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RÉSUMÉ. Avec le besoin croissant de solutions de chauffage économiques et éco-énergétiques, les pompes à 

chaleur (PAC) ont émergé comme une alternative prometteuse pour les systèmes de chauffage résidentiels, jouant 

un rôle crucial dans le virage mondial vers une technologie de chauffage plus durable. Cet article de revue présente 

une analyse approfondie des techniques d'Analyse du Cycle de Vie (ACV) appliquées aux PAC domestiques, en 

(i) examinant la littérature existante sur les ACV menées pour les PAC domestiques, dans le but d'évaluer leur 

impact environnemental tout au long de leurs étapes de cycle de vie ; (ii) discutant des indicateurs 

environnementaux clés et des paramètres couramment évalués dans les ACV pour les PAC domestiques tels que 

le Coefficient de Performance et les réfrigérants ; (iii) indiquant les défis liés à la réalisation d'ACV pour ces 

systèmes. Cette étude met en évidence la nécessité de méthodologies normalisées et d'améliorations de la qualité 

des données, et propose des recommandations pour les orientations futures de la recherche afin de soutenir le 

développement de technologies de chauffage durables dans les structures résidentielles. En conclusion, l'ACV 

réalisée sur les HP révèle des perspectives précieuses pour améliorer leur impact environnemental à travers 

différentes étapes. 

MOTS-CLÉS : Pompes à chaleur, Analyse du Cycle de Vie, Revue 

 

 
ABSTRACT. With the growing need for economical and energy-efficient space heating solutions, heat pumps (HP) 

have emerged as a promising alternative for residential heating systems playing a crucial role in the global shift to 

a more sustainable heating technology. This review paper presents a thorough analysis of Life Cycle Assessment 

(LCA) techniques applied to domestic HP, by (i) examining the existing literature on LCAs conducted for domestic 

HP, aiming to assess their environmental effect across their life cycle stages ; (ii) discussing the key environmental 

indicators and parameters commonly assessed in LCAs for domestic HP such as Coefficient of Performance and 

refrigerants ; (iii) stating the challenges in conducting LCAs for these systems. This study highlights the necessity 

for standardized methodologies and data quality refinements and offers recommendations for future research 

directions to support the development of sustainable heating technologies in residential structures. In conclusion, 

the LCA conducted on HP reveals valuable insights to improve their environmental impact across various stages. 

KEYWORDS: Heat pumps, Life Cycle Assessment, Review. 

 

1. INTRODUCTION 

1.1. LIFE CYCLE ASSESSMENT 

The concept of Life Cycle Assessment (LCA) emerged during the 1960s due to concerns about 

environmental deterioration, particularly limited resource availability (Amahmoud et al., 2022). 

Afterward, a remarkable achievement was made in standardization, with LCA gaining recognition in 

policy and legal frameworks. Additionally, many prominent life-cycle impact assessment techniques 

originated during this period. LCA experienced methodological divergence in response to increased 
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demand. Challenges in interpreting ISO criteria led to the emergence of various approaches (Curran, 

2016) (Guinée et al., 2011). Nowadays, LCA is expanding its focus to encompass all three dimensions 

of sustainability – environmental, social, and economic (Amahmoud et al., 2022). 

1.2. LCA OF HEAT PUMPS 

To maintain the increase in the global temperature to 2°C, over 190 countries committed to cutting 

their emissions by 40% by 2030 as part of the Paris Climate Agreement (Paris Agreement on Climate 

Change, 2024). Nations are putting serious efforts into decarbonization by introducing a renewable 

energy source, resulting in improving the architectural style. Enhancing efficiency in appliances entails 

applying methods derived from nature (2019 Global Status Report for Buildings and Construction, 

2019). Heat pumps (HP) are crucial for EU decarbonization goals. However, regular assessment is 

necessary to ensure their ongoing performance and minimize environmental impact. 

Since 1990, LCA has been applied to the HP industry (Lis et al., 2019) (Taborianski & Prado, 2004) 

(Fava, 2006), and as a good diagnostic tool for monitoring the performance of products, it contributed 

significantly to its improvement over years. Many comparative studies have been conducted to compare 

the performance of HP systems to conventional ones in terms of environmental impact (Marinelli et al., 

2019) (Lin et al., 2021) (Lozano Miralles et al., 2020). Various Life Cycle Impact Assessments (LCIA) 

were utilized to identify those impacts such as CML2001, ReCiPe, Eco-indicator 99, IPCC, EF method, 

and many others. Some methods assessed impact categories at intermediate levels (midpoint), while 

others focused on the overall environmental damage (endpoint), with some employing both levels 

depending on the approach of the study. Despite being energy-efficient, HP systems still contribute to 

the environmental impact by increasing greenhouse gas (GHG) emissions, notably the refrigerants used 

and carbon dioxide (CO2) emissions through the generation of electricity needed to power them. 

1.3. OBJECTIVES AND SCOPE OF THE STUDY 

This review examines existing literature on LCA conducted for domestic HP in residential buildings, 

evaluating their environmental impact across their life cycle stages, discussing the key environmental 

indicators and parameters in LCAs, and addressing the challenges in conducting LCAs for these systems. 

Eventually, this work aims to propose clear and objective recommendations for future action plans in 

the realm of heat pumps. 

2. METHODOLOGY 

2.1. SEARCH STRATEGY AND STUDY EVALUATION 

This review evaluates the environmental impacts of domestic HP in residential buildings by 

examining their LCA. An electronic search was conducted on SCOPUS and Web of Science databases 

due to their scientific standards and extensive coverage. Key terms were formulated to initiate the 

research followed by an organized, phased search approach to filter out the irrelevant articles.  

Criteria such as date and type were applied to narrow down the search. Only English-language 

research articles were considered in which they were screened based on titles and abstracts for relevance, 

with non-aligned or irrelevant abstracts excluded. After removing inaccessible articles and duplicates, a 

comprehensive full-text reading was carried out to ensure the credibility of the selected articles in terms 

of study design, methodology, and relevant outcomes. 
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The key terms used in both databases are “Domestic heat pumps” OR “Ground-source heat pumps” 

OR “Water-source heat pumps” OR “Air-source heat pumps” AND “Life Cycle Assessment” OR “Life 

Cycle Analysis” OR “LCA”, then 297 articles were addressed in SCOPUS and 169 in Web of Science, 

for which each of them underwent a systematic path of filtering. 

Out of the English research articles that evaluated the impact of domestic HP on the environment 

using LCA methods during the last two decades, 36 articles were chosen and retrieved to be discussed 

in this review. 

2.2. DATA IDENTIFICATION 

The 36 articles under study were issued between 2010 and 2023 in which 22 of them (equivalent to 

61%) were released in the last four years, between 2020 and 2023, inclusively. The box plot of the 

distribution of years of publication in Figure 1, is negatively skewed due to the dominance of data to the 

right side of the axis which resulted in a skewness to the left showing the attention that has been recently 

drawn to the assessment of domestic HPs using the LCA approach. 

 

Figure 1: Boxplot for the distribution of years of publication. 

Attaining environmental goals has been a serious concern for the European countries especially in 

the last decade and after the Paris Agreement in 2016. Eventually, most of the European countries have 

launched the Nationally Determined Contributions (NDCs) to reduce their GHG emissions by enhancing 

and improving their technologies (Paris Agreement on Climate Change, 2024). Most of the articles 

(69.5%) were carried out in European countries along with their case studies, as illustrated in Figure 2. 

 

Figure 2: Distribution of articles among countries. 

As each type of the studied HP may have a different impact on the environment, the 36 studied papers 

were classified and regrouped according to the type of HP under study. These classifications are well 

presented in Figure 3. Interestingly, 18 studies – equivalent to 50% of the articles – aimed to evaluate 

the environmental impact of Ground-Source Heat Pumps (GSHP) and Geothermal Heat Pumps (GHP), 

in which six of them compared the GSHP with Air-Source Heat Pumps (ASHP), and five other studies 

compared the GSHP with conventional heating systems such as condensing natural gas, biomass, and 

coal boilers. Finally, seven studies assessed the GSHP without comparison. 

Four studies compared the ASHP to conventional systems and only one study focused on ASHP 

without any comparison. A group of five miscellaneous types of heat pumps were investigated in 

comparison with another system. Another group of eight miscellaneous types of HP was compared to 

conventional systems.  
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Figure 3: Classification of articles according to the type of heat pump. 

These seven classifications are compared and examined in terms of their load on the environment. It 

should be noticed that none of the articles were about double service heat pumps. 

2.3. DISSIMILARITIES 

Comparing these 36 articles was challenging as dissimilarities took place among the factors that 

should be comparable, such as the refrigerants, the Coefficient of Performance (COP), the functional 

unit, and the Life Cycle Impact Assessment (LCIA) method. 

Refrigerants. The type of refrigerant used in the HP systems considerably affects the system 

environmental impacts. However, it was not available in all studies in which 13 studies (accounting for 

36%, as shown in Table 1) didn’t mention the type of refrigerant used. Ignoring the contribution of 

refrigerants to the environmental load created an essential dissimilarity. However, for the studies that 

defined the refrigerants being used, the environmental impacts of refrigerants vary based on factors like 

their chemical composition, Global Warming Potential (GWP), and energy efficiency. 

Table 1 : Type of refrigerant used in percentage. 

R134a R410a R22 R32 Ammonia NA 

30.6% 19.5% 5.5% 5.5% 2.7% 36.2% 

LCA Boundaries. The LCA for 26 out of the 36 studies was carried out from the cradle-to-grave 

considering the whole cycle from the extraction phase of the raw materials to the disposal phase, whereas 

the other 10 were performed using the cradle-to-gate approach with a partial assessment that terminates 

at the gate stage focusing on the upstream stages of production where significant environmental impacts 

occur. Interestingly, nine out of those ten articles discussed the GSHP or the GHP case, while the tenth 

one investigated the waste heat-fed heat pump. 

Coefficient of Performance (COP). 27 studies (75%) presented the Coefficient of Performance 

(COP) as a significant comparable measure to assess the efficiency of the tested heat pumps at a specific 
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point in time, in which five of them defined and tested the Seasonal Coefficient of Performance (SCOP) 

providing a more comprehensive evaluation of its performance over an entire heating season, 

considering variations in operating conditions and energy use.  

Functional Unit (FU). A huge difference in the functional units was observed among the literature. 

53% of the studies used the thermal energy in Watt-hours (kWh or MWh) as their FU, 11% used the 

thermal energy in Joules (MJ or GJ), and 19% referred to the lifetime (in years) as their FU. 

 

Figure 4: Functional units of heat pump 

systems (in percentage). 

However, 11% of the studies didn’t mention 

their functional unit at all. 

Harmonizing the FUs is essential to enable 

comparable analysis in LCA studies. A unified 

functional unit ensures consistency and 

comparability among tested items. This would 

facilitate benchmarking against best practices to 

identify areas of improvement and enhance 

efforts in achieving sustainability goals.  

Life Cycle Impact Assessment (LCIA) method. The LCIA method is a crucial component of LCA, 

providing valuable insights into the environmental impacts of HP throughout their entire lifetime. LCIA 

can be performed through several methods depending on the data availability, goal, and scope of the 

study (illustrated in Table 2) such as Eco-indicator 99, which serves as both a scientifically grounded 

method and a practical tool for eco-design (‘Sustainable Development’, 2012) and which was used by 

20% of the articles of this review. The CML method was created by the “Centrum voor Milieukunde 

Leiden” in the Netherlands in 1992 (Acero et al., 2015) and was used by 14% of the papers as compared 

to other methods. 

Table 2: Life Cycle Impact Assessment methods (LCIA) per type of heat pump. 

 
CML (1992, 

2000, 2001) 

ReCiPe (2008, 

2016) 
EF method 3.0 

IMPACT 

2002+ 

(IPCC2001, 
ELCD, CED, 

EPS2000 …) 

Eco Indicator 

(95 and 99) 

Geothermal HP 
Russo et al., 

2014 

Pratiwi & 

Trutnevyte, 2021 
  

Scharrer et al., 

2020 
 

GSHP  

Zhang et al., 

2022 Famiglietti, 

Gerevini, et al., 

2021 

Zhang et 

al., 2022 

 

Zhang et al., 2022 

Koroneos & 

Nanaki, 2017 

Zhai et al., 2022 
Abusoglu & 

Sedeeq, 2013 
Bonamente & 
Aquino, 2017 

ASHP 
Naumann et 

al., 2022 

Sevindik & 

Spataru, 2022 
  

Zheng et al., 2016 Lozano 

Miralles et al., 

2020 

Lozano Miralles et 

al., 2020 

GSHP versus ASHP 

Greening & 
Azapagic, 

2012 

Marinelli et al., 

2020 

 
Violante et 

al., 2022 

Marinelli et al., 

2020 
 

Sevindik et 

al., 2021 

Aresti et al., 
2022 

Sevindik et al., 

2021 

Systems versus 
conventional heating 

methods 

 
Lin et al., 2021 

Famiglietti, 
Toppi, et al., 

2021 

Khan et al., 

2020 

Rey Martínez et 

al., 2011 

Khan et al., 
2021  
Khan et al., 

2020 

Riva et al., 2021 

11%

53%

19%

11%
3% 3%

MJ or GJ

kWh or MWh

Year

Not Available

In °C

per 𝑚2 
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Famiglietti, 

Gerevini, et al., 

2021 

Rey Martínez 

et al., 2011 

Systems versus each 

other’s 

(Mahon et al., 

2022) 

Caduff et al., 
2014 

Autelitano et al., 
2023 

Famiglietti et al., 

2023 
  

Nitkiewicz & 

Sekret, 2014 

References with a midpoint References with endpoint References with endpoint and midpoint 

ReCiPe for the analysis of Environmental Footprints combining Eco-indicator and CML (Acero et 

al., 2015) was highly used among the tested studies with 36%. Also, IMPACT 2002+ is widely used in 

academia and industry (Jolliet et al., 2003), and Environmental Footprint (EF) package normalization 

and weighting was discussed and developed by the Directorate General for the Environment (DG ENV) 

in 2018 (European Commission. Joint Research Centre., 2018), each method was used by three studies 

only (accounting for 8%). 

Some of these LCIA methods used the endpoint perspective at intermediate stages of cause-effect 

chains, focusing on specific environmental stressors, such as GHG gas and acidification. However, 

others employed the endpoint method where evaluation was carried out at the outcomes such as human 

health or ecosystem quality. Interestingly, some studies chose to use both approaches, the midpoint, and 

the endpoint. The proposed midpoint-to-endpoint weighting set was primarily intended to draw attention 

to the relative significance of midpoint indicators with the influence categories they have on endpoints.  

3. ENVIRONMENTAL IMPACT ASSESSMENT 

The performance of domestic HP using LCA was studied over the last two decades in 36 journal 

articles distinctively in several ways and using different criteria. Some of those studies focused on the 

effect of refrigerants, other studies focused on the phase that is contributing the most, that is, the usage 

phase and end-of-life phase of the HP over its lifetime, 75% of the studies presented the COP as a 

significant indicator for performance evaluation and 64% expressed the FU in terms of thermal energy 

using different units (kWh, MWh, MJ, or GJ). 

According to the seven classifications of heat pump systems presented in this study (Figure 3), 

environmental impacts such as Global Warming Potential (GWP), Acidification Potential (AP), 

Eutrophication Potential (EP), and Ozone Depletion were the most reported impact factors, in which 

some of them were reduced when a conventional system such natural gas furnace, biomass-based, oil-

based, bio-oil-based, or condensed gas boilers were replaced by GSHP, GHP, or even in some few cases 

ASHP. It was concluded in most of the studies that the production and the use phases accounted for the 

biggest portion of the environmental impact when compared to the other phases (extraction, installation, 

and end-of-life). Even the most efficient heat pumps equipped with renewable resources discussed by 

(Autelitano et al., 2023; Famiglietti et al., 2023; Famiglietti, Gerevini, et al., 2021; Famiglietti, Toppi, 

et al., 2021; Pratiwi & Trutnevyte, 2021; Scharrer et al., 2020; Violante et al., 2022) had a considerable 

impact on the environment such as Water Use (WU), Land Use (LU) in case of hydropower generation, 

wind turbine, or solar photovoltaic PV panels. 

4. LIMITATIONS 

Lacking consistency in the methodology (LCIA), form, input of parameters (COP, SCOP, EER, …), 

and many others made the comparison of the 36 articles of this review from all aspects impossible. 

Studying the SCOP of heat pumps is crucial as it provides insights into their overall energy efficiency, 
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guiding optimization efforts in design, operation, and control strategies. Additionally, understanding 

SCOP provides informed decisions about system performance and cost-effectiveness when considering 

heat pump installations. 

Dissimilarities in functional units and LCA boundaries led to divergent conclusions about the 

environmental impact of heat pumps. Moreover, insufficient information was observed about several 

significant factors such as the geographical area (e.g. climate conditions), the type of refrigerants used, 

electricity source, electricity mix, and their change over time. In fact, the variation of the electricity mix 

in a residential building highly affects the LCA outcomes (Bayer et al., 2012) (Pei et al., 2022). By 

understanding the sources of electricity generation, we can assess environmental footprint, predict 

energy costs, and inform policies to promote sustainability and energy security. All these factors were 

not adequately addressed in the LCA studies in which many of them were missing. As consistency and 

reliability of HPs are achieved on the industrial level through the Environmental Product Declaration 

(EPD), they can be attained as well on the research level through the development and implementation 

of a standardized LCA template for HP.  

5. CONCLUSION 

This review suggests that the main methodology for carrying out an LCA for domestic HP in 

residential buildings needs to be defined in further studies to make a quantitative comparison possible 

among LCAs of other energy systems such as standardized functional units, typical norms, and measures 

reflecting the performance of heat pumps and their efficiency such as COP, SCOP, Energy Efficiency 

Ratio (EER) and LCA system boundaries. A comprehensive methodology for a well-organized LCA for 

heat pumps should be created and developed that can serve as a practical template for future assessments 

on heat pumps. This would in turn facilitate well-informed decision-making and sustainable 

technological advancements in the heating and cooling industry. 
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