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A B S T R A C T

Most real-world systems are characterised by dynamics and correlations emerging at multiple time scales,
and are therefore referred to as complex systems. In this work, the complexity of time series produced by
complex systems was investigated in the frame of information theory computing the entropy rate via the
conditional entropy (CE) measure. A comparative investigation of several CE estimators, based on linear
parametric and non-linear model-free representations of the process dynamics, was performed considering
simulated linear autoregressive (AR) and mixed non-linear deterministic and linear stochastic dynamics
processes, as well as physiological time series reflecting short-term cardiorespiratory dynamics. In simulations,
the estimated CE values decreased when reducing the system complexity through an increase in the pole radius
of the AR process or with the predominance of the deterministic behaviour in the mixed dynamics. In the
application to cardiorespiratory dynamics, a reduction in physiological complexity was observed resulting from
a regularization of the time series of heart rate and respiratory volume when decreasing the breathing rate.
Our results evidence how simple and fast approaches based on linear parametric or permutation-based model-
free estimators allow efficient discrimination of complexity changes in the short-term evolution of complex
dynamic systems. However, in the presence of non-linear dynamics, the superiority of the more general but
computationally expensive nearest-neighbour method is highlighted. These findings have implications for the
assessment of complex dynamics both in clinical settings and in physiological monitoring.
1. Introduction

Real-world physical and social systems - such as climatic, phys-
iological, biological, financial or evolutionary systems - are broadly
characterised as complex [1–3]. The non-trivial and often controversial
nature of this concept is demonstrated by the wide variety of applica-
tions covered by the term [4]. Over the years, numerous works have
attempted to provide a unique definition of complexity in order to
identify valid tools for studying the dynamics of complex systems. The
idea of complexity is related to phenomena involving multiple interac-
tions of several independent and intrinsically complicated parts [4,5].
The degree of complexity of these systems is highly dependent on
the number of factors influencing the individual parts or their in-
teractions, and consequently on the different directions in which the
system can evolve. A property commonly ascribed to complex systems
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is non-linearity, manifested when the principles of proportionality and
superposition of effects that characterise linear systems are lacking [6].
More generally, complex systems are self-organising, with important
emergent dynamics in response to small variations in any individual
components [4,7,8], and exhibiting self-similarity across multiple time
scales and long-range correlations [9].

The human organism can be seen as a complex system where a
large number of control mechanisms operate simultaneously to provide
homeostatic balance [6,10]. Indeed, the combined effect of multiple
coupling and feedback interaction mechanisms between physiologi-
cal sub-systems results in non-linear dynamics characterised by high
variability and long-term self-similarity [11–13]. These complex phys-
iological dynamics reflect the capability of physiological mechanisms
to maintain an overall steady state in response to external stimuli or
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intrinsic physiological alterations [14,15]. Several studies show how
performing a specific task results in the predominance and synchronisa-
tion of specific physiological mechanisms, with decreasing complexity
and increasing regularity of physiological dynamics. For example, it
was seen how postural stress induced by tilting or standing leads to
lower physiological complexity [16–18], or how the practice of phys-
ical activity increases the ability to react to physiological variations
resulting in a greater complexity of physiological dynamics even in
resting conditions [19]. It has also been observed that age-related
physiological changes are associated with a decrease in the complexity
of both cardiovascular [20,21] and neural [22] dynamics. More regular
dynamics can generally be associated with reduced cooperation be-
tween physiological systems, indicating the presence of a pathological
state [6,23,24], as shown in many investigations conducted on patients
with neurological or psychiatric [25–27], cardiac [28], immune [29] or
behavioural [30] disorders.

The studies mentioned above rely on diverse meanings of the term
‘‘complexity’’, which is in fact elusive and can be quantified in different
ways [12]. Given the multi-faceted properties of complex systems,
tools such as fractal dimension [31], Lyapunov exponent [32], and
Lempel–Ziv complexity [33] have been used to study their dynami-
cal behaviour, as these methods are able to capture self-similarities,
emergencies, and numerosity of the systems, respectively. In view of
the above, a complex system is rarely completely deterministic or
chaotic [5], since it exhibits random dynamics that cannot be trivially
represented via mathematical models. As a consequence, the stochastic
representation of complex dynamics has emerged as a preferential
framework for their analysis. A typical approach is to exploit the
statistical description of the data generated by the system to study its
dynamical behaviour using information-theoretic measures. In broad
terms, the evolution of an isolated system results in a large amount of
information and increased entropy, whereas the cooperation of systems
as parts of a large network results in a more balanced state and more
stable entropy [34]. In this context, the idea of complexity can be as-
sociated with that of non-regularity and unpredictability of the system
dynamics, and can be measured in terms of entropy rate [35,36].

Thanks to their suitability for the description of short-length data
with strong stochastic and noisy components, the measures of entropy
rate are of great interest for the practical analysis of physiological
time series. Depending on the characteristics of the system under
investigation, different methods can be used to estimate the entropy
rate of a time series. The linear parametric estimator, widely used for
its simplicity, is limited to identifying linear dynamics and is suitable
only under certain probability distribution assumptions [37]. For this
reason, more versatile but computationally expensive methods have
been developed to consider the non-linear dynamics often character-
ising complex physiological systems. These estimation methods can be
related to the coarse-graining of embedding spaces, as for the nearest-
neighbours [38] or kernel [39] estimators, or to the symbolization of
dynamics, as done by binning [40], permutation [41] or slope [42]
estimators. The aim of this work is to assess, through a systematic
comparative analysis, the ability of the above-mentioned entropy rate
estimators to differentiate complex dynamics in synthetic and real
physiological dynamical systems. Specifically, we focus first on the
analysis of simulated time series generated by a linear autoregressive
system with oscillatory components of different amplitude, and by a
modulated convex combination of non-linear deterministic dynamics,
consisting of a logistic map, and their linear stochastic counterpart,
represented by the Iterative Amplitude Adjusted Fourier Transform
surrogate. Then, the investigated estimators are compared applying
them on physiological time series describing the beat-to-beat variability
of the heart period and the respiration amplitude measured during a
381

controlled breathing task. i
2. Methods

2.1. Entropy as a measure of uncertainty

In the framework of information-theory, the Shannon information
content is the central concept for the definition of entropy mea-
sures [43]. Considering a 𝑑-dimensional random variable 𝑉 , this term
quantifies the uncertainty about a specific outcome 𝑣 = [𝑣1,… , 𝑣𝑑 ]
of the variable looking at its probabilistic nature. Specifically, the
information content associated to 𝑣 is quantified as ℎ(𝑣) = − log 𝑝(𝑣),

here 𝑝(𝑣) = 𝑃𝑟{𝑉 = 𝑣} is the probability that 𝑉 is equal to 𝑣 [43].
ooking at all the outcomes of the variable, entropy quantifies infor-
ation as the average uncertainty about such outcomes, i.e., 𝐻(𝑉 ) =
[ℎ(𝑣)] = −E[log 𝑝(𝑣)], where E[⋅] is the expectation operator [43].
hus, 𝐻(𝑉 ) = 0 if only one outcome occurs with unit probability,
hereas if all outcomes have the same probability of occurrence 𝐻(𝑉 )

akes the maximum value.
The probability 𝑝(𝑣) can be either continuous or discrete depending

n whether 𝑣 takes values inside a continuous set of values 𝑉 or a
inite-size alphabet 𝑉 , respectively [44]. If the variable 𝑉 is continu-
us its uncertainty is expressed using the differential entropy computed
ia integration over the continuous domain 𝑉 , whereas if 𝑉 is discrete
he entropy is computed via sums extended to the alphabet 𝑉 . Entropy
easures are typically expressed in nats for continuous variables and

n bits for discrete variables, respectively using the natural or the base
logarithm [44].

.2. Conditional entropy as measure of complexity

Let us consider a dynamical system  and the stationary stochastic
rocess 𝑋 which describes the states of the system over time. Let
s further define 𝑋𝑛 as the scalar variable obtained sampling 𝑋 at
he present time 𝑛, 𝑋𝑘

𝑛 = [𝑋𝑛−1,… , 𝑋𝑛−𝑘] as the vector sampling the
ast of the process over the past 𝑘 lags, and 𝑋−

𝑛 = lim𝑘→∞𝑋𝑘
𝑛 as the

nfinite-dimensional variable representing its whole past history. The
eparation between present and past states allows to study the dynami-
al evolution of the information carried by the system. This concept was
ntroduced with the so-called Kolmogorov–Sinai (KS) entropy [45,46],
hich quantifies the average rate at which the information is produced
y the system:

𝐾𝑆 = lim
𝑛→∞

1
𝑛
𝐻(𝑋𝑛, 𝑋

−
𝑛 ), (1)

where 𝐻(𝑋𝑛, 𝑋−
𝑛 ) is the joint entropy of the states of the process 𝑋

onsidered up to time 𝑛. Thus, if the information carried by the system
oes not increase with time, the average amount of information gained
y the system tends towards zero.

Under the assumption of stationarity of the process 𝑋, the Shan-
on entropy quantifying the information carried by the system at the
urrent state is a static quantity, i.e., 𝐻(𝑋) = 𝐻(𝑋𝑛) = −E[log 𝑝(𝑥𝑛)],
ince it provides the same information content at all times [36]. To
ave insight on the dynamical evolution of the system, it is possible
o quantify the new information carried by the present state 𝑋𝑛 of the
rocess which cannot be inferred from its past 𝑋−

𝑛 , i.e., the Conditional
ntropy (CE) [36]:

𝑋 = 𝐻(𝑋𝑛|𝑋
−
𝑛 ) = 𝐻(𝑋𝑛, 𝑋

−
𝑛 ) −𝐻(𝑋−

𝑛 ). (2)

he conditional entropy defined for a random process as in Eq. (2) is
trongly related to the concept of entropy rate. Indeed, the entropy
ate (Eq. (1)) and the CE measure (Eq. (2)) asymptotically converge
o the same value if the process is stationary [44]. According to these
efinitions, the level of complexity of the system  is directly investi-
ated looking at the predictability of the process 𝑋 [40]. Specifically,
f the average information produced by the system at each point in
ime is high (i.e., high CE), the system generating the signal is char-
cterized by unpredictable, non-deterministic and possibly non-linear

nterdependencies, and is therefore considered to be overall complex.
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2.3. CE estimation approaches

In this section we describe different methods for the practical com-
putation of the entropy rate of a stationary dynamic process 𝑋 starting
rom a realization available in the form of the time series 𝑥 = {𝑥𝑖}, 𝑖 =
,… , 𝑁 . To estimate the CE measure from a single time series of finite
ength, it is necessary to assume that 𝑋 is an ergodic Markov process, so
s to collect observations over time rather then across realizations and
o approximate the infinite-length past history𝑋−

𝑛 with the vector of the
lagged components 𝑋𝑚

𝑛 = [𝑋𝑛−1,… , 𝑋𝑛−𝑚]. With these assumptions,
he CE in Eq. (2) can be computed as follows:

̂𝑋 = 𝐻̂(𝑋𝑛, 𝑋
𝑚
𝑛 ) − 𝐻̂(𝑋𝑚

𝑛 ) = −E
[

log
𝑝̂(𝑥𝑛, 𝑥𝑚𝑛 )
𝑝̂(𝑥𝑚𝑛 )

]

, (3)

where 𝑝̂(⋅) is an estimate of the probability obtained from the time series
𝑥.

Several approaches can be formulated for estimating the probability
distributions 𝑝(𝑥𝑛, 𝑥𝑚𝑛 ) and 𝑝(𝑥𝑚𝑛 ) which, once obtained, can be plugged
into Eq. (3) to compute the CE estimates. A first broad categorization
can be made between methods assuming a specific probability distribu-
tion and using its parameters to derive entropy estimates, i.e., model-
based approaches, and methods approximating the probability density
directly from the data, i.e., model-free approaches [47,48]. The former
approaches are simpler and computationally faster, but lack generality
and can fail to describe complex non-linear dynamics. Furthermore,
estimators can work either with discrete or continuous variables; since
the variables describing physiological dynamics are typically continu-
ous, discrete estimators need to provide a symbolic representation of
the values assumed by such variables before attempting to compute
entropy measures [40,47,49]. Continuous estimators are more precise
but also less data-efficient and more time-consuming, while methods
performing discretization can be implemented in faster algorithms but
are exposed to accuracy issues related to coarse graining [35]. Both
approaches suffer from the curse of dimensionality, i.e., the difficulty
of reliably estimating entropies for variables of high dimension (param-
eter 𝑚 in Eq. (3)) due to the increasing sparsity of data represented in
spaces of growing dimension [35,50]. This issue makes the CE estimates
to decrease towards zero even for complex unpredictable time series
when the dimension 𝑚 increases [35,51].

In the following, different CE estimation approaches are taken into
account, discussing how the above-mentioned issues can be addressed
by a careful choice of the estimation parameters of each method.
Later, in Section 5, different applications are discussed to demonstrate
the feasibility of successfully exploiting the various estimators in the
context of complex physiological dynamics.

The algorithms employed to assess time series complexity have been
collected in the univariate Information Decomposition (unID) MAT-
LAB toolbox. Freely available on GitHub, the unID toolbox allows to
compute conditional entropy and entropy measures describing jointly
and separately the dynamics of the past and of the current states of a
process, with each of the estimators described in the present work.

2.3.1. Linear estimator
The linear estimator is a well-known model-based approach for

the estimation of information-theoretic measures based on the assump-
tion that data follow a Gaussian probability distribution [52]. Given
a generic 𝑑-dimensional Gaussian variable 𝑋𝑑

𝑛 with zero-mean, its
probability distribution is given by:

𝑝(𝑥𝑑𝑛 ) =
1

√

(2𝜋)𝑑 |𝛴𝑋𝑑 |
𝑒−

1
2 𝑥

𝑑
𝑛 𝛴

−1
𝑋𝑑

𝑥𝑑𝑛
⊤

, (4)

here 𝛴𝑋𝑑 = E
[

𝑋𝑑
𝑛
⊤ 𝑋𝑑

𝑛

]

is the covariance matrix of 𝑋𝑑
𝑛 . Then,

considering the linear parametric representation of a stationary zero-
mean Gaussian process 𝑋 provided by the autoregressive (AR) model of
order 𝑚, i.e., 𝑋𝑛 = 𝐀𝑋𝑚

𝑛 +𝑈𝑛 with 𝐀 a 𝑚-dimensional coefficient vector
and 𝑈 a zero-mean white Gaussian noise modelling the prediction
382

𝑛

error, the entropy of 𝑋𝑚
𝑛 and 𝑋𝑚+1

𝑛+1 = [𝑋𝑛𝑋𝑚
𝑛 ] can be computed using

Eq. (4) in the definition of differential entropy to get [48]:

𝐻𝑙𝑖𝑛(𝑋𝑚
𝑛 ) =

1
2
ln(2𝜋𝑒|𝛴̂𝑋𝑚 |), (5)

𝐻𝑙𝑖𝑛(𝑋𝑚+1
𝑛+1 ) =

1
2
ln(2𝜋𝑒|𝛴̂𝑋𝑚+1 |), (6)

where 𝛴̂𝑋𝑚 and 𝛴̂𝑋𝑚+1 are the estimated covariance matrices of 𝑋𝑚
𝑛 and

𝑚+1
𝑛+1 , respectively. Then, the linear estimate of the conditional entropy

an be found as [48]:

𝐸𝑙𝑖𝑛 =
1
2
ln(2𝜋𝑒𝜎̂2𝑈 ), (7)

where 𝜎̂2𝑈 =
|𝛴̂𝑋𝑚+1 |

|𝛴̂𝑋𝑚 |
is the prediction error variance obtained after

identifying the regression coefficients of the AR model via the least
squares method [53], that coincides with the partial covariance of 𝑋𝑚

𝑛
given 𝑋𝑚+1

𝑛+1 .
The order 𝑚 for the AR model can be estimated by the Akaike

AIC) [54] or Bayesian (BIC) [55] Information Criterion to efficiently fit
ata and avoid overfitting or, conversely, loss of information. Indeed,
he parametric representation guarantees high data-efficiency and the
ossibility to obtain an accurate estimation of entropy measures even
rom short data sets. Although in many applications the assumption of
aussianity is satisfied at least in first approximation, when this is not

he case the estimator may miss important non-linear structures in the
ata [56].

.3.2. Nearest-neighbour estimator
The most widely used non-parametric estimator is based on the

dea that the probability density around a data point is constant and
nversely related to the distance from its nearest samples [38]. Consid-
ring the 𝑁−𝑑+1 observations of the generic 𝑑-dimensional continuous
andom variable 𝑋𝑑

𝑛 , fixed a number 𝑘 of neighbour samples, its prob-
bility density 𝑝(𝑥𝑑𝑛 ) is related to the probability mass of the sphere of
iameter 𝜖𝑑𝑛,𝑘 and volume 𝑐𝑑,𝐿 centered at the reference point 𝑥𝑑𝑛 and
eaching its 𝑘th neighbour [40]:

(𝑥𝑑𝑛 ) =
𝑘

(𝑁 − 𝑑) 𝑐𝑑,𝐿 𝜖𝑑𝑛,𝑘
. (8)

he estimation of entropy measures by the nearest neighbour met-
ic is not typically performed by directly substituting the derived
robability distributions into the equation for entropy, because such
istributions are evaluated within embedding spaces of different dimen-
ion [38]; actually, several formulations that have been proposed aimed
t compensating for the presence of biases. In our work the formalism
ntroduced by Kraskov, Stögbauer, and Grassberger was used [57]. This
pproach allows to compensate the bias derived from the combina-
ion of entropy terms for variables of different dimensions, e.g., 𝑋𝑚

𝑛
nd 𝑋𝑚+1

𝑛+1 , in the estimation of CE, defining the searching distance
n the highest dimensional space and then searching for neighbours
n the lower dimensional spaces using the same range. The final CE
ormulation is obtained as [48]:

𝐸𝑘𝑛𝑛 = −𝜓(𝑘) + 1
𝑁 − 𝑚

𝑁−𝑚
∑

𝑛=1
(ln 𝜖𝑛,𝑘 + 𝜓(𝑁𝑋𝑚𝑛 + 1)), (9)

where 𝜓(⋅) is the digamma function, 𝜖𝑛,𝑘 is the maximum-norm distance
of (𝑥𝑛, 𝑥𝑚𝑛 ) to its 𝑘th neighbour in the (𝑚 + 1)-dimensional space, and
𝑁𝑋𝑚𝑛 the number of points whose distance from 𝑥𝑚𝑛 is lower than 𝜖𝑛,𝑘∕2
n the 𝑚-dimensional space.

The two estimation parameters of the nearest neighbour method are
the embedding dimension 𝑚, which needs to be set finding a tradeoff
between the accuracy of the reconstruction of the history embedding
and the curse of dimensionality, and the number of samples 𝑘 used
to evaluate the probability distribution [48], which needs to be set
finding a tradeoff between the variance, i.e., the statistical error of
the estimates around the mean, and the bias, i.e., the deviation of the

estimated mean value from the theoretical one.

https://github.com/ChiaraBara/unID_toolbox/tree/main
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2.3.3. Kernel estimator
Another well-known approach for a model-free entropy measures

estimation makes use of the kernel method. The probability distribution
of the generic variable 𝑋𝑑

𝑛 is estimated with this approach giving a
different weight to each 𝑑-dimensional outcome 𝑥𝑑𝑖 depending on its
distance from the reference sample 𝑥𝑑𝑛 [48]:

(𝑥𝑑𝑛 ) =
1

𝑁 − 𝑑 − 1

𝑁−𝑑
∑

𝑖=1,𝑖≠𝑛
𝐾(‖𝑥𝑑𝑛 − 𝑥

𝑑
𝑖 ‖), (10)

with 𝐾 (⋅) the kernel and ‖ ⋅ ‖ the norm functions. When adopting the
Heaviside kernel function with threshold distance 𝑟 and the Chebyshev
distance (or maximum norm), the kernel-based measure of CE is:

𝐶𝐸𝑘𝑒𝑟 = − ln
∑𝑁−𝑚
𝑛=1 𝑝(𝑥𝑚+1𝑛+1 )
∑𝑁−𝑚
𝑛=1 𝑝(𝑥𝑚𝑛 )

, (11)

here the probabilities 𝑝(𝑥𝑚𝑛 ) and 𝑝(𝑥𝑚+1𝑛+1 ) are estimated counting the
umber of observations of 𝑋𝑚

𝑛 and 𝑋𝑚+1
𝑛+1 falling within distance 𝑟 from

𝑚
𝑛 and 𝑥𝑚+1𝑛+1 .

This CE estimator is equivalent to the widely used measure of Sam-
le Entropy [39] and is also related to the previously defined measure
f Approximate Entropy [58], where each sample is self-counted in the
efinition of the probability distributions in Eq. (10) and the sum over
ll possible patterns is outside the logarithm, unlike in Eq. (11).

The estimation parameters for the kernel method are the embedding
imension 𝑚 and the width of the Heaviside function 𝑟. To ensure that
he reconstructed space is not too sparsely populated for the evaluation
f the probability distribution, which would lead to a bad estimate of
he conditional probability, previous work has recommended having at
east 10𝑚 sample points and large 𝑟. A common choice for 𝑟 is to set it
s a percentage (between 10 and 30%) of the standard deviation of the
nalysed time series [39,59].

.3.4. Binning estimator
The most intuitive approach for estimating entropy measures is the

o-called binning method, based on the discretization of the continuous
andom variable representing the process through quantization and
n the computation of its probability distribution via the frequentistic
pproach [40]. Considering a generic stochastic variable 𝑋 which takes
alues in the continuous domain 𝑋 =

[

𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥
]

, it is possible to
btain a symbolic representation by associating each sample 𝑥𝑛, 𝑛 =
,… , 𝑁 , with a discrete value 𝑏𝑛 belonging to the alphabet 𝑋𝑏 =
1,… , 𝑏}. Being 𝑏 the number of quantization levels (or bins) of ampli-
ude 𝑞 = (𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛)∕𝑏, the discrete variable 𝑋𝑏 takes the value 𝑥𝑏,𝑛 = 𝑖
hen the observation 𝑥𝑛 takes a value such that 𝑥𝑚𝑖𝑛 + (𝑖 − 1)𝑞 ≤ 𝑥𝑛 <
𝑚𝑖𝑛+𝑖𝑞. Then, the probability of all possible quantized vector variables
f length 𝑑, taking values inside the alphabet 𝑋𝑏 of 𝑏𝑑 symbols, is
easured as the frequency of occurrence of each possible realization

ver many observations, and the achieved distribution accounted for
he estimation of the entropy term of 𝑋𝑑

𝑛 . Thus, the binning estimate
f conditional entropy, i.e., 𝐶𝐸𝑏𝑖𝑛, is obtained as the difference of the
wo entropy terms related to the discrete vector variables representing
he process dynamics up to time 𝑛 and 𝑛 − 1.

The number of bins 𝑏 used to discretize the values of the original
ime series determines the level of coarse graining, so that when 𝑏 is
igher the description of the dynamics of the process is more detailed;
his parameter is fixed at 2 when the dynamics are binarized and is
ypically set to 6 when the CE needs to be estimated on time series
f 300 points [40]. Nevertheless, the choice of both the number of
ins and the embedding dimension influences the size of the symbolic
lphabet, in a way such that it is appropriate to keep 𝑏𝑚+1 smaller
han the time series length 𝑁 [35,49]. To increase the effectiveness
f this estimator when working with a limited number of samples,
ome approaches have been introduced, such as that of the Corrected
onditional Entropy (CCE) [51], where the embedding dimension 𝑚 is
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ot a priori defined.
.3.5. Permutation estimator
Among the model-free approaches for entropy estimation, the

ermutation-based estimator is one of the simplest, most efficient, and
obust to noise. This method does not take into account the information
arried in the samples of the process in terms of amplitude, but only in
heir temporal ranking compared to neighbouring points [41]. Unlike
he binning method, the discretization performed via permutations
orks directly on vector variables. Specifically, given a realization 𝑥𝑑𝑛 =
𝑥𝑛,1,… , 𝑥𝑛,𝑑

]

of the generic 𝑑-dimensional continuous variable 𝑋𝑑
𝑛 , the

ank-ordering procedure allows to obtain the symbolic representation
𝑑
𝑛 =

[

𝑟𝑛,1,… , 𝑟𝑛,𝑑
]

∈ 𝑅𝑋 where 𝑟𝑛,𝑖 ∈ {1,… , 𝑑} is the rank order of 𝑥𝑛,𝑖
nside the sequence 𝑥𝑑𝑛 rearranged in ascending order, i.e., 𝑟𝑛,𝑖 = 1 if
𝑛,𝑖 = 𝑚𝑖𝑛(𝑥𝑑𝑛 ) and 𝑟𝑛,𝑖 = 𝑑 if 𝑥𝑛,𝑖 = 𝑚𝑎𝑥(𝑥𝑑𝑛 ); for two equal components
f 𝑥𝑑𝑛 , the smallest rank is assigned to the component appearing last.
lso in this case, the probability of the 𝑑! symbolic vectors belonging

o the alphabet 𝑅𝑋 is used to estimate the entropy measure of the
ariable 𝑋𝑑

𝑛 . Similarly to the binning approach, the entropy estimates of
he variables 𝑋𝑚+1

𝑛+1 and 𝑋𝑚
𝑛 are subtracted to quantify the permutation-

ased CE measure, i.e., 𝐶𝐸𝑝𝑒𝑟𝑚. This estimation approach differs from
hat commonly used in the literature to obtain a permutation-based
valuation of the CE measure [60].

The only estimation parameter used by this approach is the em-
edding dimension 𝑚. Even though larger values of 𝑚 lead to a more
etailed description of the dynamics of the process, it is recommended
o limit the size of the alphabet used for estimating conditional entropy,
.e., (𝑚 + 1)!, below the length 𝑁 of the analysed series [49,61].

.3.6. Slope estimator
According to this approach, the discrete vector representing the

lope dynamics of the generic 𝑑-dimensional variable 𝑋𝑑
𝑛 is defined

ia the (𝑑 − 1)-dimensional variable 𝑆𝑑𝑛 =
[

𝑠𝑛,1 … 𝑠𝑛,𝑑−1
]

∈ 𝑆𝑋 where
𝑛,𝑖 ∈ {−2,−1, 0, 1, 2} is the symbol assigned to the difference between
wo consecutive samples, i.e., 𝑥𝑛,𝑖+1 − 𝑥𝑛,𝑖. Specifically, being 𝛾 and 𝛿
he two parameters indicating respectively the vertical increment and
he vicinity to the zero-difference condition when comparing 𝑥𝑛,𝑖+1 and
𝑛,𝑖, the symbols are assigned such that 𝑠𝑛,𝑖 = 2 if 𝑥𝑛,𝑖+1 − 𝑥𝑛,𝑖 > 𝛾,
𝑛,𝑖 = 1 if 𝛾 ≥ 𝑥𝑛,𝑖+1 − 𝑥𝑛,𝑖 > 𝛿, 𝑠𝑛,𝑖 = 0 if |𝑥𝑛,𝑖+1 − 𝑥𝑛,𝑖| ≤ 𝛿, 𝑠𝑛,𝑖 = −1 if
𝛿 > 𝑥𝑛,𝑖+1−𝑥𝑛,𝑖 ≥ −𝛾, and 𝑠𝑛,𝑖 = −2 if 𝑥𝑛,𝑖+1−𝑥𝑛,𝑖 < −𝛾. In this case, the

slope-based estimate of the entropy of 𝑋𝑑
𝑛 is computed as the Shannon

entropy of the probability of the 5𝑑−1 possible realizations of 𝑆𝑑𝑛 . For the
omputation of CE, this approach is applied to the continuous variables
𝑚+1
𝑛+1 and 𝑋𝑚

𝑛 to obtain the corresponding discrete variables 𝑆𝑚+1𝑛+1 and
𝑆𝑚𝑛 , which are then subtracted according to Eq. (3) to estimate the
conditional entropy term 𝐶𝐸𝑠𝑙𝑜𝑝𝑒.

Using this method, apart from the embedding dimension parameter
which should be set in order to have 5𝑚 lower than 𝑁 , the gradient
threshold parameters 𝛾 and 𝛿 have to be set, even if previous work
demonstrates how this approach is fairly stable to variations of these
parameters [42].

3. Simulation studies

In this section we investigate the behaviour of the different ap-
proaches for the estimation of the entropy rate on two simulated
dynamic systems. Linear and chaotic dynamics are examined to assess
the ability of these methods to capture variations in the complexity
of the simulated dynamics as both system and estimation parameters
change.

Specifically, the performances of CE estimators are investigated as
the complexity and the length of the time series representing system
realizations vary. The analyses were carried out first at varying the
embedding dimension (or the model order for the linear approach) in
the range 𝑚 = [2, 3, 4, 6] while fixing the other estimation parameters
𝑘 = 10 for 𝐶𝐸𝑘𝑛𝑛 [62], 𝑟 = 0.3 for 𝐶𝐸𝑘𝑒𝑟 [59], 𝑏 = 4 for 𝐶𝐸𝑏𝑖𝑛 [49],

and 𝛿 = 0.001 and 𝛾 = 1 for 𝐶𝐸𝑠𝑙𝑜𝑝𝑒 [42]), and then keeping constant
𝑚 = 3 while varying the number of neighbours in the range 𝑘 =
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[5, 10, 15, 30] for 𝐶𝐸𝑘𝑛𝑛, the Heaviside kernel threshold in the range
= [0.1, 0.2, 0.3, 0.5] for 𝐶𝐸𝑘𝑒𝑟, the number of bins in the range 𝑏 =

[2, 4, 6, 8] for 𝐶𝐸𝑏𝑖𝑛, and the gradient thresholds in the ranges 𝛾 =
[0.0001, 0.001, 0.01] and 𝛿 = [0.8, 1, 1.2] for 𝐶𝐸𝑠𝑙𝑜𝑝𝑒.

3.1. Stationary AR process

An autoregressive (AR) stationary stochastic process 𝑋 was consid-
ered as defined by the linear regression model [48]:

𝑋𝑛 =
𝑚
∑

𝑘=1
𝑎𝑘𝑋𝑛−𝑘 + 𝑈𝑛, (12)

where 𝑎𝑘, 𝑘 = 1,… , 𝑚, are the linear regression coefficients, 𝑚 is the
order of the AR model, and 𝑈𝑛 is a white Gaussian noise with zero-
mean and unit variance. In this work, we simulated a third-order AR
process featuring an oscillatory dynamic with frequency 𝑓 = 0.25 Hz
and amplitude proportional to the modulus 𝜌 of the complex-conjugate
poles describing the process in the complex-plane. The amplitude of
the stochastic oscillation determines the regularity of the AR process,
thus also the complexity of the system dynamics: as the value of the
parameter 𝜌 increases, the regularity of the process also increases,
shifting from complete unpredictability for 𝜌 = 0 to high predictability
for 𝜌 close to 1. The true theoretical values of CE were obtained from
the known model parameters [63]. However, it is relevant to highlight
that theoretical values cannot be used as reference for estimators using
symbolic approaches due to the necessity of a corrective term related
to the discrete representation of the space [35,64,65].

The analysis was performed on one-hundred realizations of the
process obtained for values of 𝜌 ranging from 0 to 0.9 with a step of
0.1, and time series lengths of 300 points. Fig. 1 shows the expected
decrease in the CE as 𝜌 increases. This decrease is observed using all
estimators, with some exceptions depending on the estimation-specific
parameters. We find that both 𝐶𝐸𝑙𝑖𝑛 and 𝐶𝐸𝑘𝑛𝑛 trends agree with the
theoretical value of conditional entropy for any 𝑚 and, for the model-
free estimator, also for any 𝑘, with a general slight increase of the bias
with both parameters. The setting of the estimation parameters has a
more evident impact on the reliability of the CE estimates obtained
using the methods based on discretization. For example, 𝐶𝐸𝑘𝑒𝑟 could
not be computed with a high embedding dimension 𝑚 or similarity
threshold 𝑟 due to the increasing sparsity of the explored spaces,
observed particularly for higher system complexity. Moreover, the
𝐶𝐸𝑏𝑖𝑛, 𝐶𝐸𝑝𝑒𝑟𝑚, and 𝐶𝐸𝑠𝑙𝑜𝑝𝑒 approaches fail to reflect the decrease in
complexity with increasing 𝜌 when the alphabet dimension becomes
larger than the length of the analysed time series, i.e., when 𝑚 > 4 and
𝑏 = 4 or 𝑚 = 3 and 𝑏 > 6 for the binning method (alphabet size of
1024 and 1296, respectively), and 𝑚 = 6 for the permutation method
(alphabet size of 5040). Regarding 𝐶𝐸𝑠𝑙𝑜𝑝𝑒, although the alphabet size
is still larger than 𝑁 = 300 for 𝑚 = 4 (i.e., 625), the expected trend is
still observed; in addition, the parameters 𝛿 and 𝛾 have less influence
on the trend of the measure. Furthermore, for 𝑚 = 2 the permutation-
and slope-based methods do not capture system dynamics variations as
the simulation involves a third-order process.

The ability of the estimators to capture variations in magnitude
of the system complexity was then studied quantifying the percent-
age variations obtained for the CE measure when varying the pa-
rameter 𝜌 between pairs of consecutive values taken in the set 𝜌 =
[0, 0.3, 0.5, 0.7, 0.8, 0.9], as well as computing the statistical significance
of such variations through a paired Student’s 𝑡-test. The results reported
in Fig. 2 show how variations of the parameter 𝜌 associated with higher
process complexity, i.e., 0.5 𝑣𝑠. 0.7, 0.7 𝑣𝑠. 0.8 and 0.8 𝑣𝑠. 0.9, lead
to changes in CE that are detected as significant by all estimators.
Since these are differential entropy metrics, the values obtained with
the linear and the nearest neighbour estimators behave more similarly
to the true theoretical values, with also lower 𝑝-values than the other
approaches. Otherwise, for lower complexity variations, i.e., 0 𝑣𝑠. 0.3
and 0.3 𝑣𝑠. 0.5, not all estimators are able to reveal significance.
384
Finally, the influence of the time series length on the reliability
of the complexity estimates was investigated computing the CE for
increasing values of 𝑁 in the range [50, 100, 200, 300, 500, 700, 1000],
after fixing the amplitude of the stochastic oscillation to 𝜌 = 0.8. From
the results reported in Fig. 3, for each estimator, increasing the time
series length produced the expected effect that the estimates of the
conditional entropy stabilize and present lower variance. Moreover, we
observe that the rate of convergence to stable values at increasing 𝑁
is faster when the embedding dimension is the one imposed for the
simulated system (𝑚 = 3) or lower, and decreases at increasing 𝑚.
In particular, the estimation of 𝐶𝐸𝑙𝑖𝑛 and 𝐶𝐸𝑘𝑛𝑛 tends towards the
theoretical value of conditional entropy. The convergence values of
𝐶𝐸𝑘𝑒𝑟 and 𝐶𝐸𝑏𝑖𝑛 are also strongly dependent on the parameters 𝑟 and
𝑏, respectively.

3.2. Mixed non-linear deterministic and linear stochastic dynamics process

A combination of linear stochastic and non-linear deterministic
dynamics was used to test the capability of the CE estimators to
capture complexity changes related to the randomness of the system.
Introduced by May to describe the evolutionary dynamics of population
or phenomena [66], the logistic map was used to simulate a chaotic
deterministic system. According to this model, the temporal evolution
of a logistic process 𝑌 is described by the non-linear finite-difference
equation [66]:

𝑌𝑛 = 𝑐 𝑌𝑛−1(1 − 𝑌𝑛−1), (13)

where 𝑐 is the growth rate of the chaotic dynamics. Specifically, the
internal dynamics of the system become increasingly non-trivial as the
parameter 𝑐 rises up, turning into chaotic in the range 𝑐 = [3.57, 4).
After generating a chaotic dynamic imposing 𝑐 = 3.9, a process 𝑍 with
the same spectrum and linear correlation was generated by using the It-
erative Amplitude Adjusted Fourier Transform (IAAFT) technique [67],
and then the two were combined as follows:

𝑋𝑛 = 𝜆𝑌𝑛 + (1 − 𝜆)𝑍𝑛. (14)

The parameter 𝜆 regulates the convex combination of the two opposite
types of dynamics: as the value of 𝜆 increases, the system shifts from
purely linear stochastic dynamics (obtained with 𝜆 = 0) to non-linear
deterministic (obtained with 𝜆 = 1).

One-hundred 300-sample realizations of the process described by
Eq. (14) were generated, by varying the parameter 𝜆 from 0 to 1 in
steps of 0.1. Fig. 4 shows that the estimated CE values follow an overall
tendency to decrease as the value of 𝜆 increases, after being almost
constant up to 𝜆 = 0.5. Thus, high levels of stochasticity result in highly
complex dynamics, while the complexity decreases as the deterministic
component of the system becomes more dominant. Interesting observa-
tions arise from the trend of 𝐶𝐸𝑙𝑖𝑛, which remains constant at varying
𝜆. This trend reflects the fact that, since the linear temporal correlation
is preserved by the IAFFT surrogate process, the complexity related to
the linear dynamics remains unchanged. Observations similar to the
first simulation can be made regarding the influence of the estimation
parameters on the CE trends for all the methods. Parameter settings
leading to work in high dimensional spaces are, also in this case, unable
to detect the expected CE changes. Nonetheless, in this case, the lowest
embedding dimension is also able to track the expected CE trends using
discretization-based approaches, as the model of the simulated process
involves one-lag dynamics.

Fig. 5 depicts the percentage variations in the CE estimates ob-
tained by changing the parameter 𝜆 between pairs of values in the
range [0, 0.1, 0.3, 0.5, 0.7, 0.9, 1]. A statistically significant decrease in the
estimated CE is reported for all the estimation approaches (except for
the linear parametric one) for values of 𝜆 higher than 0.5. Even with
higher p-values, slight complexity variations are deemed statistically
significant for values of 𝜆 lower than 0.5 for some estimators, i.e., the
kernel, binning and slope based. The nearest-neighbour approach seems
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𝜌

Fig. 1. Performance of the six conditional entropy estimators as a function of the estimation parameters (left column: embedding dimension 𝑚; right column: estimator-specific
parameter) for a stationary AR process featuring a stochastic oscillation, studied at varying the amplitude 𝜌 of the stochastic oscillation. Errorbar plots (mean ± std) depict the
distributions of CE computed over 100 realizations of length 𝑁 = 300 using the (a) linear (𝐶𝐸𝑙𝑖𝑛), (b) nearest neighbour (𝐶𝐸𝑘𝑛𝑛), (c) kernel (𝐶𝐸𝑘𝑒𝑟), (d) binning (𝐶𝐸𝑏𝑖𝑛), (e)
permutation (𝐶𝐸𝑝𝑒𝑟𝑚), and (f) slope (𝐶𝐸𝑠𝑙𝑜𝑝𝑒) approaches. For the linear and nearest neighbour estimates, a black line representing the theoretical values of the conditional entropy
is also reported.
b
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Fig. 2. Performance of the six conditional entropy measures in detecting the magnitude
of complexity variations in the dynamics of a stationary AR process with fixed frequency
𝑓 = 0.25 Hz. Errorbar plots depict the percentage variation (mean + std.dev. across
100 realizations of length 𝑁 = 300 points) of the CE computed by increasing the
mplitude of the AR stochastic oscillation taking consecutive values in the range
= [0, 0.3, 0.5, 0.7, 0.8, 0.9]; specific indications about the pair of 𝜌 values associated

with the compared distributions are reported on the x-axis. The estimation parameters
are set to 𝑚 = 3 for all methods, and 𝑘 = 10 for 𝐶𝐸𝑘𝑛𝑛, 𝑟 = 0.3 for 𝐶𝐸𝑘𝑒𝑟, 𝑏 = 4
for 𝐶𝐸𝑏𝑖𝑛, and 𝛿 = 0.001 and 𝛾 = 1 for 𝐶𝐸𝑠𝑙𝑜𝑝𝑒. The horizontal black lines represent
the true theoretical percentage variation of the conditional entropy measure. For each
estimation approach, asterisk denotes a statistically significant difference between the
distributions of the CE obtained for the pair of values selected for 𝜌 (paired Student’s
t -test, 𝑝 < 0.05).

to be the most sensitive in revealing complexity changes, as percentage
differences are evaluated using very low initial absolute CE values.

In addition, also for these simulated dynamics, the influence of the
time series length was investigated in the complexity index reliability
once a value of 𝜆 = 0.5 was fixed, reporting similar results to those
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achieved for the first simulation, as shown in Fig. 6. Indeed, it is
observed that the estimated values of CE tend to converge faster using
smaller values of the embedding parameter 𝑚, and report a strong
dependence on 𝑟 with regard to the kernel approach and on 𝑏 for the
inning one.

.3. Computational costs

Further analyses were conducted to compare the computational
osts of the investigated estimation approaches. Specifically, compu-
ational complexity and times have been evaluated according to the
mplementation of the algorithms of the unID toolbox.

Table 1 reports the averaged single-run computational times taken
o estimate CE and the other information dynamic measures by each
pproach, expressed as the average over one-hundred realizations of
he AR process (setting parameters: 𝑓 = 0.25 Hz and 𝜌 = 0.8) and of the
ixed non-linear deterministic and linear stochastic dynamics process

setting parameter: 𝑐 = 3.9 and 𝜆 = 0.5), at varying time series length
= [300, 500, 1000]. For all methods, the embedding parameter was

ixed to 𝑚 = 3, setting 𝑘 = 10 for 𝐶𝐸𝑘𝑛𝑛, 𝑟 = 0.3 for 𝐶𝐸𝑘𝑒𝑟, 𝑏 = 4
or 𝐶𝐸𝑏𝑖𝑛, and 𝛿 = 0.001 and 𝛾 = 1 for 𝐶𝐸𝑠𝑙𝑜𝑝𝑒. Computational times
ere calculated using computer equipped with an Intel Core i5-6200U
PU (2.30 GHz), 8 GB RAM, Windows 10 Home, MATLAB R2020a.
he percentage variations of the computational time increasing the
ime series length from 300 to 1000 samples are also reported in the
able. The computational times measured for the linear approach are
harply lower compared to nearest-neighbour and kernel methods, with
ifferences of two or even three orders of magnitude. Discretization-
ased methods require a computational time higher by one order of
agnitude than the linear approach, with the binning method being

he most demanding one. As expected, for all estimation approaches the
omputational time increases with the time series length, most strongly
or the nearest-neighbour and the kernel estimators.

These results are partially related to the computational complexity
f the estimation algorithms, which was investigated by using the O
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Fig. 3. Performance of the six conditional entropy estimators as a function of the estimation parameters (left column: embedding dimension 𝑚; right column: estimator-specific
parameter) for time series of length 𝑁 representing a stationary AR process featured by a stochastic oscillation of frequency 𝑓 = 0.25 Hz and amplitude 𝜌 = 0.8. Errorbar plots
(mean ± std) depict the distributions of CE computed over 100 realizations using the (a) linear (𝐶𝐸𝑙𝑖𝑛), (b) nearest neighbour (𝐶𝐸𝑘𝑛𝑛), (c) kernel (𝐶𝐸𝑘𝑒𝑟), (d) binning (𝐶𝐸𝑏𝑖𝑛), (e)
permutation (𝐶𝐸𝑝𝑒𝑟𝑚), and (f) slope (𝐶𝐸𝑠𝑙𝑜𝑝𝑒) approaches. For the linear and nearest neighbour estimates, a black line representing the theoretical values of the conditional entropy
is also reported.

Fig. 4. Performance of the six conditional entropy estimators as a function of the estimation parameters (left column: embedding dimension 𝑚; right column: estimator-specific
parameter) for a mixed non-linear deterministic and linear stochastic process studied at varying the 𝜆 parameter. Errorbar plots depict the distributions of CE computed over 100
realizations of length 𝑁 = 300 using the (a) linear (𝐶𝐸𝑙𝑖𝑛), (b) nearest neighbour (𝐶𝐸𝑘𝑛𝑛), (c) kernel (𝐶𝐸𝑘𝑒𝑟), (d) binning (𝐶𝐸𝑏𝑖𝑛), (e) permutation (𝐶𝐸𝑝𝑒𝑟𝑚), and (f) slope (𝐶𝐸𝑠𝑙𝑜𝑝𝑒)
approaches.
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Fig. 5. Performance of the six conditional entropy measures in detecting the magnitude
of complexity variations in the dynamics of a mixed non-linear deterministic and linear
stochastic process. Errorbar plots depict the percentage variation of the CE computed
by increasing the parameter regulating the convex combination of the two dynamics
taking consecutive values in the range 𝜆 = [0, 0.1, 0.3, 0.5, 0.7, 0.9, 1]; specific indications
about the pair of 𝜆 values associated with the compared distributions are reported on
the x-axis. The estimation parameters are set to 𝑚 = 3 for all methods, and 𝑘 = 10 for
𝐶𝐸𝑘𝑛𝑛, 𝑟 = 0.3 for 𝐶𝐸𝑘𝑒𝑟, 𝑏 = 4 for 𝐶𝐸𝑏𝑖𝑛, and 𝛿 = 0.001 and 𝛾 = 1 for 𝐶𝐸𝑠𝑙𝑜𝑝𝑒. For each
stimation approach, asterisk denotes a statistically significant difference between the
istributions of the CE obtained for the pair of values selected for 𝜆 (paired Student’s
-test, 𝑝 < 0.05).

Table 1
Single-run computational times (expressed in milliseconds) for the estimation of CE
measure and the other information dynamic measures, averaged on one-hundred
realizations of both autoregressive and mixed non-linear deterministic and linear
stochastic dynamics processes. The estimation parameters are set to 𝑚 = 3 for all

ethods, and 𝑘 = 10 for 𝐶𝐸𝑘𝑛𝑛, 𝑟 = 0.3 for 𝐶𝐸𝑘𝑒𝑟, 𝑏 = 4 for 𝐶𝐸𝑏𝑖𝑛, and 𝛿 = 0.001
nd 𝛾 = 1 for 𝐶𝐸𝑠𝑙𝑜𝑝𝑒. In the last row, the percentage variations of computational time
hen increasing the time series length from 𝑁 = 300 to 𝑁 = 1000 are reported.
Time series Estimation approaches

length N Lin Knn Ker Bin Perm Slope

Computational times [ms]

300 0.19 12.37 9.18 0.72 0.53 0.71
500 0.27 33.85 21.71 1 0.69 0.73
1000 0.31 121.33 80.53 2.43 1.74 1.48

From N = 300
to N = 1000

Time increment [%]

59 881 777 238 225 109

Big notation. Specifically, the linear parametric and the discretization-
based estimation approaches are of 𝑂(𝑁) and 𝑂(𝑁 log(𝑁)) complexity,
respectively. Otherwise, the methods based on computing distances
are more demanding, with computational complexities of 𝑂(𝑁2 log(𝑁))
and 𝑂(𝑁2), for the nearest-neighbour and the kernel approaches, re-
spectively. Considering that reliable estimates of entropy measures are
obtained for large values of the time series length 𝑁 and that this is
quite larger than the embedding size 𝑚, i.e., 𝑁 ≫ 𝑚, the only parameter
ffecting the computational complexity of the employed algorithms
s indeed 𝑁 . On the other hand, the influence of estimator-specific
arameters, i.e., 𝑘 for nearest-neighbour, 𝑟 for kernel and 𝑏 for binning,

can be neglected in the asymptotic complexity behaviours, even if they
in practice cause variations in computational time.

4. Application to physiological time series

In this section, conditional entropy estimation approaches are inves-
tigated in the context of short-term physiological variability analysis,
where heart period and respiratory time series are studied to as-
sess variations in the complexity of cardiorespiratory dynamics during
spontaneous and controlled breathing.
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4.1. Experimental protocol and time series extraction

The investigated physiological signals include electrocardiographic
(ECG) and respiratory flow recordings (sampling frequency: 300 Hz)
acquired on 19 young healthy subjects (8 males; age range 27–35 years)
in resting supine position during different breathing patterns. The
analysed experimental conditions were spontaneous breathing (SB)
and paced breathing at 10, 15, and 20 breaths/min (C10, C15, and
C20, respectively) [18,68,69]. All procedures were approved by the
ethical committee of the ‘‘L. Sacco’’ Hospital (Milan, Italy) and of the
Department of Technologies for Health, University of Milan (Italy) [68].

The analysis was carried out on the sequence of heart periods (RR
intervals) extracted as the time intervals between two consecutive ECG
R peaks and on the breathing (RESP) time series obtained by sampling
the respiratory flow signal at the onset of every heart period. For each
subject and condition, stationary windows of 256 samples were selected
synchronously for the two time series. Before estimating CE measures,
all time series were preprocessed applying a high-pass AR filter (zero
phase and cut-off frequency 0.0156 Hz) and by removing and interpo-
lating samples differing more than three standard deviations from the
mean value. Finally, the series were normalized to zero mean and unit
variance. Further details on data acquisition and pre-processing can be
found in [68].

4.2. Data analysis

The CE estimation approaches described in Section 2.3 were applied
setting the estimation parameters on the basis of the results of the
simulation studies and considering the most widely employed values in
literature [40,42,49]. Specifically, the Bayesian Information Criterion
(BIC) was employed to define the optimal order of the AR model used to
approximate the past dynamics of the investigated process (maximum
order fixed to 10), while an embedding dimension 𝑚 = 2 was set
to apply nearest-neighbour, kernel and binning approaches. The other
estimation parameters set to implement these methods were 𝑘 = 10,
𝑟 = 0.3, and 𝑏 = 6, respectively. The embedding dimension was set
o 𝑚 = 4 for the permutation-based method, and to 𝑚 = 3 for the

slope-based one in combination with 𝛿 = 0.001 and 𝛾 = 1.

4.3. Statistical analysis

After testing the hypothesis of gaussianity via the Kolmogorov–
Smirnov test, parametric statistical tests were used for each estimator
to identify differences in the CE distributions among breathing states.
Specifically, the ANOVA analysis of variance followed by a post-hoc
paired Student’s t -test between the CE values obtained in the spon-
taneous breathing condition and in each of the controlled one were
employed; the Bonferroni correction for multiple comparison (𝑛 = 3)

as applied. For all the statistical tests the significance level was set to
%.

Moreover, the statistical significance of all the estimated CE value
as assessed for each subject, condition and estimator using 100 ran-
om shuffle surrogates. Specifically, each measure was deemed as
tatistically significant if its value computed on the original series was
ower than the 5th percentile of the values computed on surrogates.

.4. Results

Fig. 7 reports the CE distributions computed on the heart period
ime series in the four breathing phases using all the estimation ap-
roaches. All methods show a decrease of the entropy rate of RR during
10 and C15 compared to SB, as well as similar values during C20. This
rend is always statistically significant for the slowest paced breathing
ate, i.e., C10, being instead not noticeable for the C15 breathing rate
sing kernel and binning estimation approaches (Fig. 7(c,d)). Only the

ernel method detects a significant increase of CE during C20, even if
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Fig. 6. Performance of the six conditional entropy measures as a function of the estimation parameters (left column: embedding dimension 𝑚; right column: estimator-specific
parameter) for time series of length 𝑁 representing a mixed non-linear deterministic and linear stochastic process with parameter 𝜆 = 0.5. Errorbar plots (mean ± std) depict the
istributions of CE computed over 100 realizations using the (a) linear (𝐶𝐸𝑙𝑖𝑛), (b) nearest neighbour (𝐶𝐸𝑘𝑛𝑛), (c) kernel (𝐶𝐸𝑘𝑒𝑟), (d) binning (𝐶𝐸𝑏𝑖𝑛), (e) permutation (𝐶𝐸𝑝𝑒𝑟𝑚),
nd (f) slope (𝐶𝐸𝑠𝑙𝑜𝑝𝑒) approaches.
Fig. 7. Boxplots distributions and individual values of the CE computed for the RR time series during spontaneous (SB) and controlled breathing at 10, 15, and 20 breaths/min
C10, C15, and C20) with (a) linear, (b) nearest-neighbours, (c) kernel, (d) binning, (e) permutation, and (f) slope approaches. In each panel, empty circles correspond to values
eemed as statistically non-significant using surrogate data analysis; black open circles refer to the sample mean of each distribution. The symbol # indicates statistically significant
ifferences across the four protocol phases (ANOVA test, 𝑝 < 0.05), while the symbol * denotes statistically significant differences between SB and C10/C15/C20 phases (paired
tudent’s t -test with Bonferroni correction for multiple comparison, 𝑝 < 0.05∕3).
he measure is not significant according to surrogate analysis for about
6% of the cohort protocol (Fig. 7(c)).

Fig. 8 reports the distributions of the CE measure computed on the
espiratory time series during the four breathing phases using all esti-
ation approaches. Except for the slope estimation method (Fig. 8(f)),

rends similar to those reported for RR time series are also reported
or RESP, with a statistically significant decrease in complexity shown
uring C10 with all estimators and during C15 with the linear and the
ermutation ones. Like for the heart period time series, the permutation
388
method shows the largest relative variations in magnitude of the CE
measure during C10 compared with SB.

5. Discussion

In this work, a comparative study of several methods for estimating
complexity of time series was carried out on both simulated and car-
diorespiratory dynamics. Measures of entropy rate computing the CE of
time series have been proven to be an useful and reliable tool for the
analysis of complex system dynamics in real data in several fields [48],



Biocybernetics and Biomedical Engineering 44 (2024) 380–392C. Barà et al.

(
d
d
S

e
w
d
a

d
a
d
t
w
d
c
a
t
m
m
r
t
s
d
c
b
a
4
t
i
n

p
m
l
o
f
i
a
r
a
d

o

Fig. 8. Boxplots distributions and individual values of the CE computed for the RESP time series during spontaneous (SB) and controlled breathing at 10, 15, and 20 breaths/min
C10, C15, and C20) with (a) linear, (b) nearest-neighbours, (c) kernel, (d) binning, (e) permutation, and (f) slope methods. In each panel, empty circles correspond to values
eemed as statistically non-significant using surrogate data analysis; black open circles refer to the sample mean of each distribution. The symbol # indicates statistically significant
ifferences across the four protocol phases (ANOVA test, 𝑝 < 0.05), while the symbol * denotes statistically significant differences between SB and C10/C15/C20 phases (paired
tudent’s t -test with Bonferroni correction for multiple comparison, 𝑝 < 0.05∕3).
.g., finance [70,71], climate [72,73], or biomedicine [12,21,35]. Here,
e have applied methods for estimating CE based on continuous and
iscrete representations of the system dynamics, as well as parametric
nd model-free estimation of probability distributions.

In both simulated settings, involving linear stochastic and chaotic
eterministic dynamics, all estimators show a general CE decrease
s the complexity of the system, understood in terms of the unpre-
ictability of the dynamics, is reduced. Furthermore, the application
o physiological data shows how more regular dynamics associated
ith the strengthening of specific regulatory mechanisms lead to a
ecrease in the complexity of the system. Specifically, the reduced
omplexity of heart period dynamics during controlled breathing at
rate slower than the spontaneous breathing rate can be related to

he respiratory sinus arrhythmia (RSA) mechanism, responsible for the
odulation of the cardiac dynamics by breathing activity [74], as this
echanism is enhanced during forced ventilation at lower respiratory

ates, resulting in a more regular heart rhythm [75]. On the other hand,
he cardio-ventilatory coupling [76] and the respiratory stroke volume
ynchronization [77] mechanisms, which induce changes in respiratory
ynamics similar to those of the heart, can be responsible for the
omparable trends obtained when observing the complexity of the
reathing patterns. These results are well established in the literature
nd have been reported in terms of several complexity, e.g., CE [18,
9], information storage [63], non-linear prediction [78,79], and in-
eractions, e.g., cross-entropy [63], transfer entropy [49,80], mutual
nformation rate [49], indices for the investigation of physiological
etwork dynamics.

Nevertheless, our findings highlight that selecting the most ap-
ropriate method and estimation parameters to provide an accurate
easure according to system characteristics is a non trivial task. The

inear parametric estimator is widely used to study the complexity
f dynamical systems, showing its efficiency in different physiological
rameworks [16,47,62,81]. Several works emphasize that this approach
s mostly suited for Gaussian processes, being not able to take into
ccount non-linear dynamics [48,56]. This was also confirmed by our
esults of the second simulation, in which the linear estimator was un-
ble to detect the complexity reduction associated only with non-linear
ynamics.

In the literature, various model-free approaches have been devel-
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ped to move from a linear and simplified representation of the process
to a quantification of probability distributions directly from the data.
Among these approaches, the one based on the nearest neighbour
metric exhibits high performance for non-Gaussian processes [12,21,
48,82,83]. These findings are confirmed by our results, which show
that the CE estimates obtained using the knn approach on simulated AR
linear dynamics follow the theoretical value of the measure and reveal
statistically significant variations in the complexity of the system that
are also detected by the linear estimator, allowing as well to strongly
discriminate complexity changes also on mixed linear and chaotic
dynamics. Despite the bias related to the dimensionality of the space
in the search for neighbour samples, this metric allows to compute
consistent CE values at varying of the embedding size m and the number
of neighbours k. Moreover, the bias related to the parameter N is
negligible compared to the model-free estimation approaches based on
discretization and symbolization of the process dynamics. The high
dependence of the latter approaches on the time series length also
results in a strong dependence on the estimation parameters [35].

Although being very popular for calculating approximate entropy
and sample entropy to assess changes in physiological complexity under
different physiological and pathological conditions [13,19,22,27,29,
84–87], the kernel method shows a very high estimation variability. For
the two simulated dynamics, our results highlight that when the embed-
ding dimension m increases and the threshold parameter r decreases,
and thus the searching space becomes increasingly sparse, the kernel
estimator may become unfeasible for estimating the CE, especially for
shorter time series. This is likely the reason behind the large variability
of the estimates, which causes the kernel estimator to fail in detecting
small complexity variations.

Regarding model-free estimation methods based on discretization,
the most commonly used is the binning approach [20,30,51,88], mainly
thanks to its simplicity. Nonetheless, our results evidence that this
approach does not allow the proper identification of small complexity
changes. The reason behind this inaccuracy may be in the excessive
coarse graining performed by binning, which cannot be avoided when
dealing with short time series due to the curse of dimensionality [35].
As observed in previous works [49,61], the permutation-based ap-
proach uses a smaller number of patterns for the same embedding size
compared to the binning one, making it more efficient in assessing the

dynamics of a process. Moreover, this method correctly discriminates
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relevant variations in the complex behaviour of stochastic system dy-
namics. However, given its limitation in neglecting the amplitude of
the dynamics, it has a greater difficulty in detecting small variations in
non-linear dynamics [89]; this aspect was verified in our simulations.
The recently developed slope-based method overcomes this limitation
by taking into account the amplitude deviation between successive time
series samples [42]. Our results evidence that this approach, working
on the shorter slope vectors, in turn allows to detect smaller complexity
variations when compared to the other methods. Nevertheless, it is
worth emphasising that this approach investigates predictability by
looking not at the time series samples, but at the differences between
them, and how this may result in smoothing variations.

The remarks concerning the simulations are consistent with the
results obtained analysing the complexity of the cardiorespiratory dy-
namics. Strong mechanisms such as those coordinating the cardiac
and respiratory dynamics during C10 are mostly discriminated by all
estimators, while more weakly synchronized dynamics in C15 are only
detected by the linear estimator and the permutation-based method
for the respiratory dynamics, and also by the nearest-neighbour and
the slope estimators for the cardiac ones. As reported in literature, the
predominance of linear dynamics exhibited by the mechanism of respi-
ratory sinus arrhythmia during slow breathing conditions [90] is also
evidenced in our results, given the superiority of the linear estimator
and the permutation-based approach in discriminating physiological
complexity variations. The inability of the slope CE estimator in de-
tecting changes in respiratory dynamics across the different breathing
conditions can be related to the above reported methodological differ-
ence of this approach compared to the others. It is worth underlying
that our analyses have only taken into account physiological states
related to parasympathetic activity, highlighting how the measure of
conditional entropy is efficient in detecting strong variations in these
dynamics. More evidences are reported in the literature on the ability
to distinguish, through complexity measures, dynamics related to the
sympathetic activity [16,91].

The analysis of the computational complexity for the different CE
estimation methods shows that the linear and discretization-based ap-
proaches are less demanding compared to the nearest-neighbour and
kernel estimation methods. In addition, the overall computational times
follow the complexity trend, although these are only indicative of
our specific algorithms implementation and strongly depend on the
hardware and software computer equipment. Nevertheless, as previ-
ously discussed, entropy estimators based on computing distances often
provide a more reliable complexity assessment even in presence of
non-linear dynamics. For this reason, several works have aimed at
implementing faster and more computationally efficient algorithms for
both the nearest-neighbour [92–94] and kernel [95–98] approaches.
Another important remark about computational times reported in this
study is on the use of MATLAB-based algorithms. Being an inter-
preted environment, MATLAB has higher execution times if compared
to compiled languages, e.g., C and C++. For this reason, a possible
alternative to increase MATLAB codes performances is to switch to
C/C++ algorithms and functions, i.e., MEX files.

The simplicity of the linear and permutation-based approaches and
their speed in the context of short-term analysis, i.e., using time series
of 300 samples (∼5 min), make such measures attractive for their im-
lementation within the firmware of wearable biomedical devices. For
xample, CE can provide a feasible assessment of cardiac dynamics vari-
bility starting from electrocardiographic or photoplethysmographic
ignals acquired during everyday activities and outside the hospital
nvironment, e.g., home health care services aimed at long-term mon-
toring or follow-up of frail patients [99–101]. In this regard, both
ower cost and stationarity of physiological signals become important
ssues which have pushed the research towards the acquisition and
he analysis of even shorter time-series. Several recent works have
hus focused on the assessment of physiological parameters using ultra-
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hort term analysis (i.e., <300 samples), highlighting the feasibility of F
obtaining reliable 𝐶𝐸𝑙𝑖𝑛 estimates on 120-samples heart rate variability
series (∼2 min) [81,102]. This would not be achievable through the
iscretization approach as using shorter series and the same estimation
arameters would lead to unreliable estimates [35]. Despite its lower
omputational costs, the linear approach can however compute the CE
alue once the signal acquisition has been completed. On the other
and, the dynamics discretization of the permutation-based approach
an be carried out in parallel with the signal acquisition, leaving the
valuation of the probability distribution at the end, thus improving the
eal-time performance and reducing the overall computational time.

. Conclusion

The analyses carried out in this work have demonstrated that the
inear parametric approach remains the most valid and quick esti-
ation method for assessing complexity, being able to discriminate

omplexity variations in real systems such as those characterising
ardiorespiratory dynamics in healthy subjects. Among the model-free
pproaches, the nearest neighbour metric allows to adequately study
inear and non-linear dynamics. Together with the stability of the
stimated measures when varying the estimation parameters, these
eatures make such method one of the most widely adopted despite its
igher computational cost compared to parametric and other model-
ree approaches. Among the latter, the permutation-based approach
s simple and, setting suitable embedding parameters, can be used
ffectively to assess the complexity of system dynamics.

Although a broad overview and description of several valid and
seful approaches to complexity assessment have been provided, this
ork does not take into account some recently introduced and in-
estigated estimation methods that try to overcome some of the pre-
iously mentioned drawbacks. Further analysis should therefore in-
lude the conditional entropy implementation of other estimation ap-
roaches that limit the dependence on the estimation parameters,
.g., Rank [103] or Bubble Entropy [104], or on the intrinsic signal
eatures, e.g., Range [105] or Diversity Entropy [106], or improve
he consistency and validity of the measure, e.g., Fuzzy [107], Dis-
ribution [108], Dispersion [109] and Phase Entropy [110]. Future
tudies are also needed to explore the complementarity of the inves-
igated estimation methods in different physiological and pathological
cenarios characterized by different dynamical behaviours, such as
on-linearity [28,111–113] or non-stationarity [83,114]. Moreover, in
rder to appropriately assess the complexity of physiological dynamics,
t is envisaged to investigate multivariate approaches for evaluating
he measure of conditional entropy, which allow to take into account
ot only the internal regulatory mechanisms of individual physiological
ystems, but also their interconnection [12,115].
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