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1 | INTRODUCTION

In recent years, there has been an increasing interest in fault
diagnosis due to the growing complexity and safety concerns
of industrial systems. To model vatious phenomena in com-
plex physical systems, theories based on partial differential
equations (PDEs) have gained popularity. For instance, the
use of Fourier’s law in thermal sciences, which governs heat
exchange, leads to a system of patabolic PDEs. Otrdinary dif-
ferential equations (ODEs) alone are insufficient to accurately
capture the dynamic behaviors of most practical engineering
models, as they have limited ability to account for spatial and
temporal evolution.

To address these challenges, model-based fault detection and
diagnosis systems have emerged as a prominent approach. In
industrial heating systems, failures in heating sources can lead
to decreased efficiency, product quality issues, and safety haz-
ards. Accurate identification of failure times is crucial in heating,
ventilation, air conditioning (HVAC) systems and condensing
boilers [1, 2] to ensure temperature consistency, energy effi-
ciency, and occupant comfort. Power generation plants heavily
rely on heating sources, and any faults can result in power out-
ages or reduced capacity. Similarly, solar thermal systems, which
utilize sunlight as a heating source, require reliable fault detec-
tion to maximize energy output. In process industries such as
petrochemical plants or food processing facilities, thermal sys-
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This research focuses on the identification of failure times in thermal systems governed by
partial differential equations, a task known for its complexity. A new model-based diagnos-
tic approach is presented that aims to accurately identify failing heat sources and accurately
determine their failure times, which is crucial when multiple heat sources fail and there
is a delay in detection by distant sensors. To validate the effectiveness of the approach, a
comparative analysis is carried out with an established method based on a Bayesian filter,
the Kalman filter. The aim is to provide a comprehensive analysis, highlighting the advan-
tages and potential limitations of the methodology. In addition, a Monte Catlo simulation
is implemented to assess the impact of sensor measurements on the performance of this

tems play a vital role, and timely fault detection is essential for
maintaining production schedules, ensuring product quality, and
preventing safety risks.

The field of controlling and estimating of PDEs has been
a subject of extensive research for several decades. Two main
approaches have been explored in PDEs control and estima-
tion: (i) Early lumping, which involves approximating the PDEs
with ordinary differential equations (ODEs) and conducting the
design in a finite-dimensional space, as discussed in previous
studies [3, 4]; and (ii) Late lumping, which focuses on design-
ing in an infinite-dimensional space and directly studying the
PDEs without using approximate methods, as investigated in
other research works [5, 0].

While significant attention has been given to control and esti-
mation research in the context of PDEs, the field of system
fault diagnosis in PDEs has received relatively less exploration.
Existing diagnostic schemes for PDEs primarily rely on early
lumping approaches [7—11]. However, this approach has cer-
tain limitations. The finite-dimensional approximation often
leads to the loss of essential intrinsic characteristics present
in the original PDEs model. On the other hand, “late lump-
ing” methods based on PDEs observer-based fault diagnosis
schemes have been successfully applied to parabolic systems
in various research projects, such as those mentioned in refer-
ences [12—18]. These approaches aim to address the drawbacks
of early lumping methods and provide more accurate fault
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diagnosis by directly considering the inherent characteristics of
the PDEs model.

In the context of parametric identification, the search for
faults in a system modeled by a set of partial differential equa-
tions (PDEs) can be considered an inverse problem [19]. Inverse
Heat Conduction Problems (IHCPs) ate widely used in various
engineering domains, particularly in thermal engineering. How-
ever, IHCPs are mathematically ill-posed, as it is challenging
to satisfy the requirements of existence, uniqueness, and con-
tinuity simultaneously. This ill-posedness is exacerbated by the
sensitivity of IHCPs to random errors in measurement, lead-
ing to significant inaccuracies in the numerical solutions. Several
methods have been proposed to tackle IHCPs, including the
Tikhonov regularization method [20, 21], the sequential func-
tion specification method [22, 23], the iterative regularization
method [24, 25] and the Bayesian methods [26, 27].

In [28], an iterative conjugate gradient regularization
approach was utilized to determine the heat transfer coeffi-
cient (HTC) in a two-dimensional transient heat conduction
scenario. Similarly in [29], the same method was applied to pre-
dict the HT'C at the inner wall of a nuclear power plant pipeline
responsible for transporting a mixture of warm and cold flu-
ids. Another study conducted by [30], focused on the estimation
of surface heat flux in three-dimensional IHCP. Additionally,
[31] proposed an adaptive selection of relevant sensors within
a network was proposed to estimate an unknown mobile heat-
ing flux, optimizing the sensor configuration to enhance the
accuracy of the estimation. Furthermore, in [32], a novel data-
driven structure was introduced to enable direct analysis and
parameter inversion of heat conduction problems (HCPs). This
approach leverages available data to directly infer the parame-
ters of the heat conduction model, facilitating efficient analysis
and estimation.

When it comes to the identification of failure times in a sys-
tem governed by PDEs, the failure instants within the thermal
framework can be identified by solving IHCPs based on obser-
vations from the malfunctioning system. However, it is crucial
to address some important considerations in the fault diagnosis
process. First, IHCPs are highly sensitive to measurement errors
due to their ill-posed nature [33]. Additionally, the failures being
investigated are characterized as “on-off” events, and the study’s
structure shares similarities with hybrid systems that involve
delays caused by discontinuous switching associated with heat
transport phenomena.

In a recent study [19], we have proposed an approach to
effectively identify failures in one or more heat sources based
on noisy observations. Our method allows for precise identifi-
cation of failing heat sources, accurate determination of failure
times, and the potential for restoration to normal operation. The
identification procedure is formulated as a quadratic criterion
minimization problem and solved using an iterative regulariza-
tion method. To assess the effectiveness of our approach, we
compare it with another Bayesian filter-based method, specif-
ically the Kalman filter, which was also developed in our
recent study [34]. This comparative analysis aims to provide
a comprehensive evaluation, highlighting the advantages and
disadvantages of our recent approach.
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FIGURE 1 Positions of the plate’s 3 sources and 4 sensors.

The structure of this article is organized as follows. Section 2
provides a detailed description of the physical problem formu-
lation in a two-dimensional geometry. In Section 3, a conjugate
gradient iterative regularization method has been developed and
implemented. Particular attention is paid to the definition of
the failure and restart instants of heating sources. The inverse
problem is then presented. Its resolution requires the iterative
determination of the temperature, the gradient of the criterion
and the depth of the descent. Section 4 presents the Bayesian
filter to estimate the intensity of the heating sources based on
the Kalman filter and smoother, followed by a methodology
that allows the estimation of failure and restart instants based on
candidate search strategies and signals from the heating sources.
Numerical results are presented and discussed in Section 5.
Finally, Section 6 presents the conclusion and the perspectives
offered by this work.

2 | APPLICATION DESCRIPTION

2.1 | The direct problem

The application given here is a 1 meter long by 1 meter wide
by 2 mm thick aluminum plate. On this are positioned four
temperature sensors and three heating sources. The locations
of the three sources and four sensors are known (Figure 1).
The behavior of the heating sources is unpredictable. These,
specifically, will encounter all-or-nothing failures. Consequently,
a source may stop operating (in which case its heat flow would
be zero) and then return to its regular behavior, and this could
occur frequently.

The geometric domain is defined as Q = [—0.5, 0.5]> C R?,
every point in space possesses its own coordinates (x,y) € Q.
!t E [0, lf] is the time variable. 7"(x, y, ) represents the temper-
ature at every point in space. The following set of mathematical
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TABLE 1 Mathematical model input parameters.

Symbol Definition Values

pe Volumetric heat 2.421.10°] - m™ - K~
h Natural convection coefficient 10W-m™2- K™

A Thermal conductivity 178 W-m™! - K~

Ty Initial temperature 293 K

ty Final time 3600 s

e Thickness 2:-10m

equations [35] describes the temperature’s temporal evolution in
the Q domain:

pC% — AAT (x,9,¢)
_ POy 1) = 26(T (95 1) = 1)
: ) € G
T(,0,0) = 1o, (x,0) € Q,
L—A% =0, (o1 €T X[0,4],

The model’s input parameters are presented in Table 1. By utiliz-
ing the finite element method, the direct problem described by
equations (1) can be solved numerically when all input parame-
ters of the model are determined using the Comsol-Multiphysics
software integrated with Matlab (Figure 3).

The total amount of heat flux ®(x,y,#) is determined by
the collective contribution of several distinct heating sources.
Mathematically, the heat flux at a given point (x, y, #) is the sum
of individual heat fluxes generated by each source, denoted as
D, (x,y,1), whete 7 ranges from 1 to 71,¢,:

Mheat

D(xyyst) = ). D;(x,0,0),  Witht sy = 3. @)

=1

These heat sources exhibit spatially varying distributions and
temporal characteristics. Each heat source, ®,(x, y,#), can be
described by the product of three separate functions:

D;(x,0,7) = fi(x,0)g@) Xi()- ©)

The function f;(x,y) is pivotal in defining the spatial support
and distribution of each heat source within the system. To accu-
rately model this, we employ a Gaussian distribution centered
around the point (x;, y;), where each heat source is located. The
equation is formulated as follows:

X—XZ'2+ —’,'2
ey mep( ~ETHOZN) y
(5% 10-2)

The standard deviation 5 X 1072 is a key parameter that influ-
ences the spatial extent of heat dispersion from each source. A
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FIGURE 2 Flux g (?), 2(?) and g3(¢) of the three sources.

smaller variance value would result in a more localized heat dis-
tribution, creating a steeper gradient around the source, while
a larger variance would lead to a more widespread, gradual dis-
tribution of heat. The chosen variance value for our model is
designed to realistically represent the physical dispersion charac-
teristics of heat within the system, carefully balancing the need
for accurate portrayal of the heat’s localized impact and ensur-
ing that the distribution is sufficiently extensive to cover the
relevant areas of the system [306, 37].

The temporal behavior of each heat source is captured by the
function g;(#), which represents the normal heating flux gener-
ated by the source 7. This function provides information about
how the heat flux varies over time for each individual source.
To provide a visual representation of the heat flux dynamics,
Figure 2 displays the evolution of the heat flux for the three
sources over time. Furthermore, the function y;(#) is intro-
duced to account for potential faults or failures in the heating
source 7:

1 without failure, .
xi) = {0 in case of failure. ©

It serves as an indicator function, assuming a value of 1 when
the source is operating without any failure and 0 in the event
of a failure. The occurrence of failures is represented by dis-
continuous steps in the function y;(#), transitioning between 1
and 0, and vice versa. If a heating source experiences a failure, a
step from 1 to 0 is observed, indicating a cessation of heat gen-
eration. Conversely, a step from 0 to 1 signifies the successful
restart of a previously failed source.

The following section provides a comprehensive overview of
the proposed approach and formulation of the inverse problem,
building upon our recent research [19]. This presentation aims
to delve into the details of the approach, highlighting its key
aspects and addressing the specific challenges associated with
solving the inverse problem.
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FIGURE 3  Solving the direct problem using finite elements method:
Temperature distribution at t = 3600 s under normal operating conditions (no
failures).

3 | APPROACH 1: THE CONJUGATE
GRADIENT METHOD

3.1 | The inverse problem

In order to determine the switching times for the heating
sources, it is necessary to express the function y,(#) in a con-
tinuous form. To achieve this, let us consider that the source 7

has experienced a total of #; failures. In this case, the continuous
representation of ;(#) can be given by the following function:

;i ) i

1 z lil(h%,‘/‘ t= lr;k, J
x.t)=1—— Z atan| ——— | —atan| ——
T 4
J=1
©)
Here, z‘;a 4,/ fepresents the time instants when soutce 7 fails (i.e.

when Y;(#) transitions from 1 to 0, also known as the falling
edge), while lﬂi 4., tepresents the time instants when ;(#) transi-
tions from 0 to 1 (rising edge). The impact of the regularization
parameter 7) is demonstrated in Figure 4.

For each heating source 7 =1, ..., ., , it is necessary to
identify the switching times f; "y and z‘;é’/, where / ranges from
1 to ;, representing the number of failures and restarts for each
source. An example demonstrating the behavior of the func-
tion x;(#) i =1,2,3 is depicted in Figure 4. In this example,
source 1 experiences a failure at 1000s and restarts operation at
2500s, source 2 fails at 2000s, and source 3 operates without any
failure. In the subsequent analysis, it is assumed that the num-
ber of failures #; for each source is already known. However,
if this information is not available initially, it presents an addi-
tional challenge. Nonetheless, this challenge can be overcome
by adapting the method described below. The parameter vector
that contains unknown parameters is denoted as:

7 =[rl,..., ¢/ ], @)

where each component 7’ is defined as:

i |4 i i i
T = I:tnok 1 lok,l (A lnok,ﬂ, ’ iok,n,»jl . (8)

The total number of unidentified parameters is given by /V =
Z?:i“ (Zj'zl 271/-): T = (Tj)/?lw's”heat. The odd-indexed com-

=1,...,.2%;

ponents of 7 correspond to failure dmés, while the even-indexed
components correspond to restart times.

To achieve the parametric identification, a technique based on
minimizing the output error is employed. The goal is to adjust
the undetermined parameters 7 such that the data predicted by
the mathematical model aligns with the observed data. This is
accomplished by employing a quadratic criterion, given by:

4 tr
J@) = % Z/O (7Ctt) = ?;(z‘))zdz‘, )
=1

whete 7'(C;,#,T) represents the predicted data from the
mathematical model at the sensor C; and 7;(#) denotes the
corresponding observed data. The criterion /() quantifies
the discrepancy between the model predictions and the actual
observations, with the aim of minimizing this discrepancy
through parameter adjustments. IHCP can be formulated as
follows:

* Given: a complete set of input
{e2/,0C, 2, @,b, T }

* Objective: find the unknown 7% such that the quadratic
criterion (9) is minimal:

parameters

7% = Argmin /(7),
T

subject to the constraint: 7" (x, y, ) is the solution of the direct
problem (1).

IHCPs are considered ill-posed problems due to their sensi-
tivity to small perturbations in measurements, which can lead
to significant errors in parameter estimation. Therefore, it is
essential to employ an appropriate method that can mitigate
these issues. One such method is the Conjugate Gradient Itera-
tive Regularization Method (CGM) [38]. This iterative algorithm
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FIGURE 4

is based on the solution of three well-posed problems in each

iteration (£):
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Hlustrations of failures )1 (), x> (#) and )3(¢) are provided, with the blue curve representing 77 = 10 and the red curve representing 7 = 0.1..

By comparing equations (10) with equations (1), the following

equations are obtained:

* Solve the direct problem (1) to calculate the criterion (9).

* Solve the adjoint problem to obtain an accurate estimation of
the gradient of the criterion.

* Solve the sensitivity problem to determine the descent step
size in the direction of descent.

3.2 | The sensitivity problem

The variations in the unknown parameters are given by: 7% =
7 + ed7. Consequently, the resulting vatiations in y;(z) are
expressed as:

2

7 d)(
o) =0+ st —2L |,
x50 = x;0) Z( /dr,>

v
J=1

Tt—T

<Z Ja (2! = x,-)> —2W(I" = T)

=1

¢ ’
4

T+(X,J/, 0) = 7' (x,9,0) =0, (x,) €4Q,

0T (x,y, 2 0T (x,y,¢
A2 D) GO e Tx [0,
on on ;

(11)

Taking into account that 7° tT=7T4¢e87,ase—0, equa-

tions (11) can be simplified as follows:

J
Vo1 -1y C—— —AAST =
=X +e), 51;;—’7( AR P "5
Ppeat <4y 2 —1 j+157i-
The varied temperature 7% (x, ,7) then satisfies the follow- 2 Ji&m Z b / — ST
. . 2
Ing equations: p=rll J=1 2 ( — i)
) 2+ (r—7
AT (x,y, ¢ D —2H(TF ey, t) — T >
« g;] ) AT () = (7eorn ), ¢
‘ 0T (x,0,0) =0, (x,)) € Q,
3 T, ,0)=1, (x9) €Q,
(o, 0) = 1o, (%) 86T (v, 1)
T =57 =0 G €TX 0L
—A——=—"==0, (ot €TX[0,7/]. L
\ dn ’ 12)

(10)
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During each iteration, the descent depth is determined to

minimize the criterion along the descent direction <t

Y = argmin J (7% — yd*t!)
rFER?

Z; /Off (7(Cit;7%) = T;1))8T (G t,T%)
Y AECI(NRL) R

13)

3.3 | The adjoint problem

The purpose of this problem is to determine the gradient of

. " 9/*
the cost-function: V/* = | = "y

a5 . In order to accom-
7,'

plish this, we present the Lagrang1an multipliers ¥ (x, y,#) and
the Lagrangian:

LT,7,9)=/@)

2W(T = Tp)
// < C——AAT——)tMth.
Qx Ot

14)
The variation of the Lagrangian is:
hear [ 20
ST, T,9) = 6T+Z<Z< >> w&p
(15)

The Lagrange multiplier ¥ is fixed in order to satisfy follow-
ing equation: R5T =0.1n addition, since the temperature 7°

is a solution of (1), then §/(7) = 6&(7, 7,%). In order to detet-
mine Y (x, y, 7), it is necessary to develop the Equation (15) from
(14). The latter includes several terms:

4

%5T N //Qx[o,rf] <; (
+pC//QX[O,;,] angz,bdQ i

N // <—/1A5T + 2—/757>¢ A& (16)
ax[o.] ‘

In Equation (16), the term D, represents the Dirac dis-
tribution at the sensor C;. Thus, we can decompose (15) as
follows:

T(Ct) — 7;(;))572),-)49 dr

ST, 17,1) = // E dxddr + pC 82, + 62,
Qx|0,

Mheat 2n; ag 5 ; )
+ Z 2 557 ) ) a7
=1 \ /=1 f

where:

4

EGepnty= Y (T(Cur) = T0)) 81D

=1

087 (x,y,1)
08 (x,0,7) = // 22 (x, y, £) dxdydt.
oxfoy] 9
SR, (x5, 1) = // <—/1A5T(x, o+ 2Lsr, y,;)>
Qx[0.4/] ¢
X Pyt

Several integrations by parts, the use of Green’s theorem
as well as the formulation of the sensitivity problem allow to
simplify:

521 = / 5T(X,J/, ff)’(,b(X,)/, if) dX&!}' - /
58, = — // AD@)ST ddyds
Qx|0.4/]

3
+ // 167%% i // 2 s 1 .
Ix[0./] n axfos] ¢

As 9 is fixed so that Z—i5T =0, then ¥ is solution of the
following system (adjoint problem):

5T —¢ dxdydt.

C% + AAY(x,p,1) = E(x,9,2) + Z—flﬁ(x,)” 1),
) P (x,, z‘f) =0, () € Q
eyt

5= =0 (o t) €TX[0,2].

(18)

If 9 is a solution of the adjoint problem desctibed by the
PDEs (18) while 7" is a solution of the direct problem described
by the PDEs (1), Equation (15) becomes:

Mheat 2n; ag )
ST )= ) <Z< 1.51;>>.
= U=\ 97

SR(T,7,%) and:

i // Jigm
T Haxfos) | e

In addition, as §/ (1) =

(=1yer]

b ddydr,
N’ + (z‘ - r;)
19)
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ALGORITHM 1 CGM algorithm.

i, Choose an initialization 7* for the iteration £ = 0 for the switching

instants (failures and restarts).

ii.  Solve the direct problem (1) to estimate the temperature 7% and estimate
the criterion / (‘L'/‘ ) according to (9).

iii. Resolution of the adjoint problem (18) to calculate the gradient

— ‘
vk = (l> according to (20). Deduce the descent direction:
=1, iheat

51j
J=1,0.2;
— 2
. v/
e+1 73 .
dt' =V 4 B,d5  with: B, = >,
-

(except at iteration £ = 0 for which 8, = 0).

iv.  Solving the sensitivity problem (12) to calculate the sensitivity functions

87* and deducing the descent depth y**! according to (13).
v.  Determination of the new estimator for the switching times:

R yk+1dk+1 then returning to step (ii).

the expression of the gradient is then:

aTj- Qx [O,z‘f] 772 + (l - Tj)

3.4 | Algorithm

The conjugate gradient iterative regularization method is imple-
mented in Algorithm 1. The algorithm stopped in step (ii) when
the criterion is deemed sufficiently small. The stopping criterion
is chosen according to the measurement noise on the obset-
vations 7;(¢), temperatures measured at the sensors C. The
whole identification method has been successfully implemented
in [39-41].

3.5 | Example

Considering the illustrative context where the identification of
the failure of source 1 has to be performed from the observa-
tions obtained in Figure 5. In this section, the measurements
collected from the four sensors data are treated with an uncer-
tainty characterized by zero-mean Gaussian noise and distinct
standard deviations . In Figure 5, it is a standard deviation
o = 0.5°C. In order to implement the CGM algorithm, a /.,
threshold must be defined. The stopping criterion to stop the
iterative minimization of the criterion is chosen according to the
criterion proposed by [33, 42]:

Juop = At N, N, 02, @n

where N, = 4 is the number of sensors, IV, = 400 is the num-
ber of measurements per sensor, Az = 9 s is the time sampling
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FIGURE 5 Sensor measurements: case when the heat source @, fail with
noise 0 = 0.5°C, represented as discrete points, without any failure and noise,

represented as continuous data.
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FIGURE 6 Example of Criterion evolution in case o = 0.5°C.

step between each measurement and o2 is the variance of the
Gaussian measurement noise. On a personal computer with the
following characteristics, numerical results are achieved using
the Comsol-Multiphysics solver interfaced with Matlab soft-
ware: CPU: Intel® Core™ i5-10210U CPU 2.11 GHz, RAM:
8.00 Go, OS: Windows 10 (64).

In the following, we consider the results obtained with an
initialization of the failure time of fi()k 1 = 500 . For example,
Figure 6 shows the cost function versus iteration number. With
a stop-criterion (21), the identification converged in a single
simulation in 10 min. The following Table 2 shows the results
of the identification process for different noise levels. On 30
simulations, the results are presented as the mean and standard
deviation (in brackets). The last row of the previous table cot-
responds to the identification of the failure times for the data
in Figure 5, with CGM algorithm (based on the iterative resolu-
tion of three well-posed problems). When the noise levels of the
sensors are less significant, this approach gives a satisfying result
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TABLE 2  Heat source @ failure times with vatious noise levels.

Jstop Instant t::ok 1
o =0.1°C 144 1500.13s (2.29)
o =0.5°C 3600 1498s (3.81)
o=1°C 14400 1497.15s (6.10)

to the identification of the failure times for the first source.
Once the measurement noise of the sensors become more
important, the CGM still gives an excellent result with supetior
accuracy.

Following the presentation and analysis of the first approach,
it is essential to emphasize its significance. In the subsequent
section, we introduce a second method based on the Bayesian
filter, which builds upon our recent work [34]. This alterna-
tive approach serves to further enhance our understanding and
broaden the scope of our investigation.

4 | APPROACH 2: THE BAYESIAN
FILTER

4.1 | State estimation problem

State estimation inverse problems [24, 43, 44] are one of the
most interests in countless practical applications, described as
evolution and observation models. In these types of problems,
measurable data and prior knowledge about physical phenom-
ena are employed sequentially to estimate the necessary dynamic
variables and solved by the Bayesian filters [24, 43]. The Kalman
filter is the most commonly used Bayesian filter technique,
especially with linear systems with additive Gaussian noises.

In this context, and in order to define the evolution and
observation problems, we need to rewrite the direct problem
(1) as an state estimation problem. For this purpose, a numeri-
cal approach based on the finite difference method is considered
[45]. The discretization of the system (1) using finite differences
and the construction of the evolution and observation models
are explicitly demonstrated and analyzed in [34]. Consequently,
the application can be formulated as follows:

"' =L-T*+M-G* +H,
22)
bes =P- Tk’

where T* is a matrix containing temperature of all discretised
points of the plate at the instant £, L is the transition matrix,
encodes the linear combination of Tk, that connects state £
to state £+ 1, the matrix M encodes the coordinates of the
Gaussian distribution surrounding the point (x;, y;) based on the
fixed source’s spatial support ];/6 The heat ﬁung i=1,..,31is
encoded by the matrix G, and the position of the fixed sensors
is encoded by the matrix C. Finally, H is a constant vector that
depends on discretization and model parameters.

4.2 | The inverse problem

The inverse problem, considered in this application, consists in
extracting information from the state vectors from the observed
measurements. This formulation of the inverse problem is done
in a Bayesian framework using the Kalman filter. The Kalman
filter was used, with the assumption that both the evolution and
observation models (22) are linear. The noises are assumed to be
Gaussian with known means and covariances, and to be additive
in such models. The system (22) is then modified as follows:

T =L-T*+M- G+ H +w,,
(23)
TS =P -T" + 0,

obs

where w,, v, are the evolution and observation noises, respec-
tively, with zero means and covariances matrices Q and R,
respectively. To estimate the input vector G' a technique
involves modifying the classical Kalman filter to incorporate the
input vector into the state vector. By including the input vector,
we can estimate the behavior of the heat flux gf for each source
(z =1, ..., 3). This estimation of the heat flux behavior provides
valuable insights can be used to identify potential heat source
failures. Following the same methodology desctibed in [34], the
new modified system can be represented as follows:

o' =L +H +u,
. (24)
), =P -0+,

where:

k+1
ot = T I = [L
0

M] and P = [P 0]
c | I = :

Finally, after reformulating the system (23) into (24) with the
integration of the input vector G into the state vector, we are
ready to use the Kalman filter. The posteriori density is Gaus-
sian and the Kalman filter gives the optimal solution to the state

. . / / . .
estimation problem. L' and P" are given matrices for the corre-
£

! .
s> A50, H' is a constant

sponding state 0" and observation T
vector for the model of the state evolution . In the follow-
ing, O is a Gaussian with calculable mean and covatiance. We
denote by g and X the means and covatiance, respectively. Given
that Q and R are also Gaussian, Considering the noises, w/ with
zero mean multivariate normal distribution N and covariance
matrix Q: w! ~ N'(0,Q), and » with a zero mean and covari-
ance matrix R: » ~ N (0, R). The prediction and update steps
of the Kalman filter, for each & = 1, ..., t*, where t* = 7, /Az,,,
are given by Algorithm 2.

In the algorithm presented, the Kalman gain matrix is
denoted as K, while T*

obs
time 4. It is important to note that in the research paper, tem-

represents the observation vector at

perature measurements are not taken continuously but rather at
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ALGORITHM 2 Kalman filter.

i Initialize: f;, and Zjp.

ii. Fork=1,2,..,t%

Prediction:
A ! A !
Aoy = Ly +H, 25)
“ re T
-1 = L2 gL +0. (26)
Update:
- - -1
_$ 11 % 11
K, = 2/4/6_11’ P Z/e|/<_1P + R s (27)
. N £ N
Hpe =Hypey + K/(‘.(Tolu =P ) (28)
e = (I= K P') gy (29)

9-s intervals. Consequently, if there is no measurement available
at time £, then Ilkl/e = /:‘/é|k—1'

Furthermore, for the purpose of determining the failure and
restart times of the heat soutces, an offline analysis of this appli-
cation is assumed in the research paper. This offline analysis
facilitates the identification of the distinct instants when the
sources experience failures and restarts. In this scenario, the
Kalman smoother [40] likewise known as Rauch-Tung-Striebel
(RTS) smoother [47] could provide a more accurate estimate
of the state vector. The Kalman smoother offers an efficient
method for computing the mean and covariance matrix, cir-
cumventing the need to invert large matrices. It utilizes available
information more comprehensively than filtering, resulting in
enhanced outcomes. Essentially, the Kalman smoother builds
upon the outputs of the Kalman filter, which incorporates all
available measurements - future, present, and past - and pro-
cesses this data in a reverse chronological order [48, 49]. Figure 7
provides a detailed illustration of both the Kalman filtering and
smoothing processes. For this algorithm, we assume that the
Kalman filter has already been applied; the reverse steps ate
detailed in (Algorithms 3 and 4).

4.3 | Estimation methodology

To estimate the failure restart times, an assumption was made
that the failures of the sources are independent events, allowing
them to be treated individually. Furthermore, the knowledge of
the theoretical signal of each source without failure, denoted as
(gf and graphically represented in Figure 2, was utilized. Given a
set of candidate vectors Y, the problem is to find the opti-
mal candidate vector y; that minimizes the squared error (SE)

7

between (gf XX ... and gf To have a better understanding of
this search approach, we refer readers to our previous work [34].
Mathematically, this can be expressed as follows:

s

¢
. . 2

Xeand Va3

Kalman filtering

Observations

I

A

~a
OH/k

k

R k/ Observations
t*
G ; "
/'

Kalman smoothing k

FIGURE 7 Description of filtering and smoothing processes.

ALGORITHM 3 Kalman Smoother.

2

ii. Pork=t"—1,t"—=2,..,1

i Initialize: ﬂt*h*’ o e -

. Tl
Pr=S L S
By = By + Pl e = Rppqp)-

N . . T
Zpe = Zpe + PeCpprpe — Zpgn)) P -

ALGORITHM 4 Scarch strategy algorithm.

i Initialize and define the bounds of the candidate vector )(;W g

ii. Compute the squared error (SE) between g;() X ¥ and Z(7).

cand
iii. ~ Solve problem (30) by performing an iterative search to find the value of
ijm’ that minimizes the squared error, while respecting the constraints
defined by the bounds.

iv.  Return the optimal value of )/ /)/ that minimizes the squared error, along
with the minimum value of the squared error.

After presenting the methodology in detail, we are now ready
to demonstrate its effectiveness through a performance result.

4.4 | Example

For the purpose of demonstrating the proposed methodology,
let us consider the previous illustrative context where the first
source has a failure time # = 1500s. Parameters are given in
the following Table 3 and the evolution of the temperatures at
the four sensors Ci, Cj, C3, Cy are shown in Figure 5, similar to
the previous section 3.5, the measutrement data are treated with
an uncertainty characterized by zero-mean Gaussian noise and
distinct standard deviations ©.

To illustrate the effect of such parameters, the mean and stan-
dard deviation (in brackets) of 30 simulations are provided for
each configuration. The results are given in Table 4 with dif-
ferent noise levels, and they are obtained after 65,66 s in a
single simulation, for a total of 36 min registered after 30 sim-
ulations. With this approach, it is clear that the search strategy
gives a good result for estimating the failure times, when the
noise levels of the sensors are less significant. However, the
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TABLE 3  Mathematical model parameters.

Symbol Definition Values
pe Volumetric heat 2.421.10°] - m™ - K~
h Natural convection coefficient 10 W - m™2K™!
A Thermal conductivity 178 W-m™! - K~
6, Initial temperature 293 K
ty Final time 3600 s
e Thickness 2:-10m
At Time step 3s
AV Time step of the observations 9s
Ax, Ay Space step 0.05m
TABLE 4  Failure times for different noise levels.
Failure tf1 ail 1
o =0.1°C 1500s (1.03)
o =0.5°C 1516s (3.09)
og=1°C 1531.5s (6.19)

accuracy of the failure time detection is reduced considerably
due to the increase in the measurement noise of the sensors,
while taking into account the number of sensors used for this
particular application.

In the following section, we explore different configura-
tions to present the implementation of the Conjugate Gradient
Method (CGM) and compare it to the second approach based
on Kalman smoother (KS). Through this in-depth evaluation,
we aim to provide a comprehensive assessment that highlights
both the advantages and disadvantages of our recent approach.

5 | NUMERICAL RESULTS

In this section, we simulate several scenarios to demonstrate
the effectiveness of our proposed methodologies. To avoid the
inverse crime, data were gathered from a Comsol-Multiphysics
simulation, employing different parameters: a time step of
Ar =1s and a spatial step of Ax = Ay = 0.0lm. This data
was then analyzed using Matlab. To realistically replicate the
uncertainties in sensor data, as commonly experienced in real-
wotld systems, we introduced Gaussian noise with a zero
mean to the sensor data. This noise varied in standard devia-
tions g, simulating different levels of measurement uncertainty.
Specifically, we explored three levels of noise: 0 = 0.1°C,0 =
0.5° and 0 = 1°C.These values wete selected to mitrror the
range of uncertainties typically found in sensor measurements
in such thermal systems.

To comprehensively evaluate the impact of these differing
levels of uncertainty, we conducted a Monte Carlo simulation
for each noise configuration. The outcomes of these simulations
are depicted in terms of mean and standard deviation, derived
from 30 simulations for each scenario. This methodology offers
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FIGURE 8 Sensor measurements: case when the heat sources @, and @,

fails, represented as discrete points, without any failure and noise, represented
as continuous data.

TABLE 5
varying noise levels.

Heat sources @ and @, failure times identification with

Instant t:ok 1 Instant t:ok 1
o =0.1°C CGM 997s (1.95) 1997s (2.54)
KS 1001s (2.17) 2003s (2.31)
o =0.5°C CGM 998.76s (4.40) 1997.4s (4.60)
KS 1003.2s (5.06) 2008.9s (4.41)
o=1°C CGM 996s (11.73) 2000.7s (13.37)
KS 975.8s (9.21) 2041.7s (7.68)

a detailed insight into how varying degrees of sensor noise affect
the precision and reliability of our failure identification process
across diverse scenarios.

5.1 | Source separation

After having successfully identified the failure instants for a sin-
gle source by both approaches, the objective in this new scenario
is to identify the failure instants for two distinct sources. In this
configuration, we consider that first source fails at fn10k,1 = 1000

s and the second source fails at z‘fok,l = 2000 s. For example,
the measurements at the four sensors are given in Figure 8
with standard deviation o = 0.5°. Using the same parameters
in Table 3, we obtain the results presented in Table 5, starting
with the initialization fr}ok,l = 500 s and z‘ri)k 4 = 1000 s. Finally,
We denote the results given by the first approach as (CGM)
and the second approach as (KS), respectively. In Figure 9, an
example representing the probability density function (PDF) for
both approaches when the first source fails, based on a sam-
ple of 30 simulations. The PDF result is obtained by using the
normal distribution.

In Table 5, it is evident that the two approaches have
successfully identified the failure instants for two separate

sources. When the measurement noises are less significant, both
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FIGURE 9 Histogram and PDF of the estimated fnlok , over 30 and noise, represented as continuous data.

simulations CGM (in red) and the KS method (in blue) with measurement
noise 0 = 1°.

TABLE 6 Failure and restart times identification for @ and failure times
for ®,.

Instant ¢!

2
ok 1 Instant tmk’

1
" Instant tok, "

o =0.1°C CGM 997s (2.26 1996.7s (2.23) 2498.7s (1.91)

)
KS 1001.4s (1.4) 2005s (1,4) 250455 (1.14)
0=05°C  CGM  996.5s (5.45) 19955 (5.75)  2499.3s (3.45)
KS 999.55 (3.92) 2014s (5.15) 251385 (4.09)
o=1°C CGM  999.46s (8.92)  1993s (10.45)  2494.4s (10.42)
KS 976.7s (8.41) 204125 (6,44)  2539.4s (5.68)

methods produce excellent outcomes. The results with the two
approaches CGM and KS are obtained after 62 min and 40
min, respectively, on 30 simulations. We observe that the second
approach yields results more rapidly. However, when the mea-
surement noise of the sensors are increased, the failure instants
of the two sources are well identified with the CGM approach
than the second one KS with a high accuracy. The main disad-
vantages of this CGM approach is its computation time, which
can be crucial depending on the problem’s complexity.

5.2 | Identifying the failure and restart with
source separation

After identifying the failure instants for two distinct sources
using the two approaches, the challenge in this new scenario
is to not only identify the failure instants, but also the restart
(heating up again) of the sources. For this last configuration, we
consider that first source fails at ;r}()k,l = 1000 s then restarts
at fo1/e,1 = 2500 s and the second soutce fails at tri)k,l = 2000.
For example, the measurements at the four sensors are given
in Figure 10 with standard deviation o = 0.5°. Using the same
parameters as before, we obtain the results presented in Table 6,

starting with the initialization fr}ok,l = 500 s, z‘01/€’1 = 1500 s and
z‘jok’l = 1000 s. The results with the two approaches GCM
and KS are obtained after 68 min and 46 min, respectively, on
30 simulations.

In Table 6, it is clear that the two approaches have suc-
cessfully identified the failure and restart instants. When the
measurement noise is less significant, the two approaches give
a good result, once the measurement noise is more impot-
tant, the switching instants are slightly less well identified. The
CGM approach gives a greater result to identify the switching
instants and source separation, than the KS approach with bet-
ter accuracy. In conclusion, the preceding table demonstrates
that the two methods are applicable for identifying the fail-
ure and restart instants with source separation, particularly the
CGM approach for this problem described by parabolic partial
differential equations.

6 | CONCLUSION

This article presents a comprehensive analysis of failure and
restart times identification in a physical system governed
by linear parabolic partial differential equations. Two recent
approaches are compared to provide a thorough assessment.
The first approach, an original method formulated as a quadratic
criterion minimization problem and solved using an itera-
tive regularization method, demonstrates notable strengths and
weaknesses. To evaluate its performance, a comparison is made
with the second approach based on the Bayesian filter.

The comparative analysis reveals that the first approach
exhibits superior accuracy in identifying failute and restart
instants, even in the presence of significant measurement noise.
This highlights the effectiveness of the proposed method.
The CGM utilized in the first approach offers several advan-
tages over traditional methods. It allows for the simultaneous
identification of failures in multiple heating sources, a challeng-
ing task for conventional approaches. Additionally, the CGM

85U8017 SUOWIWOD SAIE8ID 3|dedl|dde au Aq peusenob aJe sojoiLe VO ‘88N JO S9N J0j ARIq1T 8UIUO A8]IAA UO (SUOTIPUOD-pU-SWLB)/LI0D"AB | 1M Ae1q 1jaUlUO//SANY) SUORIPUOD PUe SWLS 1 841 88S *[7202/70/8T ] Uo AriqiT 8ulluo 8|1 ‘80Ul aUeyo0D AQ ZG92T ZUI0/60T OT/I0p/L0o" A3 1M AleIq pUljUO Yo Jessa R //:Sdny Woly pepeojumod ‘0 ‘ZS98TS.T



12|

BIDOU ET AL.

ensures numerical stability, resulting in efficient and precise
computations. One disadvantage of the GCM approach is the
computation time required for offline identification, which can
be improved in the case of quasi-online identification.

There are several perspectives for future research following
this work. First, the investigation can be extended to incor-
porate mobile sources and sensors, requiring relocation for
more precise failures identification. In this context, decision
support approaches based on pre-established scenarios can be
developed. Finally, quasi-online approaches are well-suited for
the examined conditions and can facilitate the development of
backup solutions involving multiple mobile sources, particularly
for online detection and identification.

NOMENCLATURE

Az time step, s
Az, time step of the observations, s
Ax,Ay space step, m
A thermal conductivity, W - m™! - K71
# unit external outward-pointing vector
pc  volumetric heat, J - m™> - K1
¢ thickness, m
b natural convection coefficient, W - m™2 - K~
T temperature, K
¢ time,s
tr final time, s
7y initial temperature, K
x  space variable, m
y  space variable, m

AUTHOR CONTRIBUTIONS

Mohamed Salim Bidou: Conceptualization; methodology;
formal analysis; writing—original draft. Laetitia Perez: Valida-
tion; visualization; review & editing. Sylvain Verron: Validation;
visualization; review & editing. Laurent Autrique: Validation;
supervision; project administration.

CONFLICT OF INTEREST STATEMENT
The authors declare no conflicts of interest.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available on
request from the corresponding author.

ORCID
Mohamed Salim Bidon
9040

https://orcid.org/0000-0002-9157-

REFERENCES

1. Satyavada, H., Baldi, S.: A novel modelling approach for condensing boilers
based on hybrid dynamical systems. Machines 4(2), 10 (2016)

2. Satyavada, H., Baldi, S.: Monitoting energy efficiency of condensing boilers
via hybrid first-principle modelling and estimation. Energy 142, 121-129
(2018)

w

10.

11.

12.

13.

14.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Cheng, M.B., Radisavljevic, V., Chang, C.C., Lin, C.E, Su, W.C.: A sampled-
data singulatly perturbed boundary control for a heat conduction system
with noncollocated observation. IEEE Trans. Autom. Control 54(6),
1305-1310 (2009)

Wu, HN,, Li, HX.: Hy, fuzzy observer-based control for a class of non-
linear distributed parameter systems with control constraints. IEEE Trans.
Fuzzy Syst. 16(2), 502516 (2008)

Wu, H.N., Wang, J.W,, Li, HX.: Exponential stabilization for a class of
nonlinear parabolic PDE systems via fuzzy control approach. IEEE Trans.
Fuzzy Syst. 20(2), 318-329 (2011)

Krstic, M., Smyshlyaev, A.: Boundary Control of PDEs: A Course on
Backstepping Designs. SIAM, Philadelphia, PA (2008)

Demetriou, M.A.: A model-based fault detection and diagnosis scheme
for distributed parameter systems: A learning systems approach. ESAIM:
Control Optim. Calculus Variat. 7, 43—67 (2002)

Ghantasala, S., El-Farra, N.H.: Robust actuator fault isolation and manage-
ment in constrained uncertain parabolic PDE systems. Automatica 45(10),
2368-2373 (2009)

El-Farra, N.H., Ghantasala, S.: Actuator fault isolation and reconfiguration
in transport-reaction processes. AIChE J. 53(6), 1518-1537 (2007)

Reppa, V., Tzes, A.: Fault detection and diagnosis based on parameter set
estimation. IET Control Theory Appl. 5(1), 69-83 (2011)

Zhai, S., Wang, W, Ye, H.: Fault diagnosis based on parameter estima-
tion in closed-loop systems. IET Control Theory Appl. 9(7), 1146-1153
(2015)

Chen, W, Saif, M.: Obsetver-based strategies for actuator fault detection,
isolation and estimation for certain class of uncertain nonlinear systems.
IET Control Theory Appl. 1(6), 1672—1680 (2007)

Han, Y., Oh, S., Choi, B., Kwak, D., Kim, H., Kim, Y.: Fault detection and
identification of aircraft control surface using adaptive observer and input
bias estimator. IET Control Theory Appl. 6(10), 1367-1387 (2012)

Cal, J., Ferdowsi, H., Sarangapani, J.: Model-based fault detection, estima-
tion, and prediction for a class of linear distributed parameter systems.
Automatica 66, 122—131 (2016). https://www.sciencedirect.com/science/
article/pii,/S0005109815005609.

. Ferdowsi, H., Cai, ]., Jagannathan, S.: Actuator and sensor fault detection

and failure prediction for systems with multi-dimensional nonlinear partial
differential equations. Int. ]. Control Autom. Syst. 20(3), 789-802 (2022)
Feng, Y., Wang, Y., Wang, J.W,, Li, H.X.: Backstepping-based distributed
abnormality localization for linear parabolic distributed parameter systems.
Automatica 135, 109930 (2022). https://www.sciencedirect.com/science/
article/pii/S0005109821004544

Lei, Y, Li, J., Zhao, A.: Spatiotemporal fault detection, estimation and con-
trol for nonlinear reaction-diffusion equations. Appl. Math. Comput. 418,
126859 (2022)

Ferdowsi, H., Cai, J., Jagannathan, S.: Filter-based fault detection and
isolation in distributed parameter systems modeled by parabolic partial
differential equations. IEEE Access 11, 45011-45027 (2023)

Bidou, M.S., Perez, L., Verron, S., Autrique, L.: Identification of failure
times for a system governed by a non-linear parabolic partial differen-
tial equation. IFAC-PapersOnLine 55(40), 37-42 (2022). https://www.
sciencedirect.com/science/article/pii/$2405896323000502

Tikhonov, A.N.: On the solution of ill-posed problems and the method of
regularization. In: Doklady Akademii Nauk, vol. 151, pp. 501-504. Russian
Academy of Sciences, Moscow (1963)

Yang, F, Fu, CL.: A simplified Tikhonov regularization method for
determining the heat source. Appl. Math. Modell. 34(11), 3286—3299
(2010)

Beck, J.V.: Nonlinear estimation applied to the nonlinear inverse heat
conduction problem. Int. ]. Heat Mass Transfer 13(4), 703-716 (1970).
https://www.sciencedirect.com/science/article/pii/001793107090044X
Blanc, G., Beck, ].V., Raynaud, M.: Solution of the inverse heat conduction
problem with a time-vatiable number of future temperatures. Numer. Heat
Transfer, Part B: Fund. 32(4), 437-451 (1997). https://doi.org/10.1080/
10407799708915018

Ozisik, MLN., Orlande, H.R.: Inverse Heat Transfer: Fundamentals and
Applications. CRC Press, Boca Raton, FL (2021)

85U8017 SUOWIWOD SAIE8ID 3|dedl|dde au Aq peusenob aJe sojoiLe VO ‘88N JO S9N J0j ARIq1T 8UIUO A8]IAA UO (SUOTIPUOD-pU-SWLB)/LI0D"AB | 1M Ae1q 1jaUlUO//SANY) SUORIPUOD PUe SWLS 1 841 88S *[7202/70/8T ] Uo AriqiT 8ulluo 8|1 ‘80Ul aUeyo0D AQ ZG92T ZUI0/60T OT/I0p/L0o" A3 1M AleIq pUljUO Yo Jessa R //:Sdny Woly pepeojumod ‘0 ‘ZS98TS.T


https://orcid.org/0000-0002-9157-9040
https://orcid.org/0000-0002-9157-9040
https://orcid.org/0000-0002-9157-9040
https://www.sciencedirect.com/science/article/pii/S0005109815005609
https://www.sciencedirect.com/science/article/pii/S0005109815005609
https://www.sciencedirect.com/science/article/pii/S0005109821004544
https://www.sciencedirect.com/science/article/pii/S0005109821004544
https://www.sciencedirect.com/science/article/pii/S2405896323000502
https://www.sciencedirect.com/science/article/pii/S2405896323000502
https://www.sciencedirect.com/science/article/pii/001793107090044X
https://doi.org/10.1080/10407799708915018
https://doi.org/10.1080/10407799708915018

BIDOU ET AL.

13

25.

26.

27.

28.

29.

30.

32.

33.

34.

35.

36.

37.

Givoli, D.: A tutorial on the adjoint method for inverse problems.
Computer Meth. Appl. Mech. Eng. 380, 113810 (2021). https://www.
sciencedirect.com/science/article/pii/S0045782521001468

Yin, M., Zheng, X., Humphrey, ].D., Karniadakis, G.E.: Non-
invasive inference of thrombus material properties with physics-
informed neural networks. Comput. Methods Appl. Mech. Eng
375, 113603 (2021). https://www.sciencedirect.com/science/article/pii/
S004578252030788X

Patel, D.V,, Ray, D., Oberai, A.A.: Solution of physics-based Bayesian
inverse problems with deep generative priors. Comput. Methods Appl.
Mech. Eng; 400, 115428 (2022). https://www.sciencedirect.com/science/
article/pii/S004578252200473X

Yang, I, Yan, L., Wei, T.: The identification of a Robin coefficient by a
conjugate gradient method. Int. J. Numer. Methods Eng. 78(7), 800-816
(2009)

Lu, T., Han, W, Jiang, P., Zhu, Y., W, J., Liu, C.: A two-dimensional inverse
heat conduction problem for simultaneous estimation of heat convection
coefficient, fluid temperature and wall temperature on the inner wall of a
pipeline. Prog. Nucl. Energy 81, 161-168 (2015)

Huang, C.H., Wang, S.P.: A three-dimensional inverse heat conduction
problem in estimating surface heat flux by conjugate gradient method.
Int. J. Heat Mass Transfer 42(18), 3387-3403 (1999). https://www.
sciencedirect.com/science/article/pii/S0017931099000204

. Vergnaud, A., Perez, L., Autrique, L.: Adaptive selection of relevant sensors

in a network for unknown mobile heating flux estimation. IEEE Sens. J.
20(24), 15133-15142 (2020)

He, Z., Ni, E, Wang, W., Zhang, J.: A physics-informed deep learning
method for solving direct and inverse heat conduction problems of materi-
als. Mater. Today Commun. 28, 102719 (2021). https://www.sciencedirect.
com/science/article/pii/S$235249282100711X

Alifanov, O.M.: Iterative regularization of inverse problems. Inverse Heat
Transfer Problems. In: International Series in Heat and Mass Transfer, pp.
227-328. Springer, Berlin, Heidelberg (1994). https://doi.org/10.1007 /
978-3-642-76436-3_9

Bidou, M.S., Verron, S., Perez, L., Autrique, L.: Kalman smoother for
detection of heat sources defects. In: 2022 International Conference on
Control, Automation and Diagnosis ICCAD), pp. 1-6. IEEE, Piscataway
(2022)

Vergnaud, A., Perez, L., Autrique, L.: Quasi-online parametric identifica-
tion of moving heating devices in a 2D geometry. Int. J. Therm. Sci. 102,
47-61 (2016)

Ashby, M.E,, CEBON, D.: Materials selection in mechanical design. Le J.
Phys. IV 3(C7), C7-1 (1993)

Lascoup, B., Perez, L., Autrique, L.: Defect localization based on mod-
ulated photothermal local approach. Comp. Part B: Eng. 65, 109-116
(2014)

38.

39.

40.

41

—_

42.

43.

4

46.

47.

48.

49.

b

Jarny, Y., Ozisik, M.N., Bardon, JP.: A general optimization method
using adjoint equation for solving multidimensional inverse heat conduc-
tion. Int. J. Heat Mass Transfer 34(11), 2911-2919 (1991). https://www.
sciencedirect.com/science/article/pii/0017931091902519

Perez, L., Autrique, L., Gillet, M.: Implementation of a conjugate gradi-
ent algorithm for thermal diffusivity identification in a moving boundaries
system. J. Phys.: Conf. Ser. 135, 012082 (2008)

Beddiaf, S., Perez, L., Autrique, L., Jolly, ].C.: Parametric identification of
a heating mobile source in a three-dimensional geometry. Inverse Prob.
Sci. Eng. 23(1), 93-111 (2015). https://doi.org/10.1080,/17415977.2014.
890608

Beddiaf, S., Perez, L., Autrique, L., Jolly, J.C.: Simultaneous determi-
nation of time-varying strength and location of a heating source in a
three-dimensional domain. Inverse Prob. Sci. Eng. 22(1), 166-183 (2014).
https://doi.org/10.1080,/17415977.2013.828054

Morozov, V.A.: Methods for Solving Incorrectly Posed Problems. Springer
Science & Business Media, New York (2012)

Kaipio, J., Somersalo, E.: Statistical and Computational Inverse Prob-
lems. Applied Mathematical Sciences. Springer, New York (20006). https://
books.google.fr/books?id=h0i- Gi4rCZIC

Kaipio, J.P, Fox, C.: The Bayesian framework for inverse problems in heat
transfer. Heat Transfer Eng, 32(9), 718-753 (2011). https://doi.org/10.
1080,/01457632.2011.525137

5. Ozisik, M.N., Orlande, H.R., Colaco, M.J., Cotta, R.M.: Finite Difference

Methods in Heat Transfer. CRC Press, Boca Raton, FL (2017)

Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press,
Cambridge, MA (2012)

Rauch, H.E., Tung, E, Striebel, C.T.: Maximum likelihood estimates of
linear dynamic systems. ATAA J. 3(8), 1445-1450 (1965)

Gaaloul, N., Daouas, N.: An extended approach of a Kalman smoothing
technique applied to a transient nonlinear two-dimensional inverse heat
conduction problem. Int. J. Therm. Sci. 134, 224-241 (2018)

Wen, S., Qi, H., Niu, Z.T., Wei, L.Y., Ren, Y.T.: Efficient and robust pre-
diction of internal temperature distribution and boundary heat flux in
participating media by using the Kalman smoothing technique. Int. J. Heat
Mass Transfer 147, 118851 (2020)

How to cite this article: Bidou, M.S., Perez, L.,
Verron, S., Autrique, L.: A model-based failure times
identification for a system governed by a 2D parabolic
partial differential equation. IET Control Theory Appl.
1-13 (2024). https://doi.org/10.1049 /cth2.12652

85U8017 SUOWIWOD SAIE8ID 3|dedl|dde au Aq peusenob aJe sojoiLe VO ‘88N JO S9N J0j ARIq1T 8UIUO A8]IAA UO (SUOTIPUOD-pU-SWLB)/LI0D"AB | 1M Ae1q 1jaUlUO//SANY) SUORIPUOD PUe SWLS 1 841 88S *[7202/70/8T ] Uo AriqiT 8ulluo 8|1 ‘80Ul aUeyo0D AQ ZG92T ZUI0/60T OT/I0p/L0o" A3 1M AleIq pUljUO Yo Jessa R //:Sdny Woly pepeojumod ‘0 ‘ZS98TS.T


https://www.sciencedirect.com/science/article/pii/S0045782521001468
https://www.sciencedirect.com/science/article/pii/S0045782521001468
https://www.sciencedirect.com/science/article/pii/S004578252030788X
https://www.sciencedirect.com/science/article/pii/S004578252030788X
https://www.sciencedirect.com/science/article/pii/S004578252200473X
https://www.sciencedirect.com/science/article/pii/S004578252200473X
https://www.sciencedirect.com/science/article/pii/S0017931099000204
https://www.sciencedirect.com/science/article/pii/S0017931099000204
https://www.sciencedirect.com/science/article/pii/S235249282100711X
https://www.sciencedirect.com/science/article/pii/S235249282100711X
https://doi.org/10.1007/978-3-642-76436-3_9
https://doi.org/10.1007/978-3-642-76436-3_9
https://www.sciencedirect.com/science/article/pii/0017931091902519
https://www.sciencedirect.com/science/article/pii/0017931091902519
https://doi.org/10.1080/17415977.2014.890608
https://doi.org/10.1080/17415977.2014.890608
https://doi.org/10.1080/17415977.2013.828054
https://books.google.fr/books?id=h0i-Gi4rCZIC
https://books.google.fr/books?id=h0i-Gi4rCZIC
https://doi.org/10.1080/01457632.2011.525137
https://doi.org/10.1080/01457632.2011.525137
https://doi.org/10.1049/cth2.12652

	A model-based failure times identification for a system governed by a 2D parabolic partial differential equation
	Abstract
	1 | INTRODUCTION
	2 | APPLICATION DESCRIPTION
	2.1 | The direct problem

	3 | APPROACH 1: THE CONJUGATE GRADIENT METHOD
	3.1 | The inverse problem
	3.2 | The sensitivity problem
	3.3 | The adjoint problem
	3.4 | Algorithm
	3.5 | Example

	4 | APPROACH 2: THE BAYESIAN FILTER
	4.1 | State estimation problem
	4.2 | The inverse problem
	4.3 | Estimation methodology
	4.4 | Example

	5 | NUMERICAL RESULTS
	5.1 | Source separation
	5.2 | Identifying the failure and restart with source separation

	6 | CONCLUSION
	NOMENCLATURE
	AUTHOR CONTRIBUTIONS
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT

	ORCID
	REFERENCES


