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Abstract: Perylenediimides (PDIs) are composed of a central perylene ring, on which are grafted two
imide groups at the peri positions. Thionated PDIs are characterized by the substitution of one or
more oxygen atoms of these imide functions with sulfur atoms. This structural modification alters
the electronic properties with a redshift of the optical absorption accompanied by modification of the
charge transport characteristics compared to their non-thionated counterparts. These properties make
them suitable candidates for applications in optoelectronic devices, such as organic light-emitting
diodes and organic photovoltaics. Moreover, the presence of sulfur atom(s) can favor the promotion
of reactive oxygen species production for photodynamic and photothermal therapies. These thionated
PDIs can be synthesized through the post-functionalization of PDIs by using a sulfurizing reagent.
Nevertheless, the main drawbacks remain the difficulties in adjusting the degree of thionation and
obtaining tri- and tetrathionated PDIs. Up to now, this thionation reaction has been described almost
exclusively using Lawesson’s reagent. In the current study, we present our first investigations into an
alternative reagent to enhance selectivity and achieve a greater degree of thionation. The association
of phosphorus pentasulfide with hexamethyldisiloxane (Curphey’s reagent) clearly demonstrated
higher reactivity compared with Lawesson’s reagent to attain multi-thionated PDIs.

Keywords: perylenediimide; thionation; phosphorus pentasulfide

1. Introduction

Perylenediimides (PDIs) are among the most interesting polycyclic aromatic hydro-
carbon structures for chemists, physicists and materials scientists [1,2]. These molecules
are composed of a central perylene ring on which are grafted two imide groups at the 3,4
and 9,10 positions (Figure 1). Interest in them continues to grow because they combine
thermal and photostability, as well as remarkable optical properties, with a high absorption
coefficient and fluorescence quantum yield close to unity. They exhibit strong electron-
accepting character with their two electron-withdrawing imide moieties on each side of the
perylene backbone and, consequently, they are now considered as one of the best n-type
semiconductors, making them ideally suited to applications in organic electronics [3,4], in
particular for their use in organic field-effect transistors (OFETs) [5], organic light-emitting
diodes (OLEDs) [6] and organic photovoltaic (OPV) [7–10] devices. However, academic
interest has increased in recent years toward the development of new PDI derivatives
focusing on biological applications [11–13], and their photochemical properties are now
widely exploited for developing novel systems for applications in bioimaging, photody-
namic therapy (PDT) and photothermal therapy (PTT) [14,15]. Certainly, organic chemistry
has played a pivotal role in the development of synthetic strategies for the advancement of
such applications [16]. Indeed, it is well-established that optoelectrical properties can be
modified significantly by the introduction of substituents in the bay (1, 6, 7 and 12) and
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ortho (2, 5, 8 and 11) positions. Whereas PDI derivatives were firstly reported in 1913 [17],
transformation in the thionated analogs by the substitution of the oxygen atoms of both
imide groups with sulfur atoms was only reported and patented almost a century later [18].
It has been demonstrated that the optoelectronic properties depend directly on the degree
of thionation and the high potential of these thionated PDIs for specific applications in
materials science. In the first part, we present an overview of the methods to synthesize
thionated PDIs, showing that this post-functionalization of PDIs has been almost exclu-
sively limited to the use of Lawesson’s reagent to transform imide groups into thioimide
groups. In the second part, we describe our initial research into the development of new
thionation methods with the aim of obtaining greater selectivity, given that a mixture
of monosubstituted PDI-1S, disubstituted PDI-2S-cis and PDI-2S-trans, trisubstituted
PDI-3S and tetrasubstituted PDI-4S is conventionally obtained.
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Figure 1. Representation of perylenediimide (PDI) and its thionated derivatives.

2. Overview of the Synthesis of Thionated Perylenediimides

Thionation is a suitable and efficient method for the substitution of an oxygen atom
of the carbonyl group with a sulfur atom, using a wide range of thionating reagents such
as elemental sulfur (S8) [19], hydrogen sulfide [20], phosphorus pentasulfide (P2S5 or its
dimer phosphorus decasulfide P4S10) [21,22], Lawesson’s reagent (LR) [23–26], Davy’s
reagent [27], Heimgartner’s reagent [28], Curphey’s reagent (P4S10 with hexamethyldis-
iloxane HMDSO) [29–31], Bergman’s reagent (P4S10/pyridine) [32,33], Kaushik’s reagent
(P4S10/Al2O3) [34], Bernthsen’s reagent (S8/I2) [35], and bis(trimethylsilyl)sulfide or hex-
amethyldisilathiane (HMDST) (Figure 2) [36].
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Figure 2. Usual reagents for the thionation of carbonyl groups.

Among these methods, firstly reported by Lecher et al. in 1956 [37], LR as a phosphorus–
sulfur compound has been the most popular for several decades. The LR-mediated thiona-
tion reaction is widely used due to its reliability, efficiency, and compatibility with various
functional groups. It was successfully applied for the conversion of alcohols, carboxylic
acids, ketones, esters and amides. Typically, the thionation reaction involving LR pro-
ceeds under mild conditions, usually in an appropriate solvent, often toluene, xylene or
dichloromethane. However, LR can release toxic hydrogen sulfide gas upon exposure
to water or moisture and is unstable in solution at temperatures above 110 ◦C with slow
decomposition [37,38]. The mechanism of the thionation reaction using LR involves the for-
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mation of a highly reactive dithiophosphine ylide that can react with the carbonyl function
to form a thiaoxaphosphetane intermediate that evolves into a Wittig-like reaction to give
the corresponding thione derivative. This mechanism clearly indicates that each equivalent
of LR is capable of delivering two sulfur atoms per reaction (Scheme 1).
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Scheme 1. Mechanism of thionation using Lawesson’s reagent.

As a preamble to the development of the thionation of PDI derivatives, it is important
to point out that the thionation reaction of imides has only been described in rare cases [25].
Nevertheless, the first study of the thionation reaction of cyclic imides should be high-
lighted [39]. Thionation in the phthalimides and naphthtalimides series using LR led to
mono- and dithioimides in good yields thanks to the high polarity of carbonyl groups. But,
on the other hand, steric hindrance on the nitrogen atom of the imide group was shown to
strongly inhibit the replacement of the oxygen atom with a sulfur atom.

The first synthesis of thionated PDI derivatives was patented by A. Fachetti and
coll [18]. Thionation was carried out starting from a PDI derivative substituted with
(S)-1-methylhexyl chains at the imide positions and using LR in 1-methylnaphthalene at
180 ◦C for 30 min (Table 1, entry 1). Thionated PDI derivatives were separated by silica gel
chromatography using toluene as the eluent, from the less polar PDI-4S (Rf = 0.92), then
PDI-3S (Rf = 0.83), PDI-2S-trans (Rf = 0.67), PDI-2S-cis (Rf = 0.50) to the more polar PDI-1S
(Rf = 0.23). Optical properties were determined in chloroform, showing a bathochromic
shift of the λonset which increases with the number of sulfur atoms, PDI-4S (λ = 765 nm,
Eg = 1.62 eV), PDI-3S (λ = 710 nm, Eg = 1.75 eV), PDI-2S-trans (λ = 645 nm, Eg = 1.92 eV),
PDI-2S-cis (λ = 645 nm, Eg = 1.92 eV), and PDI-1S (λ = 605 nm, Eg = 2.05 eV), to be
compared with PDI starting material (λ = 540 nm, Eg = 2.30 eV). Then, this study focused
on the production of the PDI-2S-trans isomer from PDI derivatives diversely substituted
on the imide position using (R)-1-methylheptyl (25% yield), racemic 1-methylheptyl (22%
yield), 1,3-dimethylbutyl (17% yield), 2-octyldodecyl (25% yield) groups. It should be noted
that Davy’s reagent was investigated here as an alternative to the LR yielding PDI-2S-cis
and PDI-2S-trans compounds in 26% and 27% yield, respectively (Table 1, entry 2), or to
PDI-2S-trans in 22% yield for the 1,6 and 1,7 mixture of dicyanoPDI derivative (Table 1,
entry 3) [18].

A few years later, in 2014, D. S. Seferos and coll. nicely synthesized a series of thionated
PDIs using LR in refluxing toluene giving from PDI-1S to PDI-3S in 10–24% yield (Table 1,
entry 4). A larger excess of LR and extended reaction time was required to attain PDI-4S
compound in 29% yield (Table 1, entry 5) [40]. It was noted that the recrystallization of
LR from toluene improved yields of the thionation reaction. Additionally, the effect of
stoichiometry and the reaction time were studied by C.F.J. Faul and coll. who carried out
the synthesis of thionated PDIs in order to investigate the effects of heteroatom substitution
in supramolecular polymer systems (Table 1, entry 6) [41]. The best results were obtained
using LR in large excess (8 equivalents) and refluxing in toluene for 48 h.

The degree of thionation can be easily determined by 1H NMR spectra (Figure 3), with
an exception for PDI-2S-cis and PDI-2S-trans, for which 2D NMR was required for the
assignment of the two isomers [40].
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Table 1. Reported experimental conditions and yields in thionated PDI derivatives (Tol.: Toluene;
1-MeNaphth.: 1-Methylnaphthalene; Xyl.: Xylene; o-C6H4Cl2: o-dichlorobenzene; LR: Lawesson’s
reagent; DR: Davy’s reagent; MW = Microwave).

Entry R R’ Experimental
Conditions

Yield
PDI 1S to 4S Ref

1
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[46] 
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H 

LR (6 eq.)  

Tol., 110 °C,  

overnight 

PDI-1S: 10% 

PDI-2S cis: 18% 

PDI-2S trans: 19% 

PDI-3S: 15% 
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[46] 
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H
LR (2.7 eq.)

1-MeNaphth.,
180 ◦C, 30 min

PDI-1S: < 5%
PDI-2S cis: 20–30%
PDI-2S trans: 29%
PDI-3S: 1%
PDI-4S: traces

[18]

2 -CH(CH2CH3)2 H
DR (2 eq.)

o-C6H4Cl2, 180 ◦C,
7 min

PDI-2S cis: 26%
PDI-2S trans: 27% [18]

3
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Tol., 110 °C, 48 h 

PDI-1S: 21% 

PDI-2S cis: 10% 

PDI-2S trans: 9% 

[41] 

7 -C4H9 
  

(1,6 and 1,7  

isomers) 

LR (6 eq.)  

Tol., 110 °C, 48 h 

1,7-PDI-4S: 16% 

1,6-PDI-4S: 17% 
[42] 

8 -C6H11 
Br 

1,7 isomer 

LR (4 eq.)  

Tol., 85 °C, 36 h 

PDI-1S: 13% and 9% 

PDI-2S cis: 11% 

PDI-2S trans: 15% 

[43] 

9 -CH(C6H13)2 H 
LR (10 eq.)  

Tol., 110 °C, 18 h 

PDI-2S cis: 5.4% 

PDI-2S trans: 10.9% 
[44] 

10 -C8H17 
 

(1,6,7,12 tetra 

substituted) 

LR (4 eq.) 

Xyl., MW 150 W,  

103 °C, 20 min 

PDI-1S: 10% 

PDI-2S trans: 15% 

PDI-3S: 19% 

PDI-4S: 24% 

[45] 

11 -CH(C2H5)2 H 

LR (6 eq.)  

Tol., 110 °C,  

overnight 

PDI-1S: 20% 

PDI-2S cis: 30% 

PDI-2S trans: 35% 

[46] 

12 

 

H 

LR (6 eq.)  

Tol., 110 °C,  

overnight 

PDI-1S: 10% 

PDI-2S cis: 18% 

PDI-2S trans: 19% 

PDI-3S: 15% 

PDI-4S: 9% 

[46] 

13 -C6H11 
-NH-C6H11 

1,7 isomer 

LR (6 eq.)  

Tol., 110 °C,  

3 days 

PDI-1S: 20% 

PDI-2S-trans: 35% 

PDI-3S: 12% 

[47] 

A few years later, in 2014, D. S. Seferos and coll. nicely synthesized a series of 

thionated PDIs using LR in refluxing toluene giving from PDI-1S to PDI-3S in 10–24% 

yield (Table 1, entry 4). A larger excess of LR and extended reaction time was required to 

CN (1,6 and
1,7 isomers)

DR (2.2 eq.)
o-C6H4Cl2, 180 ◦C,

15 min
PDI-2S trans: 22% [18]

4
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LR (2.7 eq.) 
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180 °C, 30 min 

PDI-1S: < 5% 
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PDI-4S: traces 
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2 -CH(CH2CH3)2 H 
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o-C6H4Cl2, 180 °C,  
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[18] 

3 

 

CN (1,6 and 

1,7 isomers) 

DR (2.2 eq.) 

o-C6H4Cl2, 180 °C,  

15 min 

PDI-2S trans: 22% [18] 

4 

 

H 
LR (2 eq.)  

Tol., 110 °C, 18 h 

PDI-1S: 10% 

PDI-2S cis: 13% 

PDI-2S trans: 17% 

PDI-3S: 24% 

PDI-4S: traces 

[40] 

5 

 

H 
LR (5 eq.) 

Tol., 110 °C, 50 h 

PDI-3S: 13% 

PDI-4S: 29% 
[40] 

6 

 

H 
LR (8 eq.) 

Tol., 110 °C, 48 h 

PDI-1S: 21% 

PDI-2S cis: 10% 

PDI-2S trans: 9% 

[41] 

7 -C4H9 
  

(1,6 and 1,7  

isomers) 

LR (6 eq.)  

Tol., 110 °C, 48 h 

1,7-PDI-4S: 16% 

1,6-PDI-4S: 17% 
[42] 

8 -C6H11 
Br 

1,7 isomer 

LR (4 eq.)  

Tol., 85 °C, 36 h 

PDI-1S: 13% and 9% 

PDI-2S cis: 11% 

PDI-2S trans: 15% 

[43] 

9 -CH(C6H13)2 H 
LR (10 eq.)  

Tol., 110 °C, 18 h 

PDI-2S cis: 5.4% 

PDI-2S trans: 10.9% 
[44] 

10 -C8H17 
 

(1,6,7,12 tetra 

substituted) 

LR (4 eq.) 

Xyl., MW 150 W,  

103 °C, 20 min 

PDI-1S: 10% 

PDI-2S trans: 15% 

PDI-3S: 19% 

PDI-4S: 24% 

[45] 

11 -CH(C2H5)2 H 

LR (6 eq.)  

Tol., 110 °C,  

overnight 

PDI-1S: 20% 

PDI-2S cis: 30% 

PDI-2S trans: 35% 

[46] 

12 

 

H 

LR (6 eq.)  

Tol., 110 °C,  

overnight 

PDI-1S: 10% 

PDI-2S cis: 18% 

PDI-2S trans: 19% 

PDI-3S: 15% 

PDI-4S: 9% 

[46] 

13 -C6H11 
-NH-C6H11 

1,7 isomer 

LR (6 eq.)  

Tol., 110 °C,  

3 days 

PDI-1S: 20% 

PDI-2S-trans: 35% 

PDI-3S: 12% 

[47] 

A few years later, in 2014, D. S. Seferos and coll. nicely synthesized a series of 

thionated PDIs using LR in refluxing toluene giving from PDI-1S to PDI-3S in 10–24% 

yield (Table 1, entry 4). A larger excess of LR and extended reaction time was required to 

H LR (2 eq.)
Tol., 110 ◦C, 18 h

PDI-1S: 10%
PDI-2S cis: 13%
PDI-2S trans: 17%
PDI-3S: 24%
PDI-4S: traces

[40]

5
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PDI-2S cis: 20–30% 
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PDI-3S: 1% 

PDI-4S: traces 
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7 min 

PDI-2S cis: 26% 

PDI-2S trans: 27% 
[18] 

3 

 

CN (1,6 and 

1,7 isomers) 

DR (2.2 eq.) 

o-C6H4Cl2, 180 °C,  

15 min 

PDI-2S trans: 22% [18] 
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LR (2 eq.)  

Tol., 110 °C, 18 h 

PDI-1S: 10% 

PDI-2S cis: 13% 

PDI-2S trans: 17% 

PDI-3S: 24% 

PDI-4S: traces 

[40] 

5 

 

H 
LR (5 eq.) 

Tol., 110 °C, 50 h 

PDI-3S: 13% 

PDI-4S: 29% 
[40] 

6 

 

H 
LR (8 eq.) 

Tol., 110 °C, 48 h 

PDI-1S: 21% 

PDI-2S cis: 10% 

PDI-2S trans: 9% 

[41] 

7 -C4H9 
  

(1,6 and 1,7  

isomers) 

LR (6 eq.)  

Tol., 110 °C, 48 h 

1,7-PDI-4S: 16% 

1,6-PDI-4S: 17% 
[42] 

8 -C6H11 
Br 

1,7 isomer 

LR (4 eq.)  

Tol., 85 °C, 36 h 

PDI-1S: 13% and 9% 

PDI-2S cis: 11% 

PDI-2S trans: 15% 

[43] 

9 -CH(C6H13)2 H 
LR (10 eq.)  

Tol., 110 °C, 18 h 

PDI-2S cis: 5.4% 

PDI-2S trans: 10.9% 
[44] 

10 -C8H17 
 

(1,6,7,12 tetra 

substituted) 

LR (4 eq.) 

Xyl., MW 150 W,  

103 °C, 20 min 

PDI-1S: 10% 

PDI-2S trans: 15% 

PDI-3S: 19% 

PDI-4S: 24% 

[45] 

11 -CH(C2H5)2 H 

LR (6 eq.)  

Tol., 110 °C,  

overnight 

PDI-1S: 20% 

PDI-2S cis: 30% 

PDI-2S trans: 35% 

[46] 

12 

 

H 

LR (6 eq.)  

Tol., 110 °C,  

overnight 

PDI-1S: 10% 

PDI-2S cis: 18% 

PDI-2S trans: 19% 

PDI-3S: 15% 

PDI-4S: 9% 

[46] 

13 -C6H11 
-NH-C6H11 

1,7 isomer 

LR (6 eq.)  

Tol., 110 °C,  

3 days 

PDI-1S: 20% 

PDI-2S-trans: 35% 

PDI-3S: 12% 

[47] 

A few years later, in 2014, D. S. Seferos and coll. nicely synthesized a series of 

thionated PDIs using LR in refluxing toluene giving from PDI-1S to PDI-3S in 10–24% 

yield (Table 1, entry 4). A larger excess of LR and extended reaction time was required to 

H LR (5 eq.)
Tol., 110 ◦C, 50 h

PDI-3S: 13%
PDI-4S: 29% [40]
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LR (2.7 eq.) 

1-MeNaphth.,  

180 °C, 30 min 

PDI-1S: < 5% 

PDI-2S cis: 20–30% 

PDI-2S trans: 29% 

PDI-3S: 1% 

PDI-4S: traces 
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2 -CH(CH2CH3)2 H 

DR (2 eq.) 

o-C6H4Cl2, 180 °C,  

7 min 

PDI-2S cis: 26% 

PDI-2S trans: 27% 
[18] 

3 

 

CN (1,6 and 

1,7 isomers) 

DR (2.2 eq.) 

o-C6H4Cl2, 180 °C,  

15 min 

PDI-2S trans: 22% [18] 

4 

 

H 
LR (2 eq.)  

Tol., 110 °C, 18 h 

PDI-1S: 10% 

PDI-2S cis: 13% 

PDI-2S trans: 17% 

PDI-3S: 24% 

PDI-4S: traces 

[40] 

5 

 

H 
LR (5 eq.) 

Tol., 110 °C, 50 h 

PDI-3S: 13% 

PDI-4S: 29% 
[40] 

6 

 

H 
LR (8 eq.) 

Tol., 110 °C, 48 h 

PDI-1S: 21% 

PDI-2S cis: 10% 

PDI-2S trans: 9% 

[41] 

7 -C4H9 
  

(1,6 and 1,7  

isomers) 

LR (6 eq.)  

Tol., 110 °C, 48 h 

1,7-PDI-4S: 16% 

1,6-PDI-4S: 17% 
[42] 

8 -C6H11 
Br 

1,7 isomer 

LR (4 eq.)  

Tol., 85 °C, 36 h 

PDI-1S: 13% and 9% 

PDI-2S cis: 11% 

PDI-2S trans: 15% 

[43] 

9 -CH(C6H13)2 H 
LR (10 eq.)  

Tol., 110 °C, 18 h 

PDI-2S cis: 5.4% 

PDI-2S trans: 10.9% 
[44] 

10 -C8H17 
 

(1,6,7,12 tetra 

substituted) 

LR (4 eq.) 

Xyl., MW 150 W,  

103 °C, 20 min 

PDI-1S: 10% 

PDI-2S trans: 15% 

PDI-3S: 19% 

PDI-4S: 24% 

[45] 

11 -CH(C2H5)2 H 

LR (6 eq.)  

Tol., 110 °C,  

overnight 

PDI-1S: 20% 

PDI-2S cis: 30% 

PDI-2S trans: 35% 

[46] 

12 

 

H 

LR (6 eq.)  

Tol., 110 °C,  

overnight 

PDI-1S: 10% 

PDI-2S cis: 18% 

PDI-2S trans: 19% 

PDI-3S: 15% 

PDI-4S: 9% 

[46] 

13 -C6H11 
-NH-C6H11 

1,7 isomer 

LR (6 eq.)  

Tol., 110 °C,  

3 days 

PDI-1S: 20% 

PDI-2S-trans: 35% 

PDI-3S: 12% 

[47] 

A few years later, in 2014, D. S. Seferos and coll. nicely synthesized a series of 

thionated PDIs using LR in refluxing toluene giving from PDI-1S to PDI-3S in 10–24% 

yield (Table 1, entry 4). A larger excess of LR and extended reaction time was required to 

H LR (8 eq.)
Tol., 110 ◦C, 48 h

PDI-1S: 21%
PDI-2S cis: 10%
PDI-2S trans: 9%

[41]

7 -C4H9
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1 
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LR (2.7 eq.) 

1-MeNaphth.,  

180 °C, 30 min 

PDI-1S: < 5% 
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PDI-2S trans: 29% 

PDI-3S: 1% 

PDI-4S: traces 
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2 -CH(CH2CH3)2 H 
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o-C6H4Cl2, 180 °C,  

7 min 
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PDI-2S trans: 27% 
[18] 

3 

 

CN (1,6 and 

1,7 isomers) 

DR (2.2 eq.) 

o-C6H4Cl2, 180 °C,  

15 min 

PDI-2S trans: 22% [18] 

4 

 

H 
LR (2 eq.)  

Tol., 110 °C, 18 h 

PDI-1S: 10% 

PDI-2S cis: 13% 

PDI-2S trans: 17% 

PDI-3S: 24% 

PDI-4S: traces 

[40] 

5 

 

H 
LR (5 eq.) 

Tol., 110 °C, 50 h 

PDI-3S: 13% 

PDI-4S: 29% 
[40] 

6 

 

H 
LR (8 eq.) 

Tol., 110 °C, 48 h 

PDI-1S: 21% 

PDI-2S cis: 10% 

PDI-2S trans: 9% 

[41] 

7 -C4H9 
  

(1,6 and 1,7  

isomers) 

LR (6 eq.)  

Tol., 110 °C, 48 h 

1,7-PDI-4S: 16% 

1,6-PDI-4S: 17% 
[42] 

8 -C6H11 
Br 

1,7 isomer 

LR (4 eq.)  

Tol., 85 °C, 36 h 

PDI-1S: 13% and 9% 

PDI-2S cis: 11% 

PDI-2S trans: 15% 

[43] 

9 -CH(C6H13)2 H 
LR (10 eq.)  

Tol., 110 °C, 18 h 

PDI-2S cis: 5.4% 

PDI-2S trans: 10.9% 
[44] 

10 -C8H17 
 

(1,6,7,12 tetra 

substituted) 

LR (4 eq.) 

Xyl., MW 150 W,  

103 °C, 20 min 

PDI-1S: 10% 

PDI-2S trans: 15% 

PDI-3S: 19% 

PDI-4S: 24% 

[45] 

11 -CH(C2H5)2 H 

LR (6 eq.)  

Tol., 110 °C,  

overnight 

PDI-1S: 20% 

PDI-2S cis: 30% 

PDI-2S trans: 35% 

[46] 

12 

 

H 

LR (6 eq.)  

Tol., 110 °C,  

overnight 

PDI-1S: 10% 

PDI-2S cis: 18% 

PDI-2S trans: 19% 

PDI-3S: 15% 

PDI-4S: 9% 

[46] 

13 -C6H11 
-NH-C6H11 

1,7 isomer 

LR (6 eq.)  

Tol., 110 °C,  

3 days 

PDI-1S: 20% 

PDI-2S-trans: 35% 

PDI-3S: 12% 

[47] 

A few years later, in 2014, D. S. Seferos and coll. nicely synthesized a series of 

thionated PDIs using LR in refluxing toluene giving from PDI-1S to PDI-3S in 10–24% 

yield (Table 1, entry 4). A larger excess of LR and extended reaction time was required to 

(1,6 and 1,7
isomers)

LR (6 eq.)
Tol., 110 ◦C, 48 h

1,7-PDI-4S: 16%
1,6-PDI-4S: 17% [42]

8 -C6H11
Br

1,7 isomer
LR (4 eq.)

Tol., 85 ◦C, 36 h

PDI-1S: 13% and 9%
PDI-2S cis: 11%
PDI-2S trans: 15%

[43]

9 -CH(C6H13)2 H LR (10 eq.)
Tol., 110 ◦C, 18 h

PDI-2S cis: 5.4%
PDI-2S trans: 10.9% [44]

10 -C8H17
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1 

 

H 

LR (2.7 eq.) 

1-MeNaphth.,  

180 °C, 30 min 

PDI-1S: < 5% 
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PDI-3S: 1% 

PDI-4S: traces 

[18] 

2 -CH(CH2CH3)2 H 
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1,7 isomers) 

DR (2.2 eq.) 

o-C6H4Cl2, 180 °C,  

15 min 

PDI-2S trans: 22% [18] 
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LR (2 eq.)  

Tol., 110 °C, 18 h 

PDI-1S: 10% 

PDI-2S cis: 13% 

PDI-2S trans: 17% 

PDI-3S: 24% 

PDI-4S: traces 

[40] 

5 

 

H 
LR (5 eq.) 

Tol., 110 °C, 50 h 

PDI-3S: 13% 

PDI-4S: 29% 
[40] 

6 

 

H 
LR (8 eq.) 

Tol., 110 °C, 48 h 

PDI-1S: 21% 

PDI-2S cis: 10% 

PDI-2S trans: 9% 

[41] 

7 -C4H9 
  

(1,6 and 1,7  

isomers) 

LR (6 eq.)  

Tol., 110 °C, 48 h 

1,7-PDI-4S: 16% 

1,6-PDI-4S: 17% 
[42] 

8 -C6H11 
Br 

1,7 isomer 

LR (4 eq.)  

Tol., 85 °C, 36 h 

PDI-1S: 13% and 9% 

PDI-2S cis: 11% 

PDI-2S trans: 15% 

[43] 

9 -CH(C6H13)2 H 
LR (10 eq.)  

Tol., 110 °C, 18 h 

PDI-2S cis: 5.4% 

PDI-2S trans: 10.9% 
[44] 

10 -C8H17 
 

(1,6,7,12 tetra 

substituted) 

LR (4 eq.) 

Xyl., MW 150 W,  

103 °C, 20 min 

PDI-1S: 10% 

PDI-2S trans: 15% 

PDI-3S: 19% 

PDI-4S: 24% 

[45] 

11 -CH(C2H5)2 H 

LR (6 eq.)  

Tol., 110 °C,  

overnight 

PDI-1S: 20% 

PDI-2S cis: 30% 

PDI-2S trans: 35% 

[46] 

12 

 

H 

LR (6 eq.)  

Tol., 110 °C,  

overnight 

PDI-1S: 10% 

PDI-2S cis: 18% 

PDI-2S trans: 19% 

PDI-3S: 15% 

PDI-4S: 9% 

[46] 

13 -C6H11 
-NH-C6H11 

1,7 isomer 

LR (6 eq.)  

Tol., 110 °C,  

3 days 

PDI-1S: 20% 

PDI-2S-trans: 35% 

PDI-3S: 12% 

[47] 

A few years later, in 2014, D. S. Seferos and coll. nicely synthesized a series of 

thionated PDIs using LR in refluxing toluene giving from PDI-1S to PDI-3S in 10–24% 

yield (Table 1, entry 4). A larger excess of LR and extended reaction time was required to 

(1,6,7,12 tetra
substituted)

LR (4 eq.)
Xyl., MW 150 W,
103 ◦C, 20 min

PDI-1S: 10%
PDI-2S trans: 15%
PDI-3S: 19%
PDI-4S: 24%

[45]

11 -CH(C2H5)2 H
LR (6 eq.)

Tol., 110 ◦C,
overnight

PDI-1S: 20%
PDI-2S cis: 30%
PDI-2S trans: 35%

[46]
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H 
LR (8 eq.) 

Tol., 110 °C, 48 h 

PDI-1S: 21% 

PDI-2S cis: 10% 

PDI-2S trans: 9% 

[41] 

7 -C4H9 
  

(1,6 and 1,7  

isomers) 

LR (6 eq.)  

Tol., 110 °C, 48 h 

1,7-PDI-4S: 16% 

1,6-PDI-4S: 17% 
[42] 

8 -C6H11 
Br 

1,7 isomer 

LR (4 eq.)  

Tol., 85 °C, 36 h 

PDI-1S: 13% and 9% 

PDI-2S cis: 11% 

PDI-2S trans: 15% 

[43] 

9 -CH(C6H13)2 H 
LR (10 eq.)  

Tol., 110 °C, 18 h 

PDI-2S cis: 5.4% 

PDI-2S trans: 10.9% 
[44] 

10 -C8H17 
 

(1,6,7,12 tetra 

substituted) 

LR (4 eq.) 

Xyl., MW 150 W,  

103 °C, 20 min 

PDI-1S: 10% 

PDI-2S trans: 15% 

PDI-3S: 19% 

PDI-4S: 24% 

[45] 

11 -CH(C2H5)2 H 

LR (6 eq.)  

Tol., 110 °C,  

overnight 

PDI-1S: 20% 

PDI-2S cis: 30% 

PDI-2S trans: 35% 

[46] 

12 

 

H 

LR (6 eq.)  

Tol., 110 °C,  

overnight 

PDI-1S: 10% 

PDI-2S cis: 18% 

PDI-2S trans: 19% 

PDI-3S: 15% 

PDI-4S: 9% 

[46] 

13 -C6H11 
-NH-C6H11 

1,7 isomer 

LR (6 eq.)  

Tol., 110 °C,  

3 days 

PDI-1S: 20% 

PDI-2S-trans: 35% 

PDI-3S: 12% 

[47] 

A few years later, in 2014, D. S. Seferos and coll. nicely synthesized a series of 

thionated PDIs using LR in refluxing toluene giving from PDI-1S to PDI-3S in 10–24% 

yield (Table 1, entry 4). A larger excess of LR and extended reaction time was required to 

H
LR (6 eq.)

Tol., 110 ◦C,
overnight

PDI-1S: 10%
PDI-2S cis: 18%
PDI-2S trans: 19%
PDI-3S: 15%
PDI-4S: 9%

[46]

13 -C6H11
-NH-C6H11
1,7 isomer

LR (6 eq.)
Tol., 110 ◦C,

3 days

PDI-1S: 20%
PDI-2S-trans: 35%
PDI-3S: 12%

[47]
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Figure 3. 1H NMR spectra of the aromatic part of PDI (P) (R = 3-hexylundecyl chain) and its
corresponding thionated derivatives PDI-1S (S1), PDI-3S (S3), PDI-4S (S4), and partial ROESY
spectra of PDI-2S-cis (cis-S2) and PDI-2S-trans (trans-S2), recorded in CDCl3 at 25 ◦C. Reproduced
with permission from reference [40]. Copyright 2014 American Chemical Society.

All thionated PDIs are characterized by an absorption maximum ranging from 574 nm
for PDI-1S to 706 nm for PDI-4S (Figure 4, Table 2), but none of them exhibit fluorescence.
The presence of a single C=S functional group is sufficient to completely quench PDI
emission due to a rapid and highly efficient intersystem crossing (ISC) to a triplet state, this
phenomenon being independent of the degree of thionation and attributed to a reordering
of the molecular electronic structure.
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Figure 4. Normalized optical absorption spectra in CHCl3 solution of PDI (P) and its corresponding
thionated derivatives PDI-1S (S1), PDI-2S-cis (cis-S2), PDI-2S-trans (trans-S2), PDI-3S (S3) and PDI-
4S (S4). Reproduced with permission from reference [40]. Copyright 2014 American Chemical Society.
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Table 2. Optical and electrochemical data of PDI and its thionated derivatives from reference [40].

Compound λmax (nm) Optical Band Gap (eV) E1/2
red1 (V) E1/2

red2 (V)

PDI (P) 526 2.25 −0.68 −0.91

PDI-1S (S1) 574 2.06 −0.55 −0.72

PDI-2S-cis (S2-cis) 616 1.91 −0.48 −0.57

PDI-2S-trans (S2-trans) 615 1.90 −0.51 −0.61

PDI-3S (S3) 663 1.78 −0.36 −0.45

PDI-4S (S4) 706 1.64 −0.23 −0.33

Both calculated and experimental HOMO/LUMO energies confirmed the slight in-
crease in HOMO energies and the sharp decrease in LUMO energies with increasing sulfur
atoms, which justifies the redshift of the maximum absorption (Table 3). Moreover, the
influence of the sulfur atoms on the electronic structure and their significant contribution
in comparison to the oxygen of diimide groups were achieved.

Table 3. Experimental and calculated (in parentheses) HOMO/LUMO energies of thionated deriva-
tives from reference [40]. Copyright 2014 American Chemical Society.

Compound HOMO (eV) LUMO (eV)

PDI (P) −5.92 (−6.23)
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(S2-cis) −5.78 (−6.09)

Molecules 2024, 29, x FOR PEER REVIEW 6 of 20 
 

 

N

N

(S) O

(S) O O (S)

O (S)

H13C6 C8H17

H13C6 C8H17  

Figure 4. Normalized optical absorption spectra in CHCl3 solution of PDI (P) and its corresponding 

thionated derivatives PDI-1S (S1), PDI-2S-cis (cis-S2), PDI-2S-trans (trans-S2), PDI-3S (S3) and 

PDI-4S (S4). Reproduced with permission from reference [40]. Copyright 2014 American Chemical 

Society. 

Table 2. Optical and electrochemical data of PDI and its thionated derivatives from reference [40]. 

Compound λmax (nm) Optical Band Gap (eV) E1/2red1 (V) E1/2red2 (V) 

PDI (P) 526 2.25 −0.68 −0.91 

PDI-1S (S1) 574 2.06 −0.55 −0.72 

PDI-2S-cis (S2-cis) 616 1.91 −0.48 −0.57 

PDI-2S-trans (S2-trans) 615 1.90 −0.51 −0.61 

PDI-3S (S3) 663 1.78 −0.36 −0.45 

PDI-4S (S4) 706 1.64 −0.23 −0.33 

Both calculated and experimental HOMO/LUMO energies confirmed the slight 

increase in HOMO energies and the sharp decrease in LUMO energies with increasing 

sulfur atoms, which justifies the redshift of the maximum absorption (Table 3). Moreover, 

the influence of the sulfur atoms on the electronic structure and their significant 

contribution in comparison to the oxygen of diimide groups were achieved. 

Table 3. Experimental and calculated (in parentheses) HOMO/LUMO energies of thionated 

derivatives from reference [40]. Copyright 2014 American Chemical Society. 

Compound HOMO (eV) LUMO (eV) 

PDI (P) −5.92 (−6.23) 

 

−3.67 (−3.76) 

 

PDI-1S (S1) −5.85 (−6.15) 

 

−3.80 (−3.88) 

 

PDI-2S-cis  

(S2-cis) 
−5.78 (−6.09) 

 
−3.87 (−3.99) 

 

PDI-2S-trans  

(S2-trans) 
−5.74 (−6.08) 

 

−3.84 (−3.97) 

 

PDI-3S (S3) −5.77 (−6.04) 

 

−3.99 (−4.07) 

 

−3.87 (−3.99)

Molecules 2024, 29, x FOR PEER REVIEW 6 of 20 
 

 

N

N

(S) O

(S) O O (S)

O (S)

H13C6 C8H17

H13C6 C8H17  

Figure 4. Normalized optical absorption spectra in CHCl3 solution of PDI (P) and its corresponding 

thionated derivatives PDI-1S (S1), PDI-2S-cis (cis-S2), PDI-2S-trans (trans-S2), PDI-3S (S3) and 

PDI-4S (S4). Reproduced with permission from reference [40]. Copyright 2014 American Chemical 

Society. 

Table 2. Optical and electrochemical data of PDI and its thionated derivatives from reference [40]. 

Compound λmax (nm) Optical Band Gap (eV) E1/2red1 (V) E1/2red2 (V) 

PDI (P) 526 2.25 −0.68 −0.91 

PDI-1S (S1) 574 2.06 −0.55 −0.72 

PDI-2S-cis (S2-cis) 616 1.91 −0.48 −0.57 

PDI-2S-trans (S2-trans) 615 1.90 −0.51 −0.61 

PDI-3S (S3) 663 1.78 −0.36 −0.45 

PDI-4S (S4) 706 1.64 −0.23 −0.33 

Both calculated and experimental HOMO/LUMO energies confirmed the slight 

increase in HOMO energies and the sharp decrease in LUMO energies with increasing 

sulfur atoms, which justifies the redshift of the maximum absorption (Table 3). Moreover, 

the influence of the sulfur atoms on the electronic structure and their significant 

contribution in comparison to the oxygen of diimide groups were achieved. 

Table 3. Experimental and calculated (in parentheses) HOMO/LUMO energies of thionated 

derivatives from reference [40]. Copyright 2014 American Chemical Society. 

Compound HOMO (eV) LUMO (eV) 

PDI (P) −5.92 (−6.23) 

 

−3.67 (−3.76) 

 

PDI-1S (S1) −5.85 (−6.15) 

 

−3.80 (−3.88) 

 

PDI-2S-cis  

(S2-cis) 
−5.78 (−6.09) 

 
−3.87 (−3.99) 

 

PDI-2S-trans  

(S2-trans) 
−5.74 (−6.08) 

 

−3.84 (−3.97) 

 

PDI-3S (S3) −5.77 (−6.04) 

 

−3.99 (−4.07) 

 

PDI-2S-trans
(S2-trans) −5.74 (−6.08)

Molecules 2024, 29, x FOR PEER REVIEW 6 of 20 
 

 

N

N

(S) O

(S) O O (S)

O (S)

H13C6 C8H17

H13C6 C8H17  

Figure 4. Normalized optical absorption spectra in CHCl3 solution of PDI (P) and its corresponding 

thionated derivatives PDI-1S (S1), PDI-2S-cis (cis-S2), PDI-2S-trans (trans-S2), PDI-3S (S3) and 

PDI-4S (S4). Reproduced with permission from reference [40]. Copyright 2014 American Chemical 

Society. 

Table 2. Optical and electrochemical data of PDI and its thionated derivatives from reference [40]. 

Compound λmax (nm) Optical Band Gap (eV) E1/2red1 (V) E1/2red2 (V) 

PDI (P) 526 2.25 −0.68 −0.91 

PDI-1S (S1) 574 2.06 −0.55 −0.72 

PDI-2S-cis (S2-cis) 616 1.91 −0.48 −0.57 

PDI-2S-trans (S2-trans) 615 1.90 −0.51 −0.61 

PDI-3S (S3) 663 1.78 −0.36 −0.45 

PDI-4S (S4) 706 1.64 −0.23 −0.33 

Both calculated and experimental HOMO/LUMO energies confirmed the slight 

increase in HOMO energies and the sharp decrease in LUMO energies with increasing 

sulfur atoms, which justifies the redshift of the maximum absorption (Table 3). Moreover, 

the influence of the sulfur atoms on the electronic structure and their significant 

contribution in comparison to the oxygen of diimide groups were achieved. 

Table 3. Experimental and calculated (in parentheses) HOMO/LUMO energies of thionated 

derivatives from reference [40]. Copyright 2014 American Chemical Society. 

Compound HOMO (eV) LUMO (eV) 

PDI (P) −5.92 (−6.23) 

 

−3.67 (−3.76) 

 

PDI-1S (S1) −5.85 (−6.15) 

 

−3.80 (−3.88) 

 

PDI-2S-cis  

(S2-cis) 
−5.78 (−6.09) 

 
−3.87 (−3.99) 

 

PDI-2S-trans  

(S2-trans) 
−5.74 (−6.08) 

 

−3.84 (−3.97) 

 

PDI-3S (S3) −5.77 (−6.04) 

 

−3.99 (−4.07) 

 

−3.84 (−3.97)

Molecules 2024, 29, x FOR PEER REVIEW 6 of 20 
 

 

N

N

(S) O

(S) O O (S)

O (S)

H13C6 C8H17

H13C6 C8H17  

Figure 4. Normalized optical absorption spectra in CHCl3 solution of PDI (P) and its corresponding 

thionated derivatives PDI-1S (S1), PDI-2S-cis (cis-S2), PDI-2S-trans (trans-S2), PDI-3S (S3) and 

PDI-4S (S4). Reproduced with permission from reference [40]. Copyright 2014 American Chemical 

Society. 

Table 2. Optical and electrochemical data of PDI and its thionated derivatives from reference [40]. 

Compound λmax (nm) Optical Band Gap (eV) E1/2red1 (V) E1/2red2 (V) 

PDI (P) 526 2.25 −0.68 −0.91 

PDI-1S (S1) 574 2.06 −0.55 −0.72 

PDI-2S-cis (S2-cis) 616 1.91 −0.48 −0.57 

PDI-2S-trans (S2-trans) 615 1.90 −0.51 −0.61 

PDI-3S (S3) 663 1.78 −0.36 −0.45 

PDI-4S (S4) 706 1.64 −0.23 −0.33 

Both calculated and experimental HOMO/LUMO energies confirmed the slight 

increase in HOMO energies and the sharp decrease in LUMO energies with increasing 

sulfur atoms, which justifies the redshift of the maximum absorption (Table 3). Moreover, 

the influence of the sulfur atoms on the electronic structure and their significant 

contribution in comparison to the oxygen of diimide groups were achieved. 

Table 3. Experimental and calculated (in parentheses) HOMO/LUMO energies of thionated 

derivatives from reference [40]. Copyright 2014 American Chemical Society. 

Compound HOMO (eV) LUMO (eV) 

PDI (P) −5.92 (−6.23) 

 

−3.67 (−3.76) 

 

PDI-1S (S1) −5.85 (−6.15) 

 

−3.80 (−3.88) 

 

PDI-2S-cis  

(S2-cis) 
−5.78 (−6.09) 

 
−3.87 (−3.99) 

 

PDI-2S-trans  

(S2-trans) 
−5.74 (−6.08) 

 

−3.84 (−3.97) 

 

PDI-3S (S3) −5.77 (−6.04) 

 

−3.99 (−4.07) 

 
PDI-3S (S3) −5.77 (−6.04)

Molecules 2024, 29, x FOR PEER REVIEW 6 of 20 
 

 

N

N

(S) O

(S) O O (S)

O (S)

H13C6 C8H17

H13C6 C8H17  

Figure 4. Normalized optical absorption spectra in CHCl3 solution of PDI (P) and its corresponding 

thionated derivatives PDI-1S (S1), PDI-2S-cis (cis-S2), PDI-2S-trans (trans-S2), PDI-3S (S3) and 

PDI-4S (S4). Reproduced with permission from reference [40]. Copyright 2014 American Chemical 

Society. 

Table 2. Optical and electrochemical data of PDI and its thionated derivatives from reference [40]. 

Compound λmax (nm) Optical Band Gap (eV) E1/2red1 (V) E1/2red2 (V) 

PDI (P) 526 2.25 −0.68 −0.91 

PDI-1S (S1) 574 2.06 −0.55 −0.72 

PDI-2S-cis (S2-cis) 616 1.91 −0.48 −0.57 

PDI-2S-trans (S2-trans) 615 1.90 −0.51 −0.61 

PDI-3S (S3) 663 1.78 −0.36 −0.45 

PDI-4S (S4) 706 1.64 −0.23 −0.33 

Both calculated and experimental HOMO/LUMO energies confirmed the slight 

increase in HOMO energies and the sharp decrease in LUMO energies with increasing 

sulfur atoms, which justifies the redshift of the maximum absorption (Table 3). Moreover, 

the influence of the sulfur atoms on the electronic structure and their significant 

contribution in comparison to the oxygen of diimide groups were achieved. 

Table 3. Experimental and calculated (in parentheses) HOMO/LUMO energies of thionated 

derivatives from reference [40]. Copyright 2014 American Chemical Society. 

Compound HOMO (eV) LUMO (eV) 

PDI (P) −5.92 (−6.23) 

 

−3.67 (−3.76) 

 

PDI-1S (S1) −5.85 (−6.15) 

 

−3.80 (−3.88) 

 

PDI-2S-cis  

(S2-cis) 
−5.78 (−6.09) 

 
−3.87 (−3.99) 

 

PDI-2S-trans  

(S2-trans) 
−5.74 (−6.08) 

 

−3.84 (−3.97) 

 

PDI-3S (S3) −5.77 (−6.04) 

 

−3.99 (−4.07) 

 

−3.99 (−4.07)

Molecules 2024, 29, x FOR PEER REVIEW 6 of 20 
 

 

N

N

(S) O

(S) O O (S)

O (S)

H13C6 C8H17

H13C6 C8H17  

Figure 4. Normalized optical absorption spectra in CHCl3 solution of PDI (P) and its corresponding 

thionated derivatives PDI-1S (S1), PDI-2S-cis (cis-S2), PDI-2S-trans (trans-S2), PDI-3S (S3) and 

PDI-4S (S4). Reproduced with permission from reference [40]. Copyright 2014 American Chemical 

Society. 

Table 2. Optical and electrochemical data of PDI and its thionated derivatives from reference [40]. 

Compound λmax (nm) Optical Band Gap (eV) E1/2red1 (V) E1/2red2 (V) 

PDI (P) 526 2.25 −0.68 −0.91 

PDI-1S (S1) 574 2.06 −0.55 −0.72 

PDI-2S-cis (S2-cis) 616 1.91 −0.48 −0.57 

PDI-2S-trans (S2-trans) 615 1.90 −0.51 −0.61 

PDI-3S (S3) 663 1.78 −0.36 −0.45 

PDI-4S (S4) 706 1.64 −0.23 −0.33 

Both calculated and experimental HOMO/LUMO energies confirmed the slight 

increase in HOMO energies and the sharp decrease in LUMO energies with increasing 

sulfur atoms, which justifies the redshift of the maximum absorption (Table 3). Moreover, 

the influence of the sulfur atoms on the electronic structure and their significant 

contribution in comparison to the oxygen of diimide groups were achieved. 

Table 3. Experimental and calculated (in parentheses) HOMO/LUMO energies of thionated 

derivatives from reference [40]. Copyright 2014 American Chemical Society. 

Compound HOMO (eV) LUMO (eV) 

PDI (P) −5.92 (−6.23) 

 

−3.67 (−3.76) 

 

PDI-1S (S1) −5.85 (−6.15) 

 

−3.80 (−3.88) 

 

PDI-2S-cis  

(S2-cis) 
−5.78 (−6.09) 

 
−3.87 (−3.99) 

 

PDI-2S-trans  

(S2-trans) 
−5.74 (−6.08) 

 

−3.84 (−3.97) 

 

PDI-3S (S3) −5.77 (−6.04) 

 

−3.99 (−4.07) 

 

PDI-4S (S4) −5.76 (−5.98)

Molecules 2024, 29, x FOR PEER REVIEW 7 of 20 
 

 

PDI-4S (S4) −5.76 (−5.98) 

 

−4.12 (−4.15) 

 

Furthermore, D.S. Seferos and coll. demonstrated that thionation led to an increase 

in thin-film transistor electron mobility by two orders of magnitude from PDI-4O to PDI-

4S (0.16 cm2·V−1·s−1) [48]. This synthetic strategy was later expanded in the 

naphthalenediimide (NDI) series to a�ain S1 to S4 compounds, replacing the branched 3-

hexylundecyl chain by a linear dodecyl chain for studying the influence on solid-state 

packing [49]. Interestingly, the rate and extent of thionation was increased by heating the 

reaction mixture more efficiently and at higher temperatures using microwave irradiation 

to reach thionated NDI derivatives [50]. 

While the introduction of electron-withdrawing groups into the PDI bay region 

decreases the energy level of the lowest unoccupied molecular orbital (LUMO), thus 

increasing the n-type semiconducting character [51,52], the substitution with strong 

electron-donating groups induces a significant redshift in absorption combined with the 

fluorescence quenching arising from the electron transfer between the donor groups and 

the PDI framework. In further developments of thionated PDIs chemistry, N.R. 

Champness and coll. combined functionalization with electron-donating morpholino 

groups at the 1,6 and 1,7 bay positions (Table 1, entry 7) and the full thionation of the 

imide functions to extend absorption in the near infrared (NIR) region (864 nm for the 1,7-

PDI-4S isomer and 838 nm for the 1,6-PDI-4S isomer in dichloromethane solution (Figure 

5) [42]. Moreover, spectroelectrochemical experiments recorded in o-dichlorobenzene 

showed absorption bands at 1568 nm and 1491 nm for the anion-radical species of 1,7-

isomer and 1,6-isomer, respectively. These radical anions were more extensively studied 

by P. Mukhopadhyay and coll. who prepared PDI-1S isolated as two isomers and PDI-

2S-cis and PDI-2S-trans (Figure 5) starting from 1,7-dibromoPDI material (Table 1, entry 

8) [43]. Remarkably, it was shown that the stability of the radical anion increases with the 

degree of thionation (the highest 18.8 h for PDI-2S-trans), with the vacant d orbital of the 

sulfur atom playing a crucial role in the delocalization of the unpaired electron, thus 

stabilizing the reduced species. 

N

N

S

S S

S

C4H9

C4H9

NN

OO

1 6

N

N

S

S S

S

C4H9

C4H9

N

N

O

O

1

7

N

N

S

O O

O

C6H11

C6H11

Br

Br

N

N

O

O O

S

C6H11

C6H11

Br

Br

N

N

O

O S

S

C6H11

C6H11

Br

Br

N

N

O

S O

S

C6H11

C6H11

Br

Br

 

Figure 5. Syntheses of 1,6- and 1,7-isomers of dimorpholino PDI-4S [42], and PDI-1S (two isomers), 

PDI-2S-cis and PDI-2S-trans from 1,7-dibromoPDI [43]. 

While these thionated PDI derivatives were designed for use in organic electronics, 

their synthesis presents notable challenges, resulting in relatively average yields and low 

−4.12 (−4.15)

Molecules 2024, 29, x FOR PEER REVIEW 7 of 20 
 

 

PDI-4S (S4) −5.76 (−5.98) 

 

−4.12 (−4.15) 

 

Furthermore, D.S. Seferos and coll. demonstrated that thionation led to an increase 

in thin-film transistor electron mobility by two orders of magnitude from PDI-4O to PDI-

4S (0.16 cm2·V−1·s−1) [48]. This synthetic strategy was later expanded in the 

naphthalenediimide (NDI) series to a�ain S1 to S4 compounds, replacing the branched 3-

hexylundecyl chain by a linear dodecyl chain for studying the influence on solid-state 

packing [49]. Interestingly, the rate and extent of thionation was increased by heating the 

reaction mixture more efficiently and at higher temperatures using microwave irradiation 

to reach thionated NDI derivatives [50]. 

While the introduction of electron-withdrawing groups into the PDI bay region 

decreases the energy level of the lowest unoccupied molecular orbital (LUMO), thus 

increasing the n-type semiconducting character [51,52], the substitution with strong 

electron-donating groups induces a significant redshift in absorption combined with the 

fluorescence quenching arising from the electron transfer between the donor groups and 

the PDI framework. In further developments of thionated PDIs chemistry, N.R. 

Champness and coll. combined functionalization with electron-donating morpholino 

groups at the 1,6 and 1,7 bay positions (Table 1, entry 7) and the full thionation of the 

imide functions to extend absorption in the near infrared (NIR) region (864 nm for the 1,7-

PDI-4S isomer and 838 nm for the 1,6-PDI-4S isomer in dichloromethane solution (Figure 

5) [42]. Moreover, spectroelectrochemical experiments recorded in o-dichlorobenzene 

showed absorption bands at 1568 nm and 1491 nm for the anion-radical species of 1,7-

isomer and 1,6-isomer, respectively. These radical anions were more extensively studied 

by P. Mukhopadhyay and coll. who prepared PDI-1S isolated as two isomers and PDI-

2S-cis and PDI-2S-trans (Figure 5) starting from 1,7-dibromoPDI material (Table 1, entry 

8) [43]. Remarkably, it was shown that the stability of the radical anion increases with the 

degree of thionation (the highest 18.8 h for PDI-2S-trans), with the vacant d orbital of the 

sulfur atom playing a crucial role in the delocalization of the unpaired electron, thus 

stabilizing the reduced species. 

N

N

S

S S

S

C4H9

C4H9

NN

OO

1 6

N

N

S

S S

S

C4H9

C4H9

N

N

O

O

1

7

N

N

S

O O

O

C6H11

C6H11

Br

Br

N

N

O

O O

S

C6H11

C6H11

Br

Br

N

N

O

O S

S

C6H11

C6H11

Br

Br

N

N

O

S O

S

C6H11

C6H11

Br

Br

 

Figure 5. Syntheses of 1,6- and 1,7-isomers of dimorpholino PDI-4S [42], and PDI-1S (two isomers), 

PDI-2S-cis and PDI-2S-trans from 1,7-dibromoPDI [43]. 

While these thionated PDI derivatives were designed for use in organic electronics, 

their synthesis presents notable challenges, resulting in relatively average yields and low 

Furthermore, D.S. Seferos and coll. demonstrated that thionation led to an increase in
thin-film transistor electron mobility by two orders of magnitude from PDI-4O to PDI-4S
(0.16 cm2·V−1·s−1) [48]. This synthetic strategy was later expanded in the naphthalenedi-
imide (NDI) series to attain S1 to S4 compounds, replacing the branched 3-hexylundecyl
chain by a linear dodecyl chain for studying the influence on solid-state packing [49]. Inter-
estingly, the rate and extent of thionation was increased by heating the reaction mixture
more efficiently and at higher temperatures using microwave irradiation to reach thionated
NDI derivatives [50].

While the introduction of electron-withdrawing groups into the PDI bay region de-
creases the energy level of the lowest unoccupied molecular orbital (LUMO), thus increasing
the n-type semiconducting character [51,52], the substitution with strong electron-donating
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groups induces a significant redshift in absorption combined with the fluorescence quench-
ing arising from the electron transfer between the donor groups and the PDI framework. In
further developments of thionated PDIs chemistry, N.R. Champness and coll. combined
functionalization with electron-donating morpholino groups at the 1,6 and 1,7 bay positions
(Table 1, entry 7) and the full thionation of the imide functions to extend absorption in the
near infrared (NIR) region (864 nm for the 1,7-PDI-4S isomer and 838 nm for the 1,6-PDI-
4S isomer in dichloromethane solution (Figure 5) [42]. Moreover, spectroelectrochemical
experiments recorded in o-dichlorobenzene showed absorption bands at 1568 nm and
1491 nm for the anion-radical species of 1,7-isomer and 1,6-isomer, respectively. These
radical anions were more extensively studied by P. Mukhopadhyay and coll. who prepared
PDI-1S isolated as two isomers and PDI-2S-cis and PDI-2S-trans (Figure 5) starting from
1,7-dibromoPDI material (Table 1, entry 8) [43]. Remarkably, it was shown that the sta-
bility of the radical anion increases with the degree of thionation (the highest 18.8 h for
PDI-2S-trans), with the vacant d orbital of the sulfur atom playing a crucial role in the
delocalization of the unpaired electron, thus stabilizing the reduced species.
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Figure 5. Syntheses of 1,6- and 1,7-isomers of dimorpholino PDI-4S [42], and PDI-1S (two isomers),
PDI-2S-cis and PDI-2S-trans from 1,7-dibromoPDI [43].

While these thionated PDI derivatives were designed for use in organic electronics,
their synthesis presents notable challenges, resulting in relatively average yields and
low selectivity. These factors currently inhibit their large-scale synthesis. More recently,
opportunities for their application in PDT and PTT have emerged and aroused growing
interest. This is particularly relevant with the very recent progress made in the development
of heavy-atom-free photosensitizers (HAF-PSs) because of their potential biocompatibility
and prospective applications in PDT [53–58]. Indeed, these PDT materials, incorporating
sulfur instead of oxygen atoms, are likely to promote ISC, leading to the generation of
triplet excitons for reactive oxygen species (ROS) generation. Dithionated PDIs with 1-
hexylheptyl imide chains were synthesized by Y. Huang and coll. using LR in refluxing
toluene, giving PDI-2S-cis and PDI-2S-trans in 10.9% and 5.4% yields, respectively (Table 1,
entry 9) [44]. Polyethylene glycol-based nanoparticles incorporating these dithionated PDIs
were prepared to target tumor tissues via the enhanced permeability retention (EPR) effect.
Corresponding PDI-2S-trans-based nanoparticles were shown to induce photothermal
depression on A549 cells under 660 nm light irradiation both in vitro and in vivo, with
a higher photothermal conversion efficiency (PCE) of 58.4% compared to 41.6% for PDI-
2S-cis based nanoparticles. Furthermore, PDI-2S-trans based nanoparticles were shown
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to generate ROS upon 660 nm laser irradiation, demonstrating an inhibitory effect on
tumor growth.

The thionation of the PDI backbone substituted by four 4-tert-butylphenoxy groups
on the bay region was investigated by M. Yin and coll. (Figure 6) [45]. The synthesis was
carried out using LR in xylene under microwave irradiation (Table 1, entry 10).
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Figure 6. 1,6,7,12-tetra-p-tertbutylphenoxy PDI and corresponding thionated derivatives.

Using 1,3-diphenylisobenzofuran as a probe to measure singlet oxygen (1O2) genera-
tion and comparing with the photosensitizer methylene blue standard, the 1O2 quantum
yields in these 4-tert-butylphenoxy bay-substituted PDIs were shown to gradually decrease
with an increase in the thionation degree (Table 4).

Table 4. Optical data and photosensitizing properties of PDI and its thionated derivatives from
reference [45]. Measurements were obtained in dichloromethane (DCM), and 1O2 quantum yields
were determined according to methylene blue (Φ∆ = 57% in DCM).

Compound λmax (nm) Optical Band Gap (eV) ΦPL (%) Φ∆ (%)

PDI 575 2.31 0.92 1

PDI-1S 623 2.13 - 95.6

PDI-2S 666 1.99 - 45.8

PDI-3S 719 1.81 - 11.1

PDI-4S 769 1.68 - 0.5

This study demonstrated the remarkable capabilities of thionated PDIs in various
biomedical applications. By highlighting the influence of the degree of sulfur substitution
on 1O2 generation and photothermal conversion efficiency, as well as the link with the ISC
rate constant, the in vitro experiments showed that PDI-1S, with its enhanced photody-
namic capacity, could be used in tumor phototherapy, while PDI-4S might be more suitable
as a photothermal and photoacoustic agent in tumor theranostics (Figure 7).
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The thionation of PDI substituted with 2-ethylpropyl groups (Table 1, entry 11) and
2,6-dimethylphenyl groups (Table 1, entry 12) on the imide positions was carried out us-
ing LR in refluxing toluene by P.T. Chou and coll [46]. It was noted from the last series
that there was an increase in the extinction coefficient with the number of sulfur atoms
(PDI-1S: λmax = 575 nm, ε = 29,200 M−1·cm−1 in toluene; PDI-2S-cis: λmax = 610 nm,
ε = 64,300 M−1·cm−1; PDI-2S-trans: λmax = 610 nm, ε = 47,700 M−1·cm−1; PDI-3S:
λmax = 660 nm, ε = 66,200 M−1·cm−1; PDI-4S: λmax = 700 nm, ε = 97,700 M−1·cm−1).
In addition, the ability of PDI-1S to act as a photosensitiser was exploited with its cou-
pling with FC131 and Cy5 peptides. The key synthetic step was using an LR-mediated
thionation in refluxing toluene giving a PDI-1S intermediate in 34% yield, which was
post-functionalized with the FC131 peptide grafted on each imide position affording the
FC131-PDI-1S-FC131 triad (Figure 8). This thionated PDI was also linked, on one imide
side, with peptide FC131, and on the other side, with cyanine5 dye, yielding an FC131-
PDI-1S-Cy5 assembly. In vitro and in vivo evaluations confirmed the selectivity of these
assemblies as active materials in PDT by exhibiting strong two-photon absorption and
imaging capabilities of notable anticancer effects, with evidence of exceptional in vivo
antitumor efficacy in A549 xenografted tumor mice.
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As previously mentioned, the introduction of the less electronegative sulfur atoms on
the imide groups leads to a significant extension of the absorption in the long wavelength
region. The combination of this phenomenon with an intramolecular charge transfer (ICT)
resulting from the introduction of amino groups in the bay position should induce a syner-
gistic shift towards the NIR spectrum. Density Functional Theory (DFT) calculations of
the tetrathionated PDI-bearing cyclohexylamino groups in the 1,7 positions showed the
high impact of thionation on the LUMO energy level, with a maximum absorption band
calculated at 1085 nm (LUMO: −3.72 eV) to be compared with the tetraoxygenated PDI
analog presenting an absorption band at 732 nm (LUMO: −3.10 eV), the latter presenting a
maximum absorption at 654 nm in dichloromethane solution [59]. Sun and coll. demon-
strated this phenomenon with the synthesis of corresponding PDI-1S (λmax = 746 nm
in DCM), PDI-2S-trans (λmax = 795 nm) and PDI-3S compounds, the latter exhibiting a
remarkable λmax = 854 nm (Table 1, entry 13) [47]. The authors showed 1O2 generation by
these PDIs under 650 nm laser irradiation. In order to solve the problem of solubility in
water, silica nanocapsules (SNCs) with encapsulated PDIs were formulated. These PDI-
3S@SNC exhibited a remarkable power conversion efficiency (PCE) reaching 88% under
808 nm laser irradiation. Additionally, an exceptional photothermal effect under 1064 nm
laser irradiation was observed, highlighting its potential as an NIR photothermal agent.

3. Investigations of Novel Reagents in Thionated Perylenediimides Synthesis

Lawesson’s reagent (LR) is a widely used tool for the synthesis of thionated com-
pounds, and especially thionated PDIs. Our primary objective was to find an effective
alternative for enhancing selectivity and yields for the less available PDI-3S and PDI-4S
compounds. At that point, we decided to investigate this thionation reaction, focusing our
research on the phosphorus pentasulfide (P2S5 or its dimer phosphorus decasulfide P4S10)
reagent. LR and P4S10 are both commonly used reagents in organic synthesis for converting
carbonyl compounds to thiocarbonyl analogs. While both reagents serve a similar purpose,
some advantages of using LR over P4S10 are commonly described. It is often noted that LR
proceeds in milder reaction conditions and in a shorter reaction time compared to P4S10.
Moreover, LR is described to provide cleaner reactions with fewer side products compared
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to P4S10, leading to higher yields and easier purification of the desired product. Concerning
the functional group compatibility, LR is generally more compatible with a wider range of
functional groups present in the substrate molecule compared to P4S10. For instance, LR
reagent is less likely to react with sensitive functional groups such as esters and amides.
Finally, LR has a relatively milder odor compared to P4S10, making it more “pleasant” to
work with in the laboratory.

The ancestor thionation reagent P4S10 was first used in 1869 by Henry [60] and Wisli-
cenus [61]. Then, A.W. Hofmann described, in 1878, the transformation of carboxamides
into thionoamides, exemplified by the conversion of formanilide into thioformanilide [62].
Due to its low solubility, the reaction is normally carried out with an excess of P4S10 in
refluxing solvent which includes toluene, xylene, dioxan, dimethoxyethane, pyridine and
dichloromethane. Furthermore, it was demonstrated that reaction times and reaction
temperatures can be reduced significantly when using ultrasound for thionation reaction.
Under ultrasound conditions, the use of P4S10 has been reported to be more selective than
LR, producing no reaction side-products [63].

In this initial investigation of a novel thionation method, several PDI derivatives were
selected as starting materials (Figure 9). PDI derivatives A and B bearing 2-ethylpropyl
and 2,6-dimethylphenyl groups as imide substituents were chosen for comparison with
thionated compounds obtained using LR and described in the literature. These compounds
were prepared by reacting perylene 3,4,9,10-tetracarboxylic dianhydride (PTCDA) with the
corresponding amine in imidazole at 150 ◦C, then purified by column chromatography and
precipitated in a mixture of dichloromethane and methanol [64,65]. Compound C, prepared
as reported in the literature [66], was studied to verify the feasibility of the new procedure,
with a hindered PDI tetrasubstituted in the bay region. In addition, this compound can
be used to demonstrate the electronic impact of electron-donating tetraphenoxy groups
by the mesomeric effect on the reactivity of the thionation reaction. Finally, we proposed
PDI D, synthesized according to the described procedure [65], bearing a strong electron-
withdrawing nitro group in the bay region that is also extremely sensitive to substitution.
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Initial attempts using P4S10 as the sole reagent in refluxing toluene or xylene quickly
proved unsuccessful when the reaction was carried out on compound A. So, we natu-
rally turned to Curphey’s reagent (CR), which combines P4S10 and hexamethyldisiloxane
(HMDSO). The combination of P4S10 and HMDSO is described to efficiently convert esters,
lactones, lactams and ketones to their corresponding thionated derivatives in yields com-
parable or superior to those obtained with LR [30]. As our main goal was to optimize the
thionation reaction in order to obtain the PDI-4S derivative as efficiently as possible, we
considered the following stoichiometry presented below (Scheme 2). In this multi-variable
optimization study, 0.5 mmol of PDI was employed in anhydrous toluene or xylene (40 mL)
at 110 ◦C or 150 ◦C, respectively. Consequently, the stoichiometric conditions required
0.33 mmol of P4S10 and 1.66 mmol of HMDSO.
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The first objective aimed to compare reactions carried out with LR (Table 5, entry 1) or
CR (Table 5, entry 2). Under the same reaction conditions, i.e., for 24 h at reflux in toluene,
the reaction carried out with LR (6 equiv.) led mainly to the formation of compound PDI-1S
(35%) alongside small quantities of PDI-2S-cis (9%) and PDI-2S-trans (8%). The multi-
thionated compounds PDI-3S and PDI-4S were not detected, in agreement with results
described for this same compound A (Table 1, entry 11) [46]. The first investigation using
P4S10/HMDSO (CR) in the ratio defined above immediately showed that CR significantly
accelerated the thionation reaction. The characteristic purple color of the PDI-1S compound
appeared after about 30 min in refluxing toluene, followed rapidly by a blue color, indicating
the formation of multi-thionated compounds. This greater reactivity was confirmed by
the absence of starting product PDI A at the end of the reaction. Regarding work-up,
phosphorus-containing by-products were removed by a mild hydrolysis using a 5.3 M
K2CO3 aqueous solution, according to the literature [31], followed by extraction with
chloroform before purification by silica gel chromatography. Elution was carried out using
toluene as the eluent affording firstly PDI-4S (Rf = 0.96), then PDI-3S (Rf = 0.75), PDI-2S-
trans (Rf = 0.54) and PDI-2S-cis (Rf = 0.22), the PDI-2S-trans (C2h) isomer being less polar
than the PDI-2S-cis (C2v) isomer. The PDI-1S derivative (Rf = 0.10 in toluene) was obtained
after elution using toluene/EtOAc (95:5) as a mixture of solvents. Whereas PDI-1S was
isolated in only 4% yield, compounds PDI-2S-cis and PDI-2S-trans were each obtained
in around 40% yield, with at their side PDI-3S in 8% yield and PDI-4S as traces (Table 5,
entry 2). It should be noted that PDI-2S-gem was detected by thin-layer chromatography
(TLC) but could not be isolated (see TLC in Supporting Information).

After obtaining this initial positive result demonstrating the potential of CR as reagent,
the influence of the solvent and temperature reaction was studied. Using xylene at 150 ◦C
under identical stoichiometric conditions, but in a Schlenk flask to take account of the lower
boiling point of HMDSO compared to xylene, a significant improvement was observed in
the production of the PDI-3S compound (17% yield) (Table 5, entry 3). This improvement
could also be observed when studying the effect of stoichiometry on the reaction, using a
small excess of P4S10 and HMDSO (Table 5, entry 4) or, more importantly, increasing the
quantity of HMDSO (Table 5, entry 5). In the last case, a higher yield (27%) in PDI-3S was
obtained. However, further increasing the quantity of reagents (Table 5, entry 6) and the
reaction time (Table 5, entry 7) quickly revealed certain limitations with a reduction of the
overall yield, probably resulting from the degradation process. The successive additions
of excess reagent did not significantly improve the reaction efficiency (Table 5, entry
8). Bis(trimethylsilyl)sulfide or hexamethyldisilathiane (HMDST) has been reported as a
versatile reagent in the transformation of carbonyl compounds into their thioxo analogs [36].
To our knowledge, reagents P4S10 and HMDST have never been associated with carrying
out a thionation reaction. This reagent was tested under experimental conditions (Table 5,
entry 9) allowing for comparison with results obtained using CR (Table 5, entry 4); however,
the yields obtained were inconclusive. This initial investigation involving PDI A clearly
shows the enhanced reactivity of CR compared with LR. It enabled the synthesis of a
PDI-3S derivative in significant yields, a compound which had not been described until
now. Nevertheless, compound PDI-4S could only be isolated in trace amounts.
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Table 5. Experimental results from reactions carried out using 0.5 mmol of PDI A, B, C or D in toluene
(Tol.) at 110 ◦C or xylene (Xyl.) at 150 ◦C. (nd = not detected).

Entry PDI Reagent Solvent,
Time Yields (%)

PDI PDI-1S PDI-2S-cis PDI-2S-trans PDI-3S PDI-4S

1 A LR (3 mmol) ∆ Tol.,
24 h 21 35 9 8 nd nd

2 A P4S10 (0.33 mmol)
HMDSO (1.66 mmol)

∆ Tol.,
24 h trace 4 40 42 8 trace

3 A P4S10 (0.33 mmol)
HMDSO (1.66 mmol)

∆ Xyl.,
24 h nd 5 33 31 17 trace

4 A P4S10 (0.75 mmol)
HMDSO (3.75 mmol)

∆ Tol.,
24 h nd trace 28 29 20 trace

5 A P4S10 (0.75 mmol)
HMDSO (7.5 mmol)

∆ Tol.,
24 h nd 1 24 23 27 trace

6 A P4S10 (1.5 mmol)
HMDSO (15 mmol)

∆ Tol.,
24 h nd nd 12 15 7 trace

7 A P4S10 (1.5 mmol)
HMDSO (15 mmol) ∆ Tol., 120 h nd nd 11 18 9 trace

8 A P4S10 (3 × 0.33 mmol)
HMDSO (3 × 1.66 mmol)

∆ Tol.,
3 × 24 h nd 2 27 28 16 trace

9 A P4S10 (0.75 mmol)
HMDST (3.75 mmol))

∆ Tol.,
24 h 2 13 18 23 1 trace

10 B LR (3 mmol) ∆ Tol.,
24 h trace 13 19 15 8 5

11 B P4S10 (0.33 mmol)
HMDSO (1.66 mmol)

∆ Tol.,
24 h nd 11 14 17 20 12

12 B P4S10 (0.75 mmol)
HMDSO (7.5 mmol)

∆ Tol.,
24 h nd trace 2 2 18 32

13 C P4S10 (0.75 mmol)
HMDSO (7.5 mmol)

∆ Tol.,
24 h nd trace trace trace trace 89

14 C P4S10 (1 mmol)
HMDSO (10 mmol)

∆ Tol.,
24 h nd trace trace trace trace 84

15 D P4S10 (0.75 mmol)
HMDSO (7.5 mmol)

∆ Tol.,
24 h nd 13 16 trace nd

The optical properties of these thionated PDI derivatives were determined in
dichloromethane solution, showing the redshift of the maximum absorption with an in-
crease in the number of sulfur atoms (Figure 10a). Corresponding absorption maxima λmax
were determined for PDI A (525 nm), PDI-1S (572 nm), PDI-2S-cis (612 nm), PDI-2S-trans
(612 nm), PDI-3S (653 nm), and PDI-4S (697 nm).

Moreover, we observed that the purple and blue spots on the TLC plate were trans-
formed into orange-red spots, partially regaining their fluorescent properties under light
and ambient air conditions. Then, solutions were prepared from starting material PDI A
and corresponding thionated derivatives from PDI-1S to PDI-4S in dichloromethane and
those saturated with oxygen before sunlight irradiation (Figure 11). We observed the rapid
disappearance of the magenta color for PDI-1S, along with the blue colors of PDI-2S-cis
and PDI-2S-trans isomers, and also PDI-3S. The PDI-4S derivative seemed to be much less
sensitive to these conditions, resulting in photochemical degradation. This naked eye ob-
servation could be paralleled by the measurements of 1O2 quantum yields described above
(Table 4). Mass spectra and UV–visible spectra (Figure 10b) of these samples confirmed
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the instability in the proposed conditions and the formation of new products, including a
return to the PDI A starting material resulting from an exchange between the sulfur and
oxygen atoms.
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The comparison of LR and CR reagents was continued using a PDI B compound.
The first observation was that the reaction of PDI B with LR (Table 5, entry 10) was more
efficient than the similar reaction with PDI A (Table 5, entry 1). Starting material was
quasi-completely converted into thionated PDIs with moderate yields in PDI-3S (8%) and
PDI-4S (5%). These yields were significantly increased as soon as the CR reagent was used,
with yields more than doubling in PDI-3S (20%) and PDI-4S (12%) (Table 5, entry 11). The
best results in PDI-4S (32%) were obtained using an excess of P4S10 and HMDSO, under
conditions to be compared with those obtained with PDI A (Table 5, entry 5). Microwave-
assisted thionation of carbonyl compounds using CR was previously described, giving
desired products in higher yield and shorter reaction time compared to conventional
methods [67,68]. The experiment carried out on PDI B under MW irradiation confirmed
the importance of solubility (5 × 10−2 M for MW experiment instead of 1.25 × 10−2 M
for experiment reported in Table 5), since only the PDI-1S derivative accompanied by
unreacted starting material in a large proportion was obtained.

The experimental conditions giving the highest yield in PDI-4S for PDI B (Table 5,
entry 12) were applied to PDI C (Table 5, entry 13). Thanks to the improved solubility
resulting from the torsion of the PDI backbone, which limits aggregation, and despite the
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steric hindrance provided by the four para tert-butylphenoxy groups in the bay positions,
an exceptional reactivity was achieved, leading to PDI-4S in an 89% yield (Scheme 3). A
slight increase in the quantities of reagents did not improve the yield of the reaction (Table 5,
entry 14). As the PDI-4S derivative was the only product isolated, the other PDI-1S, PDI-
2S and PDI-3S compounds were only detected by mass spectrometry. Once again, this
result clearly demonstrates the superiority of CR over LR for obtaining multi-thionated
derivatives. The single PDI-4S derivative obtained in the example described here should
be compared with the mixture containing 24% of a similar derivative obtained using LR in
xylene under MW irradiation at 103 ◦C (Table 1, entry 10).
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Scheme 3. Synthesis of thionated PDI-4S derivative-bearing para tert-butylphenoxy groups in the
bay positions.

The optical properties of PDI C and its PDI-4S derivative were determined by UV–Vis
absorption spectroscopy in dichloromethane solution, confirming the NIR absorption of the
PDI-4S compound (λmax = 770 nm) compared with tetraoxygenated PDI C (λmax = 577 nm).
(Figure 12). It can be estimated that each replacement of an oxygen atom of the diimide
moieties by a sulfur atom results in a bathochromic shift of approximately 50 nm, whatever
the substitution or not on bay region. Solutions of PDI C and its PDI-4S derivatives in
dichloromethane were saturated with oxygen and irradiated with sunlight. We could
confirm the good photochemical stability of the PDI-4S derivative, as previously noted, for
tetrathionated PDI unsubstituted in the bay region.
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Figure 12. Normalized absorption spectra of PDI C and its PDI-4S derivative recorded in
dichloromethane solution. Behavior of PDI C (pink color) and its thionated PDI-4S derivative
(grey-green color) at (a) t = 0; (b) after 90 h under sunlight in a saturated oxygen atmosphere.

NitroPDIs are currently attracting significant attention due to their ease of access and
higher selectivity of mononitration compared with monobromination [69]. In addition,
many types of reactions have been successfully applied to nitroPDIs, ranging from nu-
cleophilic substitution to palladium catalyzed cross-couplings [70–72]. The nitro group
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can also be reduced to an amino group, and further transformation in the corresponding
imine using an aldehyde allows azabenzannulated PDI-based materials to be obtained by
subsequent photocyclization [73,74]. Consequently, access to thionated PDI derivatives
bearing a nitro group in the bay position would open the way to a whole series of post-
functionalization processes that are extremely interesting from a synthetic and application
point of view. The thionation reaction using CR in refluxing toluene led to a mixture of
products, complexed for each compound PDI-1S, PDI-2S cis, PDI-2S trans and PDI-3S
by the presence of isomers due to the nitro group in the bay position (Scheme 4). The
major products isolated were PDI-1S and PDI-2S compounds, which were characterized by
HRMS (Table 5, entry 15). Compound PDI-3S was also characterized as a trace by HRMS.
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This initial study demonstrates the potential of CR in accessing thionated-PDI deriva-
tives. The impact of the group present at the imide position has an effect on solubility and
aggregation [75], and for this thionation reaction, an aromatic substituent seems more fa-
vorable than the introduction of a short alkyl chain. On the other hand, the addition of four
electron-donating groups in the bay positions, despite the high steric hindrance inherent in
this tetrasubstitution, provides a remarkable example of accessing the PDI-4S derivative
in a practically quantitative yield. Other studies are currently underway to validate the
influence of the electronic effect on this thionation reaction. Finally, the presence of a nitro
group sensitive to substitution seems compatible with such a reaction. However, achieving
selectivity becomes difficult in the case of a monosubstituted derivative in the bay position
due to the presence of many possible isomers. This preliminary result seems to indicate
that electron-withdrawing groups on the PDI backbone do not favor the thionation reaction.
Finally, it is important to highlight that the combination of the P4S10 reagent with HMDSO
would make it possible, for the first time, to synthesize selenated analogues PDI-1Se to
PDI-4Se using the analog P4Se10 reagent [76]. Whereas remarkable intersystem crossing
rates with a complete fluorescence quenching have been observed for thionated PDIs, the
theoretical calculations recently reported on selenated PDIs suggest five-order larger ISC
rates, signifying high efficiency for photosensitization applications [77].

4. Materials and Methods

Experimental procedure for synthesis from PDI derivatives A and B: The reaction and
workup should be carried out under an efficient laboratory fume hood. To a solution of PDI
(0.5 mmol) in anhydrous toluene or xylene, P4S10 and HMDSO were added in stoichiometry,
as presented in Table 5. The reaction mixture was heated at 110 ◦C (toluene) or at 150 ◦C
(xylene) under argon atmosphere. After cooling in an ice bath, an aqueous solution of
K2CO3 5.3 M (1 mL/0.75 mmol P4S10), then acetone (5 mL), was added. The solution was
stirred for 15 min at 0 ◦C and poured in a separating funnel. Water (100 mL) was added,
and the aqueous phase was extracted with chloroform (2 × 100 mL). The organic layer
was washed with brine (100 mL), dried over MgSO4 and concentrated under vacuum.
The crude product was purified by silica gel column chromatography using toluene as
the eluent for PDI-4S, PDI-3S, PDI-2S-trans, PDI-2S-cis, and toluene/ethyl acetate (95:5)
for PDI-1S.
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Experimental procedure for synthesis from PDI-derivative C: To a solution of PDI
(561 mg, 0.5 mmol) in anhydrous toluene (40 mL), P4S10 (334 mg, 0.75 mmol) and HMDSO
1.6 mL (7.5 mmol) were added. The reaction mixture was heated at 110 ◦C under argon
atmosphere for 24 h. After cooling in an ice bath, an aqueous solution of K2CO3 5.3 M
(1 mL) was added, then acetone (5 mL). The solution was stirred for 15 min at 0 ◦C and
poured in a separating funnel. Water (100 mL) was added, and the aqueous phase was
extracted with chloroform (2 × 100 mL). The organic layer was washed with brine (100 mL),
dried over MgSO4 and concentrated under vacuum. The crude product was purified by
silica gel column chromatography using CH2Cl2/petroleum ether (1/1) as the mixture of
eluents. Compound PDI-4S was dissolved in a minimum of CH2Cl2 and precipitated using
MeOH before filtration, giving a green-dark powder (525 mg, 89% yield).

5. Conclusions

In conclusion, the current state of the art in the synthesis of thionated perylenediimides
(PDIs) clearly shows that the methods used rely almost exclusively on Lawesson’s reagent.
However, the reactivity of this reagent seems limited, particularly in terms of access to the
multi-thionated derivatives PDI-3S and PDI-4S. Here, we describe a possible alternative
using the Curphey’s reagent which combines the P2S5 reagent (in dimeric form P4S10) with
hexamethyldisiloxane (HMDSO). This initial study clearly demonstrated higher reactivity
than Lawesson’s reagent. While direct access to fully thionated PDI-4S appears challenging
for PDI derivatives unsubstituted on the perylene backbone, the incorporation of four
para tert-butylphenoxy substituents in the bay region showed remarkable efficiency with
this new synthetic method. In addition, this thionation method seems compatible with
the presence of the substitution-sensitive nitro group grafted in the bay position. This
preliminary work clearly paves the way for an effective alternative to Lawesson’s reagent
in the synthesis of thionated PDIs with possible new developments to access these electron
acceptors on a larger scale for applications in organic electronics and biomedicine, especially
as metal-free photosensitizers in photodynamic therapy or photothermal therapy.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules29112538/s1. Figures S1–S22: 1H, 13C and HRMS
spectra of thionated perylenediimides; Figures S23–S24: Photochemical degradation study.
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