which results in failure rates that decrease with fatigue cycling. This is not coherent with
the fatigue physics. Moreover, the W3P model may give a non-conservative evaluations in the left-tail region for some
stress ranges as one can see in Table 7. The EMV model may be an appropriate model to describe fatigue life both from
safety and from the fatigue physics points of view. In addition, we have seen that it gives a conservative evaluations in the
left-tail region. The BS and the LN distributions may be a good distributions to assume as well due to the good total fit
effects, although the hazard functions in the large cycles number decrease with fatigue cycling.

4.2 Example 2. Fatigue tests and reliability analysis

In the second illustration, we consider the fatigue crack growth data available in the literature.55 The experimental data
set consists of 68 crack propagation trajectories obtained from a series of fatigue tests performed on identical center-
cracked 2024-T3 aluminum plates (specimen geometry is illustrated in Figure 7. The tested specimens have the following
dimensions: length L = 558.8mm, width w = 152.4mm, thickness B = 2.54mm and a crack of initial size 2𝑎 = 18mm

 10991638, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/qre.3497 by C

ochrane France, W
iley O

nline L
ibrary on [10/06/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



BEN ABDESSALEM 1867

TABLE 7 The fitting parameters 𝑑F1 and 𝑑F2 for the considered cracks using the ABC-NS with the different distance functions.

𝚫𝝈 Model

𝝆𝐂𝐌 𝝆𝐀𝐃 𝝆𝐀𝐃𝐋 𝝆𝐀𝐃𝟐𝐋
𝒅𝐅𝟏 𝒅𝐅𝟐 𝒅𝐅𝟏 𝒅𝐅𝟐 𝒅𝐅𝟏 𝒅𝐅𝟐 𝒅𝐅𝟏 𝒅𝐅𝟐

320 W2P −0.1122 0.0174 −0.1653 −0.0279 0.0746 0.2254 −0.0239 0.0948
LN −0.0839 0.0377 −0.1178 0.0115 −0.0421 0.0748 −0.0185 0.0927
EMV −0.0666 0.0501 −0.0931 0.0319 −0.0321 0.0794 −0.0123 −0.0919

BS −0.1730 −0.0334 −0.1181 0.0113 −0.0420 0.0748 −0.0185 0.0927
W3P −0.0108 0.0498 0.0174 0.0487 0.0197 0.0413 0.0253 0.0283

290 W2P 0.0001 −0.0274 −0.0377 −0.0538 0.0667 0.0863 0.0226 −0.0049

LN 0.0380 −0.0233 0.0239 −0.0347 0.0336 −0.0271 0.0266 −0.0300

EMV 0.0614 −0.0165 0.0426 −0.0387 0.0383 −0.0386 0.0270 −0.0402

BS −0.0836 0.0379 0.0240 −0.0350 0.0338 −0.0274 0.0266 −0.0304

W3P 0.0946 0.2297 0.0346 −0.0472 0.0940 0.2231 0.0240 −0.0098

260 W2P 0.0536 −0.0274 0.0479 −0.0294 0.0414 −0.0413 0.0255 −0.0643

LN 0.0731 0.0174 0.0651 −0.0556 0.0526 −0.0785 0.0261 −0.1059

EMV 0.0727 0.0125 0.0581 −0.0591 0.0448 −0.0679 0.0244 −0.0790

BS 0.0383 −0.0234 0.0657 −0.0607 0.0534 −0.0842 0.0261 −0.1130

W3P 0.0597 −0.0052 0.0483 −0.0295 0.0422 −0.0417 0.0256 −0.0645

230 W2P 0.0166 0.0495 −0.0112 0.0132 0.0129 0.0443 0.0114 0.0422
LN 0.0535 0.0931 0.0346 0.0526 0.0271 0.0421 0.0174 0.0293
EMV 0.0499 0.0879 0.0277 0.0493 0.0212 0.0422 0.0150 0.0355
BS 0.0549 0.0944 0.0355 0.0513 0.0281 0.0407 0.0179 0.0271
W3P 0.0271 0.0580 0.0220 0.0347 0.0148 0.0442 0.0133 0.0392

202 W2P −0.1239 −0.0287 −0.1205 −0.0247 −0.0888 0.0060 −0.0536 0.0397
LN −0.090 0.0011 −0.0820 0.0104 −0.0669 0.0248 −.0441 0.0462
EMV −0.1001 −0.0060 −0.0953 −0.005 −0.0673 0.0255 −0.0417 0.0484
BS −0.0905 0.0013 −0.0816 0.0105 −0.0663 0.0251 −0.0437 0.0464
W3P −0.0392 0.0362 −0.0141 0.0530 0.0070 0.0465 0.0179 0.0297

Abbreviations: ABC, Approximate Bayesian computation; AD, Anderson-Darling; BS, Birnbaum-Saunders; CM, Cramer-von-Mises; EMV, extreme maximum
value; LN, lognormal; NS, Nested sampling; W2P, two-parameterWeibull; W3P, three-parameterWeibull.

F IGURE 7 (Left) Test piece geometry with a central crack (taken from Ref. [56]), (right) harmonic loading.
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1868 BEN ABDESSALEM

F IGURE 8 Experimental fatigue crack trajectories.

located at the centre of specimen. The tests were performed under load control using a sinusoidal input at 20Hz producing
a constant stress range ofΔ𝜎 = 48.28MPawith a stress ratio equal to 0.2 (see, Figure 7). The accumulated number of cycles
was recorded at specified crack lengths between 9 and 49.8 mm. The 68 experimental trajectories are shown in Figure 8.
In this study, one aims to select the most suitable reliability model to describe the number of cycles for a pre-defined

critical crack length in order to estimate the probability of failure at a target number of cycles 𝑡𝑠. Let us consider a structure
subject to a main degradation process (𝑍𝑡, 𝑡 ∈ ℝ+) which increases randomly on ℝ∗

+ = (0,∞) until it reaches a critical
value 𝑎cr > 0, meaning the failure of the structure.57 It is assumed that 𝑍𝑡 is an observable process whose sample paths
are obtained from experimental feedback indicating the service time for crack size from 𝑎0 to 𝑎cr. The reliability of such
a system may be expressed by:

𝑅(𝑡) = ℙ(𝑍𝑡 < 𝑎cr) (13)

that is the probability that the process 𝑍𝑡 does not reach the failure boundary on the whole observation interval [0, 𝑡𝑠].
Thus, the reliability analysis consists in estimating the probability of failure given by Equation (13). It has shown in

Annis58 that first-and second-order reliability methods FORM/SORMwere inappropriate for such a problem for estimat-
ing the probability of failure. Bourinet59 fixed this issue by introducing an extra random variable which is representative
of a model error. In this study, we present a simple and a straightforward method to compute the probability of failure.
It is based on an appropriate selection of the form of the probability distribution describing the cycles-to-failure of the
tested specimens. To better illustrate the purpose of this study, Figure 9 shows the probability of failure to be estimated.
The target time service 𝑡𝑠 is selected as the average value between the 7th and 8th lowest numbers of cycles of the Virkler
tests:

𝑡𝑠 =
237292 + 237794

2
= 237543 cycles (14)

Based on the empirical cumulative density function, the probability of failure should be between 0.0980 and 0.1126.
The ABC-NS algorithm is now employed using the 𝜌AD distance for illustrative purpose to discriminate between the

candidatemodelswith the same control parameters as inExample 1. Our goal here is to select simultaneously the reliability
model but also the suitable distance to precisely estimate the probability of failure after a specified service time 𝑡𝑠. The
posterior model probabilities over some intermediate populations are shown in Figure 10. The algorithm converges to the
EMV model. To get more insights, we infer the competing models to see the impact of the selected distance on model
selection. Figure 11 shows the posterior probabilities for the four distances using the same stopping criterion. One clearly
see a substantial advantage to the EMV model except for the 𝜌AD2L distance where the LN model is supported by the
data. Table 8 shows the estimated probabilities for all the distances. One can clearly see that the EMV and LN models
performs well in terms of probability of failure prediction. It is worthwhile to mention that except the 𝜌CM distance, all
the the selected models with (𝜌AD, 𝜌ADL and 𝜌AD2L) distances provide an estimation of the probability of failure inside the
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BEN ABDESSALEM 1869

F IGURE 9 Schematic diagram of the probability of failure to be estimated and the random time distribution with a target service time 𝑡𝑠 .

F IGURE 10 Model posterior probabilities over some intermediate populations using 𝜌AD distance.

TABLE 8 Estimation of the probability of failure for the different distances for 𝑎cr = 49.8 mm and 𝑡𝑠 = 237543 cycles.

Distance function 𝝆𝐂𝐌 𝝆𝐀𝐃 𝝆𝐀𝐃𝐋 𝝆𝐀𝐃𝟐𝐋

Selected model EMV EMV EMV LN
Probability of failure P𝑓 0.0918 0.0994 0.0998 0.1004

Abbreviations: AD, Anderson-Darling; CM, Cramer-von-Mises; EMV, extreme maximum value; LN, lognormal.
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1870 BEN ABDESSALEM

F IGURE 11 Evolution of the model posterior probabilities over the populations for the different distances.

F IGURE 1 2 Failure times to reach the critical crack size and the fitted CDFs using the different distance functions. CDF, cumulative
distribution function.

empirical bounds. This means that by selecting a plausible model and and appropriate distance function, it is possible to
better capture the pattern of small extreme values more “closely” and more importantly, the data on the lower tail.
Figure 12 shows the empirical data and the fitted CDF using the selected model for each distance function. Overall, one

can see a good fitting quality.
Now let us investigate the influence of the available times to failure on the probability of failure accuracy for a target

time service. The main goal is to get an idea about the robustness of the different distances in estimating the probability
of failure. To do so, we drop the available data from 5 to 30 using a step of 5 and we estimate the probability of failure.
To get a representative results, we replicate the simulations 500 times. From Figure 13, one can see that overall the 𝜌AD,
𝜌AD distances can give relatively accurate predictions. Based on the obtained results, it is obvious that the 𝜌AD2L distance
is more conservative as it overestimates the probability of failure while the 𝜌CM distance provides a non conservative
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BEN ABDESSALEM 1871

F IGURE 13 Boxplots of the probabilities of failure estimated using the selected models with different distances and 500 replications.

estimates of the probability of failure as it tends towards the lower bound. Although the estimated probability is out the
empirical bounds, the 𝜌AD2L distance may be of interest if a conservative estimates are preferred in the practical context
of reliability evaluation.

5 CONCLUDING REMARKS

In this paper, a simulation-based inference algorithm called ABC-NS was adopted to discriminate between a number of
competingmodels widely used in fatigue. The ABC-NS ranks the competingmodels according to their plausibility in light
of a calibration data set. We have illustrated the proposedmethodology with various data sets considering small/moderate
sample sizes. Overall the method works well without any numerical problems despite the limited data. Several distances
have been considered eachwith a specified properties. By identifying the purpose ofmodel selection,modellers and exper-
imenters can decide which distance should be preferred. Through different simulation studies we have shown the good
performance of themethod, which requiresminimal tuning. The obtained results show that nomodel is always supported
by the data. Thus, a straightforward method to discriminate simultanesously between a number of candidate models is
very useful. Additionally, the optimal model may vary regarding the distance function used to measure the discrepancy
between the observed and the simulated data. In summary, the simulation-basedmethod presents some important advan-
tages comparedwith the classicalmethods and could be useful for practitioners. Someof themerits of the simulation-based
inference method are give below:
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1872 BEN ABDESSALEM

∙ The competingmodels are compared simultaneously and the least likelymodels are eliminated through the simulation.
∙ The proposed method is flexible in the sense that the modellers can use different distances.
∙ The principle of parsimony is well embedded in the ABC-NS algorithm (it tends to select simpler models first).
∙ The proposed methodology is easy to implement, intuitive and can address simultaneously parameter calibration and
model selection.

∙ The algorithm can be easily tailored following the user’s interest which is embedded in the distance function.
∙ Very useful when the main concern is about the prediction of low percentiles fatigue life.
∙ It has shown that the ABC algorithm coupled with a suitable distance is less affected by model misspecification.

DATA AVAILAB IL ITY STATEMENT
The data and the Matlab codes that support the findings of this study are available from the corresponding author.
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APPENDIX A: THE COMPETING RELIABILITYMODELS FOR DATA SET 1

Reliability model PDF/CDF Model size, 𝒑
Lognormal PDF: 𝑓(𝑡|𝜇, 𝜎) = 1√
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exp{−
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2
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Burr PDF: 𝑓(𝑡|𝛼, 𝑐, 𝑘) = 𝑘𝑐

𝛼

𝑡

𝛼

𝑐−1

{1+(
𝑡

𝛼
)𝑐 }𝑘

, 3

CDF: 𝐹(𝑡|𝛼, 𝑐, 𝑘) = 1 −
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𝑡

𝛼
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APPENDIX B: THE COMPETING RELIABILITYMODELS FOR DATA SET 2

Reliability model PDF/CDF Model size, 𝒑
W2P PDF: 𝑓(𝑡|𝛼, 𝛽) = 𝛽𝛼−𝛽𝑡𝛽−1 exp{−(

𝑡

𝛼
)𝛽} 2

CDF: 𝐹(𝑡|𝛼, 𝛽) = 1 − exp{−(
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EMV PDF: 𝑓(𝑡|𝜇, 𝜎) = 1
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W3P PDF: 𝑓(𝑡|𝛼, 𝛽, 𝜏) = 𝛽𝛼−𝛽(𝑡 − 𝜏)𝛽−1 exp{−(
𝑡−𝜏

𝛼
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