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A B S T R A C T

Identifying the failure instants in thermal systems subject to 2D parabolic partial differential equations presents
a significant challenge, especially when the systems involve mobile heat sources. In the context of this
study, mobile heat sources are examined, along with a set of stationary sensors, while assuming known and
constant-velocity trajectories for the heat sources. This research introduces a quasi-online methodology that
incorporates Exponentially Weighted Moving Average (EWMA) charts for immediate failure detection. When
a failure is detected via the EWMA charts, the Conjugate Gradient Method, traditionally developed for offline
applications, is activated. This method is adapted to a quasi-online framework, facilitating a more rapid and
precise identification of malfunctioning heat sources, the exact time of their failures, and the possibility of
restoring normal operations. To assess the performance and reliability of this approach, it is compared with
a Bayesian filter-based method, particularly using the Kalman filter for this purpose. Monte Carlo simulations
are employed to evaluate the resilience and effectiveness of the quasi-online method, focusing on the system’s
sensitivity to the accuracy of sensor measurements.
1. Introduction

Given the increasing complexity of industrial plants and the growing
importance attached to their safe operation, fault diagnosis has received
particular attention in recent years. The application of models based
on partial differential equations (PDEs) is now widely used to capture
various physical behaviors in these complex systems. For example, the
dynamics of thermal systems, governed by heat transfer principles,
often translate into parabolic PDEs. Conventional ordinary differential
equations (ODEs) often fail to provide accurate representations of real-
world engineering systems, as they lack the ability to simultaneously
account for spatial and temporal changes. Consequently, model-based
methodologies for fault identification and analysis have become effec-
tive tools for overcoming these limitations. In this context, faults are
defined as malfunctions in system components, sensor equipment or
control devices. If these problems are not detected and rectified early,
system efficiency can be significantly reduced, leading to catastrophic
failures or major losses, both human and material. Therefore, rapid and
accurate fault identification is essential to ensure system reliability and
minimize undesirable outcomes.

In systems designed for industrial heating, heat source malfunctions
can lead to reduced operational efficiency, lower product quality and
safety issues. For heating, ventilation and air-conditioning (HVAC)
systems, accurately pinpointing when failures occur is essential to
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maintaining thermal consistency, energy-saving operations and user
comfort. Power generation facilities rely heavily on reliable heating
sources, and any malfunction can lead to interruptions in electricity
supply or reduced performance. In solar thermal systems, which har-
ness the sun’s energy for heating, reliable fault recognition is imperative
to optimize energy yields. Industries with specialized processes, such
as the petrochemical or food industries, depend on the performance of
thermal systems. In such cases, immediate identification of operational
problems is vital to meet production deadlines, guarantee production
quality and avoid safety-related incidents.

Research on the control and estimation of PDEs has been an active
area for several decades. Generally, there are two primary approaches
for PDEs control and estimating: (1) Early lumping, which involves con-
verting PDEs to ODEs and performing the design in a finite-dimensional
space [1,2]; and (2) Late lumping, which involves designing in an
infinite-dimensional space and directly studying the PDEs without using
approximate methods [3,4]. While significant focus has been given to
control and estimation studies, the subject of system fault diagnosis in
the context of PDEs has been relatively less explored. Existing PDEs
diagnostic schemes mainly employ early lumping approaches [5–9].
The early lumping method has been extensively employed in early
research on system fault diagnosis utilizing PDEs modeling. Never-
theless, this approach suffers from certain drawbacks. It simplifies
vailable online 17 February 2024
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Nomenclature

𝛥𝑡 time step, s
𝛥𝑡𝑜𝑏𝑠 time step of the observations, s
𝛥𝑥, 𝛥𝑦 space step, m
𝜆 thermal conductivity, W m−1 K−1

⃖⃗𝑛 unit external outward-pointing vector
𝜌𝐶 volumetric heat, J m−3 K−1

𝑒 thickness, m
ℎ natural convection coefficient, W m−2 K−1

𝑇 temperature, K
𝑡 time, s
𝑡𝑓 final time, s
𝑇0 initial temperature, K
𝑥 space variable, m
𝑦 space variable, m

PDEs into ODEs, leading to a partial and often inaccurate capture of
system dynamics. While PDEs capture complex phenomena such as
diffusion and convection, these are inadequately represented in the
simpler ODE format. In addition, system failures alter the dynamics
of PDEs, further reducing the accuracy and reliability of the ODE
model for failure detection, as they do not fully account for changes
in the interactions between variables. The other ‘‘late lumping’’ based
on PDEs observer-based fault diagnosis schemes has been successfully
applied to parabolic systems in research projects. In [10], a model-
based fault detection, estimation, and prediction scheme is developed
for linear distributed parameter systems. [11] introduces a method
for abnormality localization in linear parabolic DPSs, utilizing a mix
of in-domain and boundary measurements along with backstepping
techniques to improve detection and localization accuracy. The study
in [12] focuses on spatiotemporal fault detection in nonlinear reaction–
diffusion equations, employing an observer-based approach for fault
detection and estimation, complemented by feedback control, with the
methodology’s effectiveness validated through simulation. Finally, [13]
offers a comprehensive analysis of fault detection and isolation in
both linear and nonlinear distributed parameter systems, using filter-
based observers for linear systems and Luenberger-type observers for
nonlinear systems. This approach particularly emphasizes isolating ac-
tuator, sensor, and state faults, with its efficacy demonstrated through
simulation.

This article presents a methodology for identifying failure times in
heating sources within a thermal system using a parametric identifica-
tion method. Within this framework, it is reasonable to consider the
search for failures in a system governed by a PDE system under normal
conditions as an inverse problem [14]. Consequently, in the thermal
domain, a gradient conjugate method is employed to solve Inverse Heat
Conduction Problems (IHCPs). However, IHCPs are mathematically ill-
posed, as it is challenging to satisfy the requirements of existence,
uniqueness, and continuity simultaneously. This ill-posedness is exac-
erbated by the sensitivity of IHCPs to random errors in measurement,
leading to significant inaccuracies in the numerical solutions. Several
methods have been proposed to tackle IHCPs, including the Tikhonov
regularization method [15,16], the sequential function specification
method [17,18], the iterative regularization method [19,20] and the
Bayesian methods [21,22].

In [23], an iterative conjugate gradient regularization approach was
used to determine the heat transfer coefficient in a two-dimensional
transient heat conduction scenario. Similarly in [24], the same method
was applied to predict the heat transfer coefficient at the inner wall of
a nuclear power plant pipeline responsible for transporting a mixture
2

of warm and cold fluids. Another study conducted by [25], focused
on the estimation of surface heat flux in three-dimensional IHCP.
Additionally, [26] proposed an adaptive selection of relevant sensors
within a network was proposed to estimate an unknown mobile heating
flux, optimizing the sensor configuration to enhance the accuracy of
the estimation. Furthermore, in [27], a novel data-driven structure was
introduced to enable direct analysis and parameter inversion of heat
conduction problems (HCPs). This approach leverages available data to
directly infer the parameters of the heat conduction model, facilitating
efficient analysis and estimation.

When it comes to the identification of failure times in a system
governed by PDEs, the failure instants within the thermal framework
can be identified by solving IHCPs based on observations from the mal-
functioning system. However, it is crucial to address some important
considerations in the fault diagnosis process. Firstly, IHCPs are highly
sensitive to measurement errors due to their ill-posed nature [28]. Ad-
ditionally, the failures being investigated are characterized as ‘‘on-off’’
events, and the study’s structure shares similarities with hybrid systems
that involve delays caused by discontinuous switching associated with
heat transport phenomena.

In our prior research [14], we introduced a method for the effective
diagnosis of failures in stationary heat source systems, effective even in
the presence of noisy data in offline contexts. This technique is partic-
ularly effective in accurately identifying malfunctioning heat sources,
accurately determining the moment of failure, and potentially enable
the restoration of normal operations. We have achieved this by pre-
senting the identification process as a quadratic criterion minimization
problem, solved by an iterative regularization approach.

However, a key limitation of this offline method is the necessity to
wait until the completion of the experimental phase to begin diagnosing
failures. This delay restricts the ability to take timely corrective actions,
reducing the scope for immediate intervention. To address this, our
current research proposes a quasi-real-time strategy for identifying
mobile heat source failures. This approach relies on the exponentially
weighted moving average (EWMA) control chart, mentioned in [29],
as an essential tool for fast detection. The EWMA control chart, a
statistical method for tracking the evolution of processes over time,
plays an essential role in our context. In the event of a heat source
malfunction, sensor residuals (differences between actual and expected
values under normal conditions) exceed thresholds predefined on the
EWMA chart. This triggers the identification process, which we then
carry out using the Conjugate Gradient Method (CGM).

The approach involves two main stages:

• Real-time, failure detection using the EWMA control chart tech-
nique.

• Subsequent identification using the CGM algorithm.

The structure of this article is organized as follows. Section 2
provides a detailed description of the physical problem formulation in
two-dimensional geometry. Section 3 introduces a quasi-online diag-
nostic framework that integrates real-time failure detection, specifically
utilizing the EWMA control chart, and subsequent failure identification.
The section further explores two distinct methodologies for failure
identification. The first employs an adapted version of the conjugate
gradient iterative regularization method, with a focus on precisely
defining moments of failure and recovery for heating sources. The
second utilizes a Bayesian approach, incorporating Kalman filters and
smoothers to estimate heat source intensities, and introduces tech-
niques to estimate failure and restart timings. It is important to note
that this second approach serves as a comparative study with the
first, with the aim of enriching our understanding and broadening
the scope of our investigation. Numerical results are presented and
discussed in Section 4. Finally, Section 5 presents the conclusion and

the perspectives offered by this work.
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2. Application description

2.1. The direct problem

General Context: In the study of thermal systems governed by
parabolic partial differential equations, the direct problem typically
involves understanding the dynamics of heat flux within a defined
geometric domain. For thin material, this domain, 𝛺, encompasses
various points in space, each with its unique coordinates (𝑥, 𝑦). The
boundary of this domain is denoted as 𝛤 . Within this context, 𝑇 (𝑥, 𝑦, 𝑡)
represents the temperature at any given point and time, evolving as per
the system’s governing equations.

A general formulation of the direct problem can be expressed as
follows, where the temperature’s temporal evolution in the domain 𝛺 is
governed by a set of linear parabolic partial differential equations [30]:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝜌𝐶
𝜕𝑇 (𝑥, 𝑦, 𝑡)

𝜕𝑡
− 𝜆𝛥𝑇 (𝑥, 𝑦, 𝑡) =

q(𝑥, 𝑦, 𝑡) − 2ℎ
(

𝑇 (𝑥, 𝑦, 𝑡) − 𝑇ambient(𝑥, 𝑦)
)

𝑒
,

𝑇 (𝑥, 𝑦, 0) = 𝑇0(𝑥, 𝑦), (𝑥, 𝑦) ∈ 𝛺,

−𝜆
𝜕𝑇 (𝑥, 𝑦, 𝑡)

𝜕⃖⃗𝑛
= 0, (𝑥, 𝑦, 𝑡) ∈ 𝛤 ×

[

0, 𝑡𝑓
]

,

(1)

where 𝛥 is the Laplacian operator:

𝛥𝑇 (𝑥, 𝑦, 𝑡) =
𝜕2𝑇 (𝑥, 𝑦, 𝑡)

𝜕2𝑥
+
𝜕2𝑇 (𝑥, 𝑦, 𝑡)

𝜕2𝑦
.

Material thickness is denoted by 𝑒. Thermophysical properties of the
material are denoted by 𝜌𝐶 the volumetric heat and 𝜆 the thermal
conductivity. Thermal exchanges with the surrounding are governed
by convective exchanges : ℎ is the convective exchange coefficient
while 𝑇ambient is the ambient temperature and 𝑇0(𝑥, 𝑦) represents the
non-uniform initial temperature profile, which is a function of spatial
coordinates (𝑥, 𝑦). The total amount of heat flux q(𝑥, 𝑦, 𝑡) is determined
by the collective contribution of several distinct heating sources. Math-
ematically, the heat flux at a given point (𝑥, 𝑦, 𝑡) is the sum of individual
heat fluxes generated by each source, denoted as q𝑖(𝑥, 𝑦, 𝑡), where 𝑖
ranges from 1 to 𝑛heat :

q(𝑥, 𝑦, 𝑡) =
𝑛heat
∑

𝑖=1
q𝑖(𝑥, 𝑦, 𝑡). (2)

These heat sources exhibit spatially varying distributions and temporal
characteristics. Each heat source, q𝑖(𝑥, 𝑦, 𝑡), can be described by the
product of three separate functions:

q𝑖(𝑥, 𝑦, 𝑡) = 𝜓𝑖(𝑥, 𝑦, 𝑡)𝜙𝑖(𝑡)𝜚𝑖(𝑡), (3)

where 𝜓𝑖(𝑥, 𝑦, 𝑡), determines the spatial support; 𝜙𝑖(𝑡), defining the
temporal heat flux behavior; and 𝜚𝑖(𝑡), indicating the operational state
of the source.

Specific Scenario: In our specific application, we examine a 1 me-
ter long by 1 meter wide by 2 mm thick aluminum plate. On this are
positioned four temperature sensors and three heating sources, 𝑛heat =
3. The three sources and four sensors in our system are positioned at
known locations. These sources are prone to all-or-nothing failures,
characterized by sudden cessation of function (resulting in zero heat
flux), followed by a return to their normal operational state. Fig. 1
visually depicts the placement of these sources and sensors within the
system. The sensors employed are primarily of the pointwise type,
strategically designed to provide precise, localized measurements.

The geometric domain is defined as 𝛺 = [−0.5, 0.5]2 ⊂ R2, every
point in space possesses its own coordinates (𝑥, 𝑦) ∈ 𝛺. 𝑡 ∈

[

0, 𝑡𝑓
]

is
the time variable. The initial temperature condition across the plate
is uniformly set at 𝑇 = 293 K. The input parameters for the model
3

0

Table 1
Mathematical model input parameters.

Symbol Definition Values

𝜌𝐶 Volumetric heat 2.421.106 J m−3 K−1

ℎ Natural convection coefficient 10 W m−2 K−1

𝜆 Thermal conductivity 178 W m−1 K−1

𝑇0 Initial temperature 293 K
𝑡𝑓 Final time 3600 s
𝑒 Thickness 2 ⋅ 10−3 m

Fig. 1. Positions of the plate’s 3 sources and 4 sensors.

are listed in Table 1, and it is important to note that these parameters
remain constant regardless of the temperature 𝑇 .

The function 𝜓𝑖(𝑥, 𝑦, 𝑡) determines the spatial support of the heat
source and represents its spatial distribution. It is modeled as a Gaus-
sian distribution centered at the point (𝑥𝑖(𝑡), 𝑦𝑖(𝑡)) :

𝜓𝑖(𝑥, 𝑦, 𝑡) = exp

(

−

(

𝑥 − 𝑥𝑖(𝑡)
)2 +

(

𝑦 − 𝑦𝑖(𝑡)
)2

(

5 × 10−2
)2

)

. (4)

The temporal behavior of each heat source is captured by the function
𝜙𝑖(𝑡), which represents the normal heating flux generated by the source
𝑖. This function provides information about how the heat flux varies
over time for each individual source. To provide a visual representation
of the heat flux dynamics, Fig. 2 displays the evolution of the heat flux
for the three sources over time.

2.2. Failure description

The failures being investigated can be classified as all-or-nothing
failures. This means that a heating source has a binary behavior:
it can either be in an operational state or a non-operational state.
Specifically, when a failure occurs, the source stops operating, leading
to a complete absence of heat flux, which is represented as a value of
zero. Subsequently, the source has the capability to return to its normal
operational behavior. Mathematically, this behavior can be described
using the following expression:

𝜚𝑖(𝑡) =
{

1 without failure,
0 in case of failure, (5)

where 𝜚𝑖(𝑡) represents the state of source 𝑖 at time 𝑡, with a value of
1 indicating normal operation and a value of 0 indicating failure. An
example demonstrating the behavior of the function 𝜚 (𝑡) 𝑖 = 1, 2, 3 is
𝑖
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Fig. 2. Flux 𝜙1(𝑡), 𝜙2(𝑡) and 𝜙3(𝑡) of the three sources.

Fig. 3. Illustrations of 𝜚1(𝑡), 𝜚2(𝑡) and 𝜚3(𝑡).

depicted in Fig. 3. In this example, source 1 experiences a failure at
1000 s and restarts operation at 2500 s, source 2 fails at 2000 s, and
source 3 operates without any failure.

Using the finite element approach, this previous direct problem
defined by (1) can be numerically solved if every model’s input param-
eter are fixed based on Comsol-Multiphysics software interfaced with
Matlab (Fig. 4). In Fig. 4, the temperature variation on the plate is
presented at a specific time of 3600 s, demonstrating the absence of
any failures in the three heat sources. This observation corresponds to
their expected and normal behavior.

After presenting the application, the next section focuses on the
complex aspects of the quasi-online methodology used to identify heat
source failure instants.

3. Quasi-online diagnosis

In this section, the discussion begins by presenting the application
of the EWMA control chart for real-time fault detection. This statistical
technique facilitates the fast detection of anomalies in the system. Next,
the identification process is developed based on the CGM approach.
Fig. 5 describes the model-based diagnostic process, which comprises
two main phases: failure detection and identification.
4

3.1. Failure detection

The EWMA control chart [29] is a statistical technique for detecting
changes in a process by using exponential weights to assign more
significance to recent observations. This enables fast detection of pro-
cess changes and alerts the operator to take corrective actions. In this
application, the EWMA control chart is used to identify instances of
system failures or restarts. This detection method involves calculating
residuals between simulated temperatures and measured temperatures.

The mathematical formulation of the EWMA control chart is as
follows:

𝑍𝑡,𝑚 = 𝜁 𝑇 residual
𝑡,𝑚 + (1− 𝜁 ) 𝑍(𝑡−1),𝑚 for 𝑡 = 1, 2,… , 𝑛 and 𝑚 = 1,… , 4. (6)

where:

• 𝑍0,𝑚 is the historical data mean (target) for sensor 𝑚.
• 𝑇 residual

𝑡,𝑚 = 𝑇measurement
𝑡,𝑚 −𝑇model

𝑡,𝑚 is the residuals at time 𝑡 for sensor
𝑚.

• 𝑛 is the number of observations being monitored.
• 0 < 𝜁 ≤ 1 is the smoothing factor, determining the weight of the

observed value in relation to the previous weighted average.

The Upper and Lower Control Limits (UCL and LCL) of the EWMA chart
are calculated as follows:

UCL = 3𝜎

√

𝜁
2 − 𝜁

, LCL = −3𝜎

√

𝜁
2 − 𝜁

,

where:

• 𝜎 is the standard deviation of the noise measurement.

To illustrate this detection process, let us use the example where the
q1 heat source fails at time 𝑡 = 1500 s and the measurements data from
the 4 sensors are shown in Fig. 6.

The online detection phase is initiated using the EWMA method.
Thus, once the failure has been detected, i.e. when the EWMA control
limits are exceeded (as shown in Fig. 7(a)), the identification procedure
is launched. Note that in this application, four temperature sensors are
used (measurements taken every 9 s), and the assumption is that when
three of these sensors exceed the EWMA map limits, the identification
procedure is launched (Fig. 7(b)).

The decision to use three sensors as a threshold was taken to
balance two critical parameters: sensitivity and specificity. Sensitivity
is the system’s ability to detect failures early, while specificity is its
ability to avoid false alarms. If the system were to initiate the failure
identification process when a single sensor exceeded the limits, it
would be highly sensitive, but would also produce numerous false
alarms. Conversely, waiting for all four sensors to exceed the limits
would make the system highly specific but less sensitive, thus delaying
failure detection. Thus, choosing three sensors as the threshold offers
a calculated compromise, enabling timely detection while minimizing
false alarms. Finally, According to EWMA control chart, the detection
instant is 𝑡detect = 1575 s.

The following section provides a comprehensive overview of the
proposed approach for the failure identification and the formulation
of the inverse problem, building upon our recent research [14].

3.2. Failure identification by CGM method

3.2.1. The inverse problem formulation
To effectively monitor the operational state of heat source 𝑖, a

continuous and differentiable function, 𝜚𝑖(𝑡), has been introduced as
a state indicator. In contrast to traditional models that may use a
simple step function, 𝜚𝑖(𝑡) is designed to smoothly transition from the
operational state to the failure state, offering a more nuanced and real-
istic representation of the source’s behavior. This smoothness not only
facilitates gradient-based optimization, but also accurately captures the
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Fig. 4. Solving the direct problem using finite elements method: temperature distribution at t=3600 s under normal operating conditions (no failures).
Fig. 5. Scheme of process model-based fault diagnosis steps.
Fig. 6. Measurements data with 𝜎 = 0.1 ◦C.

subtleties of the source’s operational changes. The formulation of 𝜚𝑖(𝑡)
takes into account 𝑛𝑖, the total number of failures experienced by the
source. It is mathematically defined as:

𝜚𝑖(𝑡) = 1 − 1
𝜋

𝑛𝑖
∑

𝑗=1

(

atan

(

𝑡 − 𝑡𝑖𝑛𝑜𝑘,𝑗
𝜂

)

− atan

(

𝑡 − 𝑡𝑖𝑜𝑘,𝑗
𝜂

))

, (7)

where 𝑡𝑖𝑛𝑜𝑘,𝑗 represents the time instants when source 𝑖 fails (i.e., when
𝜚 (𝑡) transitions from 1 to 0, also known as the falling edge), while
5

𝑖

𝑡𝑖𝑜𝑘,𝑗 represents the time instants when 𝜚𝑖(𝑡) transitions from 0 to 1
(rising edge). 𝜂 serves as a smoothing factor that determines the tran-
sition width between operational and failure states. The impact of the
regularization parameter 𝜂 is demonstrated in Fig. 8.

The parameter vector that contains unknown parameters is denoted
as:

𝝉 =
[

𝝉1,… , 𝝉𝑛heat
]

, (8)

where each component 𝝉 𝑖 is defined as:

𝝉 𝑖 =
[

𝑡𝑖nok ,1, 𝑡
𝑖
ok,1,… , 𝑡𝑖nok,𝑛𝑖

, 𝑡𝑖ok,𝑛𝑖

]

. (9)

The total number of unidentified parameters is given by 𝑁 =
∑𝑛heat
𝑖=1

(

∑𝑛𝑖
𝑗=1 2𝑛𝑗

)

: 𝝉 =
(

𝜏𝑖𝑗
)

𝑖=1,…,𝑛heat
𝑗=1,…,2𝑛𝑖

. The odd-indexed components

of 𝝉 correspond to failure times, while the even-indexed components
correspond to restart times.

To achieve the parametric identification, a technique based on
minimizing the output error is employed [31]. The goal is to adjust
the undetermined parameters 𝝉 such that the data predicted by the
mathematical model aligns with the observed data using a method that
has already demonstrated its effectiveness in our prior research [14].
Let 𝑇

(

𝐶𝑖, 𝑡; 𝝉
)

denote the solution of the direct problem (1); that is,
the temperature corresponding to a particular value of the unknown
𝜏. The term 𝐶𝑖, where 𝑖 = 1,… , 4, designates the fixed locations of
the four sensors within the spatial domain of our thermal system.
These locations are defined by coordinates (𝑥𝑖, 𝑦𝑖) for each sensor and
are illustrated in Fig. 1. The sensors at these locations are stationary
and provide pointwise temperature observations, denoted by 𝑇̂ (𝑡). In
𝑖
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Fig. 7. Illustration of online detection for the first failure of source q1 using the parameters: 𝜁 = 0.2 and 𝜎 = 0.1 ◦C.
Fig. 8. Illustrations of failures 𝜚1(𝑡), 𝜚2(𝑡) and 𝜚3(𝑡) are provided, with the red curve
representing 𝜂 = 10 and the blue curve representing 𝜂 = 0.1.

addition, the quadratic cost function is expressed as follows:

𝐽 (𝝉) = 1
2

4
∑

𝑖=1
∫

𝑡𝑓

0

(

𝑇
(

𝐶𝑖, 𝑡; 𝝉
)

− 𝑇̂𝑖(𝑡)
)2 𝑑𝑡. (10)

The criterion 𝐽 (𝝉) quantifies the discrepancy between the model
predictions and the actual observations, with the aim of minimizing this
discrepancy through parameter adjustments. IHCP can be formulated as
follows:

• Given: a complete set of input parameters
{

𝑒, 𝑡𝑓 , 𝜌𝐶, 𝜆, q, ℎ, 𝑇0
}

• Objective: find the unknown 𝝉∗ such that the quadratic criterion
(10) is minimal:

𝝉∗ = Argmin
𝝉

𝐽 (𝝉),

subject to the constraint: 𝑇 is the solution of the direct problem
(1).

The identifiability of the optimal solution 𝝉∗ depends not only on
the location of the sensors, but also on the parameters and geometric
configuration of the system. The unique determination of 𝝉∗ depends
on both the precise placement of sensors and the careful selection of
system parameters and geometry of the thermal system under study.
This realization underlines the need for careful consideration of these
factors to ensure the effectiveness and accuracy of the IHCP solution.
This complexity of the identifiability process leads us directly to the
challenges posed by IHCPs themselves. As ill-posed problems, IHCPs
6

are particularly sensitive to minor measurement perturbations and are
prone to significant errors in parameter estimation. In our previous re-
search, we have successfully solved these problems using the conjugate
gradient regularization (CGM) method [14]. This iterative algorithm
solves three well-posed problems at each iteration k :

• Solve the direct problem (1) to calculate the criterion (10).
• Solve the adjoint problem (18) to obtain an accurate estimation

of the gradient of the criterion (20).
• Solve the sensitivity problem (12) to determine the descent step

size in the direction of descent (13).

∙ The sensitivity problem: The variation of the unknown parameters
is given by: 𝝉+ = 𝝉 + 𝜀𝛿𝝉. This results in the subsequent variation:

𝜚+𝑖 (𝑡) = 𝜚𝑖(𝑡) +
2𝑛𝑖
∑

𝑗=1

(

𝜀𝛿𝝉 𝑖𝑗
d 𝜚𝑖
d 𝝉 𝑖𝑗

)

,

= 𝜚𝑖(𝑡) + 𝜀
2𝑛𝑖
∑

𝑗=1

⎛

⎜

⎜

⎜

⎝

𝛿𝝉 𝑖𝑗
1
𝜋

𝜂(−1)𝑗+1

𝜂2 +
(

𝑡 − 𝝉 𝑖𝑗
)2

⎞

⎟

⎟

⎟

⎠

.

The varied temperature 𝑇 +(𝑥, 𝑦, 𝑡) is then a solution of:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝜌𝐶
𝜕𝑇 +(𝑥, 𝑦, 𝑡)

𝜕𝑡
− 𝜆𝛥𝑇 +(𝑥, 𝑦, 𝑡) =

(𝑛ℎ𝑒𝑎𝑡
∑

𝑖=1
𝜓𝑖𝜙𝑖𝜚

+
𝑖 (𝑡)

)

− 2ℎ
(

𝑇 +(𝑥, 𝑦, 𝑡) − 𝑇0
)

𝑒
,

𝑇 +(𝑥, 𝑦, 0) = 𝑇0, (𝑥, 𝑦) ∈ 𝛺,

−𝜆
𝜕𝑇 +(𝑥, 𝑦, 𝑡)

𝜕⃖⃗𝑛
= 0, (𝑥, 𝑦, 𝑡) ∈ 𝛤 ×

[

0, 𝑡𝑓
]

,

(11)

Considering 𝛿𝑇 as the temperature variation induced by the un-
known parameters, we obtain its defining equation by subtracting
Eq. (11) from Eq. (1). Consequently, 𝛿𝑇 satisfies the resulting system:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

𝜌𝐶
𝜕𝛿𝑇 (𝑥, 𝑦, 𝑡)

𝜕𝑡
− 𝜆𝛥𝛿𝑇 (𝑥, 𝑦, 𝑡) =

⎛

⎜

⎜

⎜

⎝

𝑛ℎ𝑒𝑎𝑡
∑

𝑖=1

⎛

⎜

⎜

⎜

⎝

𝜓𝑖𝜙𝑖𝜂
𝜋

2𝑛𝑖
∑

𝑗=1

⎛

⎜

⎜

⎜

⎝

(−1)𝑗+1𝛿𝝉 𝑖𝑗

𝜂2 +
(

𝑡 − 𝝉 𝑖𝑗
)2

⎞

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎠

− 2ℎ𝛿𝑇

𝑒
,

𝛿𝑇 (𝑥, 𝑦, 0) = 0, (𝑥, 𝑦) ∈ 𝛺,

−𝜆
𝜕𝛿𝑇 (𝑥, 𝑦, 𝑡)

= 0, (𝑥, 𝑦, 𝑡) ∈ 𝛤 ×
[

0, 𝑡
]

,

(12)
⎩ 𝜕⃖⃗𝑛 𝑓
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During each iteration, the descent depth is determined to minimize the
criterion along the descent direction 𝒅𝑘+1:

𝛾𝑘+1 = argmin
𝛾𝑘∈R2

𝐽
(

𝝉𝑘 − 𝛾𝑑𝑘+1
)

=
∑4
𝑖=1 ∫

𝑡𝑓
0

(

𝑇
(

𝐶𝑖, 𝑡; 𝝉𝑘
)

− 𝑇̂𝑖(𝑡)
)

𝛿𝑇
(

𝐶𝑖, 𝑡; 𝝉𝑘
)

𝑑𝑡
∑4
𝑖=1 ∫

𝑡𝑓
0

(

𝛿𝑇
(

𝐶𝑖, 𝑡; 𝝉𝑘
))2 𝑑𝑡

. (13)

The descent direction is determined by the cost-function gradient and
is defined by the conjugate gradient algorithm.

∙ The adjoint problem: The purpose of this problem is to deter-

mine the gradient of the cost-function: ∇𝐽𝑘 =
(

𝜕𝐽𝑘

𝜕𝝉 𝑖𝑗

)

𝑖=1,…,𝑛heat
𝑗=1,…,2𝑛𝑖

. In order

to accomplish this, we present the Lagrangian multipliers 𝛶 (𝑥, 𝑦, 𝑡) and
he Lagrangian:

(𝑇 , 𝝉 , 𝛶 ) = 𝐽 (𝝉)

+ ∬𝛺×
[

0,𝑡𝑓
]

(

𝜌𝐶 𝜕𝑇
𝜕𝑡

− 𝜆𝛥𝑇 −
q − 2ℎ(𝑇 − 𝑇0)

𝑒

)

𝛶𝑑𝛺 𝑑𝑡. (14)

The variation of the Lagrangian is:

𝛿L(𝑇 , 𝝉 , 𝛶 ) = 𝜕L
𝜕𝑇

𝛿𝑇 + 𝜕L
𝜕𝝉
𝛿𝝉 + 𝜕L

𝜕𝛶
𝛿𝛶

= 𝜕L
𝜕𝑇

𝛿𝑇 +
𝑛heat
∑

𝑖=1

( 2𝑛𝑖
∑

𝑗=1

(

𝜕L
𝜕𝝉 𝑖𝑗

𝛿𝝉 𝑖𝑗

))

+ 𝜕L
𝜕𝛶

𝛿𝛶 . (15)

he Lagrange multiplier 𝛶 is fixed in order to satisfy following equa-
ion: 𝜕L

𝜕𝑇
𝛿𝑇 = 0. In addition, since the temperature 𝑇 is a solution of (1),

then 𝛿𝐽 (𝝉) = 𝛿L(𝑇 , 𝝉 , 𝛶 ). In order to determine 𝛶 (𝑥, 𝑦, 𝑡), it is necessary
to develop Eq. (15) from (14). The latter includes several terms:

𝜕L
𝜕𝑇

𝛿𝑇 = ∬𝛺×
[

0,𝑡𝑓
]

( 4
∑

𝑖=1

(

𝑇
(

𝐶𝑖, 𝑡
)

− 𝑇̂𝑖(𝑡)
)

𝛿𝑇𝐷𝑖

)

𝑑𝛺 𝑑𝑡

+ 𝜌𝐶∬𝛺×
[

0,𝑡𝑓
]

𝜕𝛿𝑇
𝜕𝑡

𝛶 𝑑𝛺 𝑑𝑡

+ ∬𝛺×
[

0,𝑡𝑓
]

(

−𝜆𝛥𝛿𝑇 + 2ℎ
𝑒
𝛿𝑇

)

𝛶 𝑑𝛺 𝑑𝑡. (16)

n Eq. (16), the term 𝐷𝑖 represents the Dirac distribution, which is used
or punctual discrete measurements at sensors locations 𝐶𝑖. Thus, we
an decompose (15) as follows:

L(𝑇 , 𝝉 , 𝛶 ) =∬𝛺×
[

0,𝑡𝑓
]

𝐸 𝑑𝑥𝑑𝑦𝑑𝑡 + 𝜌𝐶 𝛿L1 + 𝛿L2

+
𝑛heat
∑

𝑖=1

( 2𝑛𝑖
∑

𝑗=1

(

𝜕L
𝜕𝝉 𝑖𝑗

𝛿𝝉 𝑖𝑗

))

. (17)

where:

𝐸(𝑥, 𝑦, 𝑡) =
4
∑

𝑖=1

(

𝑇
(

𝐶𝑖, 𝑡
)

− 𝑇̂𝑖(𝑡)
)

𝛿𝑇𝐷𝑖.

𝛿L1(𝑥, 𝑦, 𝑡) = ∬𝛺×
[

0,𝑡𝑓
]

𝜕𝛿𝑇 (𝑥, 𝑦, 𝑡)
𝜕𝑡

𝛶 (𝑥, 𝑦, 𝑡) 𝑑𝑥𝑑𝑦𝑑𝑡.

𝛿L2(𝑥, 𝑦, 𝑡) = ∬𝛺×
[

0,𝑡𝑓
]

(

−𝜆𝛥𝛿𝑇 (𝑥, 𝑦, 𝑡) + 2ℎ
𝑒
𝛿𝑇 (𝑥, 𝑦, 𝑡)

)

𝛶 𝑑𝑥𝑑𝑦𝑑𝑡.

Several integrations by parts, the use of Green’s theorem as well as the
formulation of the sensitivity problem allow to simplify:

𝛿L1 = ∫𝛺
𝛿𝑇 (𝑥, 𝑦, 𝑡𝑓 )𝛶 (𝑥, 𝑦, 𝑡𝑓 ) 𝑑𝑥𝑑𝑦 −∬𝛤×

[

0,𝑡𝑓
]

𝛿𝑇 𝜕𝛶
𝜕𝑡

𝑑𝑥𝑑𝑦𝑑𝑡.

𝛿L2 = −∬𝛺×
[

0,𝑡𝑓
]

𝜆𝛥 (𝛶 ) 𝛿𝑇 𝑑𝑥𝑑𝑦𝑑𝑡

+∬𝛤×
[

0,𝑡𝑓
]

𝜆𝛿𝑇 𝜕𝛶
𝜕𝑛

𝑑𝑥𝑑𝑦𝑑𝑡 +∬𝛺×
[

0,𝑡𝑓
]

2ℎ
𝑒
𝛿𝑇𝛶 𝑑𝑥𝑑𝑦𝑑𝑡.
7

As 𝛶 is fixed so that 𝜕L
𝜕𝑇 𝛿𝑇 = 0, then 𝛶 is solution of the following

system (adjoint problem):

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜌𝐶
𝜕𝛶 (𝑥, 𝑦, 𝑡)

𝜕𝑡
+ 𝜆𝛥𝛶 (𝑥, 𝑦, 𝑡) = 𝐸(𝑥, 𝑦, 𝑡) + 2ℎ

𝑒
𝛶 (𝑥, 𝑦, 𝑡),

𝛶 (𝑥, 𝑦, 𝑡𝑓 ) = 0, (𝑥, 𝑦) ∈ 𝛺

−𝜆
𝜕𝛶 (𝑥, 𝑦, 𝑡)

𝜕𝑛
= 0, (𝑥, 𝑦, 𝑡) ∈ 𝛤 ×

[

0, 𝑡𝑓
]

.

(18)

If 𝛶 is a solution of the adjoint problem described by the PDEs (18)
while 𝑇 is a solution of the direct problem described by the PDEs (1),
Eq. (15) becomes:

𝛿L(𝜃, 𝝉 , 𝛶 ) =
𝑛heat
∑

𝑖=1

( 2𝑛𝑖
∑

𝑗=1

(

𝜕L
𝜕𝝉 𝑖𝑗

𝛿𝝉 𝑖𝑗

))

.

In addition, as 𝛿𝐽 (𝝉) = 𝛿L(𝜃, 𝝉 , 𝛶 ) and:

𝜕L
𝜕𝝉 𝑖𝑗

𝛿𝜏𝑖𝑗 = ∬𝛺×𝑇

⎛

⎜

⎜

⎜

⎝

𝑓𝑖𝑔𝑖𝜂
𝜋𝑒

⎛

⎜

⎜

⎜

⎝

(−1)𝑗𝛿𝝉 𝑖𝑗

𝜂2 +
(

𝑡 − 𝝉 𝑖𝑗
)2

⎞

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎠

𝛶 𝑑𝑥𝑑𝑦𝑑𝑡, (19)

the expression of the gradient is then:

𝜕𝐽
𝜕𝝉 𝑖𝑗

= ∬𝛺×𝑇

⎛

⎜

⎜

⎜

⎝

𝑓𝑖𝑔𝑖𝜂
𝜋𝑒

⎛

⎜

⎜

⎜

⎝

(−1)𝑗

𝜂2 +
(

𝑡 − 𝝉 𝑖𝑗
)2

⎞

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎠

𝛶 𝑑𝑥𝑑𝑦𝑑𝑡. (20)

.2.2. Identification strategy and algorithm
In [14], we demonstrated the effectiveness and accuracy of the CGM

n offline situations. However, it should be noted that the identification
f failure instants required around 10 min for a single simulation. One
f the main drawbacks of this offline identification is its convergence
ime, which can be significantly longer depending on the complexity of
he problem. To address this challenge and improve identification time,
e propose a quasi-online identification strategy. In the following, the
otations below are considered:

• 𝑖 = [𝑡𝑖, 𝑡𝑖+1] ⊂ [0, 𝑡𝑓 ] is the current time interval, corresponding to
the time during which the process evolves. Its state (temperature)
is the solution of the direct problem (1) over the time interval 𝑖.

•  ∗
𝑖 = [𝑡∗𝑖 , 𝑡

∗
𝑖+1] is the time interval used to solve the inverse

problem.
• 𝑡detect is the time instant at which the failure is initially detected

by the EWMA control chart. It serves as the starting point for
launching the subsequent identification process.

• 𝑡diag is the time instant when comprehensive diagnostic informa-
tion becomes available. It is calculated as the sum of 𝑡detect and
the time taken for the identification process to converge. Mathe-
matically, it can be expressed as 𝑡diag = 𝑡detect+Convergence Time.

To illustrate the quasi-online identification phase for thermal source
failures, let us take the example where the mobile source q1 fails at
time 𝑡 = 1500s. Once the failure is detected, i.e. when the limits of
the EWMA map are exceeded (Fig. 7), the identification procedure is
launched. In this identification, the window used is defined as  ∗

𝑖 =
[𝑡𝑖 − 𝜈, 𝑡𝑖+1]. This adapted window improves the accuracy of identifying
source failure or restart times. Indeed, by subtracting the value of 𝜈
from the identification window, we obtain a longer period over which
the measurements are taken into account, resulting in a more accurate
estimate of source failure or restart instants.

The choice of the 𝜈 value in the identification window depends on
the level of noise present in the sensor measurements. High noise levels
lead to late detection. It is therefore possible to adjust the value of 𝜈
appropriately. By increasing the value of 𝜈, the identification window is
extended over a longer period of time, so that failure-induced variations
can be better taken into account.

Finally, an adaptation of the conjugate gradient algorithm is pre-
sented in the algorithm 1 . The algorithm stops when the criterion (10)
is judged sufficiently small. Details of the stopping criterion are given

in the next section.
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Fig. 9. Overview of the quasi-online diagnostic method: integrating real-time detection and quasi-online identification.
Algorithm 1 CGM quasi-online algorithm.

1. Compute the EWMA statistic 𝑍𝑖,𝑚 over the time interval 𝑖.
2. Evaluate the EWMA UCL and LCL:

(a) If the limits are not exceeded, it implies that no failure has
occurred within the interval 𝑖. Terminate the detection
procedure and proceed to the next time interval 𝑖+1 (go
to step 1 with 𝑖 = 𝑖 + 1).

(b) If the EWMA control limits are exceeded, this means
that a failure has occurred over this 𝑖 window. An
identification procedure is performed on  ∗

𝑖 = [𝑡𝑖−𝜈, 𝑡𝑖+1]:

i. choose an initialization 𝝉𝑘 for iteration 𝑘 = 0 for
switching instants.

ii. Solve the adjoint problem over the time interval
 ∗
𝑖 .

iii. calculation of the direction of descent over the
interval  ∗

𝑖 considering the gradient of the cost
function resulting from the previous solutions of
the adjoint problem.

iv. Solve the sensitivity problem over the time inter-
val  ∗

𝑖 to calculate the depth of descent (in the
direction of descent).

v. Update unknown parameter 𝝉𝑘+1 = 𝝉𝑘 − 𝛾𝑘+1𝒅𝑘+1

over time interval  ∗
𝑖 . (return to step 1 with 𝑖 =

𝑖 + 1).

3.2.3. Example
Considering the illustrative context where the identification of the

failure of source q1 has to be performed from the observations obtained
in Fig. 6. In this section, the measurements collected from the four
sensors data are treated with an uncertainty characterized by zero-
mean Gaussian noise and distinct standard deviations 𝜎. In order to
implement the CGM algorithm, a 𝐽stop threshold must be defined. The
stopping criterion to stop the iterative minimization of the criterion is
chosen according to the criterion proposed by [28,32]:

𝐽stop = 𝛥𝑡 𝑁𝑐 𝑁𝑡 𝜎
2, (21)

where 𝑁𝑐 = 4 is the number of sensors, 𝑁𝑡 is the number of measure-
ments data collected by sensors during the identification interval  ∗,
𝛥𝑡 = 9 s is the time sampling step between each measurement and 𝜎2

is the variance of the Gaussian measurement noise. On a personal com-
puter with the following characteristics, numerical results are achieved
using the Comsol-Multiphysics solver interfaced with Matlab software:
CPU: Intel® Core(TM) i5-10210U CPU 2.11 GHz, RAM: 8.00 Go, OS:
Windows 10 (64).

In the previous analysis, we evaluated the effectiveness of the
EWMA control chart, as described in Section 3.1. The chart identifies
the time of failure detection as 𝑡 = 1575s. Subsequently, we launch
8

detect
Fig. 10. Example of Criterion evolution in case 𝜎 = 0.1 ◦C.

the identification process, initializing the parameters 𝜈 = 180s and
𝑡1nok,1 = 1575+1386

2 seconds. Utilizing the stopping criterion (21), the
process converged to a failure identification time of 𝑡1nok,1 = 1502 s
within only 131 s. This implies that the diagnostic information becomes
available 𝑡diag = 𝑡detect + 131 = 1575 + 131 = 1706 s. Fig. 10 illustrates
how the cost function evolves with each iteration. This highlights
the effectiveness of the proposed quasi-online identification strategy
compared with the offline method, which required 10 min for a similar
identification.

Fig. 9 provides a comprehensive summary of this quasi-online diag-
nostic method, incorporating both real-time detection and quasi-online
identification.

The Table 2 presents the identification results obtained by the CGM
approach. On 30 simulations, the results are presented as the mean and
standard deviation (in brackets), where 𝑡1nok ,1, 𝑡detect and 𝑡diag represent
the identification result, detection and diagnosis times respectively.
The approach performs very effectively in scenarios with low measure-
ment noise, and maintains high accuracy even in the presence of high
measurement noise.

Following the presentation and analysis of the first approach, it
is essential to emphasize its significance. In the subsequent section,
we introduce a second method based on the Bayesian filter, which
builds upon our recent work [33,34]. This alternative approach serves
to further enhance our understanding and broaden the scope of our
investigation.

3.3. Failure identification by the Bayesian filter

3.3.1. State estimation problem
State estimation inverse problems are highly relevant in practical

applications [19,35,36]. These problems involve the estimation of dy-
namic variables using observable data and prior knowledge of physical
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Table 2
Quasi-online identification of q1 heat source failure instants by CGM method, with varying noise levels.

Real failure Identification result 𝑡1nok ,1 Detection instant 𝑡detect Availability of diagnostics 𝑡diag

𝜎 = 0.1 ◦C CGM 1500 s 1501.8 s (1.64) 1575 s (0.87) 1645.7 s (5.95)
𝜎 = 0.5 ◦C CGM 1500 s 1502.7 s (2.19) 1611 s (0.60) 1696.9 s (13.4)
𝜎 = 1 ◦C CGM 1500 s 1503.2 s (2.59) 1629.5 s (1.35) 1714.3 s (21.4)
processes. They are typically addressed through Bayesian filters. The
Kalman filter is the most widely used Bayesian filter method, partic-
ularly for linear models with additive Gaussian noises. In order to
address the evolution and observation problems within this framework,
it is necessary to redefine the direct problem (1). A numerical approach
utilizing the finite difference method is proposed for this task [37].
The discretization of the system (1) using finite differences and the
construction of the evolution and observation models are explicitly
demonstrated and analyzed in [33]. Consequently, the application can
be formulated as follows:
{

𝑻 𝑘+1 = 𝑳 ⋅ 𝑻 𝑘 + 𝑩𝑘 ⋅𝑮𝑘 +𝑯 ,

𝑻 𝑘𝒐𝒃𝒔 = 𝑪 ⋅ 𝑻 𝑘,
(22)

where 𝑻 𝑘 is a matrix containing temperature of all discretized points of
the plate at the instant 𝑘, 𝑳 is the transition matrix, encodes the linear
combination of 𝑻 𝑘, that connects state 𝑘 to state 𝑘 + 1, the matrix 𝑩𝑘

encodes the coordinates of the Gaussian distribution surrounding the
point (𝑥𝑖, 𝑦𝑖) based on the mobile source’s spatial support 𝜓𝑘𝑖 . The heat
flux 𝜙𝑘𝑖 𝑖 = 1,… , 3, is encoded by the matrix 𝑮𝑘, and the position of
the fixed sensors is encoded by the matrix 𝑪. Finally, 𝑯 is a constant
vector that depends on discretization and model parameters.

3.3.2. The Bayesian filter
With the assumption that both the evolution and observation mod-

els defined in system (22) are linear, the Kalman filter was used. In such
models, it is assumed that the noises are Gaussian with known means
and covariances, and that they are additive. The system (22) is then
modified as follows:
{

𝑻 𝑘+1 = 𝑳 ⋅ 𝑻 𝑘 + 𝑩𝑘 ⋅𝑮𝑘 +𝑯 +𝒘𝑘,

𝑻 𝑘𝑜𝑏𝑠 = 𝑪 ⋅ 𝑻 𝑘 + 𝒗𝑘,
(23)

where 𝒘𝑘, 𝒗𝑘 are the evolution and observation noises respectively
with zero means and covariances matrices 𝑸 and 𝑹 respectively. To
estimate the input vector 𝑮𝑘, a technique involves modifying the
classical Kalman filter to incorporate the input vector into the state
vector. By including the input vector, we can estimate the behavior of
the heat flux 𝜙𝑘𝑖 for each source (𝑖 = 1,… , 3). This estimation of the
heat flux behavior provides valuable insights and aids in identifying
potential failures in the heat sources. The evolution and observation
models may be respectively expressed as follows:
{

𝜣𝑘+1 = 𝑘 ⋅𝜣𝑘 +𝑯 ′ +𝒘′
𝒌,

𝑻 𝑘𝑜𝑏𝑠 = 𝑪 ′ ⋅𝜣𝑘 + 𝒗𝒌,
(24)

where:

𝜣𝑘+1 =
[

𝑻 𝑘+1

𝑮𝑘+1

]

, 𝑘 =
[

𝑳 𝑩𝑘

𝟎 𝐈

]

and 𝑪 ′ =
[

𝑪 0
]

.

Fig. 11 shows the integrated procedure using the Kalman filter. Fi-
nally, after reformulating the system (23) into (24) with the integration
of the input vector 𝑮 into the state vector, we are ready to use the
Kalman filter. The posteriori density is Gaussian and the Kalman filter
gives the optimal solution to the state estimation problem. 𝑘 and 𝑪 ′

are given matrices for the corresponding state 𝜣𝑘 and observation 𝑻 𝑘𝑜𝑏𝑠,
also, 𝑯 ′ is a constant vector for the model of the state evolution 𝜣𝑘,
and 𝐈 is the matrix identity.

In the following, 𝜣 is a Gaussian with calculable mean and covari-
ance. We denote by 𝝁 and 𝜮 the means and covariance, respectively.
Given that 𝑸′ and 𝑹 are also Gaussian. Considering the noises, 𝒘′ with
zero mean multivariate normal distribution  and covariance matrix
9

Fig. 11. Kalman filter schema.

𝑸′: 𝒘′ ∼  (0,𝑸′), and 𝒗 with a zero mean and covariance matrix 𝑹:
𝒗 ∼  (0,𝑹). The prediction and update steps of the Kalman filter, for
each 𝑘 = 1,… , t∗, where t∗ = 𝑡𝑓∕𝛥𝑡𝑜𝑏𝑠, are given by Algorithm 2.

Algorithm 2 Kalman filter.

i. Initialize: 𝝁̂0|0 and 𝜮0|0.
ii. For 𝑘 = 1, 2, ..., t∗:

Prediction:

𝝁̂𝑘|𝑘−1 = 𝑘𝝁̂𝑘−1|𝑘−1 +𝑯 ′, (25)

𝜮̂𝑘|𝑘−1 = 𝑘𝜮̂𝑘−1|𝑘−1𝑘𝑇 +𝑸. (26)

Update:

𝑲𝑘 = 𝜮̂𝑘|𝑘−1𝑪 ′𝑇
(

𝑪 ′𝜮̂𝑘|𝑘−1𝑪 ′𝑇 +𝑹
)−1

, (27)

𝝁̂𝑘|𝑘 = 𝝁̂𝑘|𝑘−1 +𝑲𝑘
(

𝑻 𝑘𝑜𝑏𝑠 − 𝑪 ′𝝁̂𝑘|𝑘−1
)

, (28)

𝜮̂𝑘|𝑘 =
(

𝐈 −𝑲𝑘𝑪 ′) 𝜮̂𝑘|𝑘−1. (29)

The Kalman gain matrix is represented by 𝑲𝑘 in this algorithm, 𝑻 𝑘𝑜𝑏𝑠
is the observation vector at time 𝑘. In the application, temperatures are
not measured at each time (they are only measured every 9 s), therefore
if there is no measurement at time 𝑘, then 𝝁̂𝑘|𝑘 = 𝝁̂𝑘|𝑘−1.

When a failure is detected by the EWMA control chart, the Kalman
filter stops its real-time state estimation at time 𝑡detect. This key moment
marks the start of the Kalman smoothing algorithm [38,39], which
performs inverse state estimation from 𝑘 = t∗ = 𝑡detect,… , 1. The hybrid
approach takes advantage of the computational speed of the Kalman
filter for online estimation and the accuracy of the Kalman smoother
for offline analysis. For this algorithm, we assume that the Kalman filter
has already been applied; the reverse steps are detailed in Algorithm 3.

Algorithm 3 Kalman Smoother.

i. Initialize: 𝝁̂t∗|t∗ , 𝜮̂t∗|t∗ .
ii. For 𝑘 = t∗ − 1, t∗ − 2,⋯ , 1:

 𝑘 = 𝜮̂𝑘|𝑘𝑳𝑇𝑘 𝜮̂
−1
𝑘+1|𝑘.

𝝁̂𝑘|t∗ = 𝝁̂𝑘|𝑘 +  𝑘(𝝁𝑘+1|t∗ − 𝝁̂𝑘+1|𝑘).

𝜮̂𝑘|t∗ = 𝜮̂𝑘|𝑘 +  𝑘(𝜮𝑘+1|t∗ − 𝜮̂𝑘+1|𝑘) 𝑇
𝑘 .
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Table 3
Quasi-online identification of q1 heat source failure instants by KS method, with varying noise levels.

Real failure Identification result 𝑡1nok ,1 Detection instant 𝑡detect Availability of diagnostics 𝑡diag

𝜎 = 0.1 ◦C KS 1500 s 1506 s (0.608) 1566 s (0) 1641.5 s (3.6)
𝜎 = 0.5 ◦C KS 1500 s 1505.6 s (1.52) 1611.2 s (1.01) 1671.7 s (9.8)
𝜎 = 1 ◦C KS 1500 s 1504.9 s (2.82) 1629 s (1.52) 1688.4 s (16.37)
3.3.3. Estimation methodology
To estimate the failure and the restart times, an assumption was

made that the failures of the sources are independent events, allowing
them to be treated individually. Furthermore, the knowledge of the
theoretical signal of each source without failure, denoted as 𝜙𝑘𝑖 and
graphically represented in Fig. 2, was utilized. Given a set of candidate
vectors 𝜚𝑐𝑎𝑛𝑑 , the problem is to find the optimal candidate vector 𝜚opt
that minimizes the squared error (SE) between 𝜙𝑘𝑖 × 𝜚

𝑖
𝑐𝑎𝑛𝑑 and 𝜙𝑘𝑖 .

Mathematically, this can be expressed as follows:

𝜚𝑖opt = Argmin
𝜚𝑐𝑎𝑛𝑑

t∗
∑

𝑘

(

𝜙𝑘𝑖 × 𝜚
𝑖
𝑐𝑎𝑛𝑑 − 𝜙

𝑘
𝑖

)2
, (30)

where 𝜚𝑖𝑐𝑎𝑛𝑑 represents the candidate vector which corresponds to
source 𝑖, 𝜙𝑘𝑖 is the theoretical signal of each source without failure,
and 𝜙𝑘𝑖 is the estimated flux of 𝜙𝑘𝑖 . Thus, for each source, the following
algorithm 4 can be used:

Algorithm 4 Search strategy algorithm.

i. Initialize and define the bounds of the candidate vector 𝜚𝑖𝑐𝑎𝑛𝑑 .
ii. Compute the squared error (SE) between 𝜙𝑖(𝑡) × 𝜚𝑖𝑐𝑎𝑛𝑑 and 𝜙𝑖(𝑡).

iii. Solve problem (30) by performing an iterative search to find the
value of 𝜚𝑖𝑐𝑎𝑛𝑑 that minimizes the squared error, while respecting
the constraints defined by the bounds.

iv. Return the optimal value of 𝜚𝑖𝑜𝑝𝑡 that minimizes the squared error,
along with the minimum value of the squared error.

3.3.4. Example
For the purpose of demonstrating the proposed methodology, let us

consider the previous illustrative context where the first source q1 fails
at 𝑡 = 1500 s. Parameters are given in the following Table 4 and the
evolution of the temperatures at the four sensors are shown in Fig. 6,
similar to the previous analysis, the measurement data are treated with
an uncertainty characterized by zero-mean Gaussian noise and distinct
standard deviations 𝜎.

The results are given in Table 3 with different noise levels. It
is important to note that in the case of late detection, this second
approach based on KS produces more accurate identification results.
Indeed, the principle of KF is to use past observations to improve
future estimates. So, when a failure detection is late, the filter has more
observations to estimate the heat flux, which can lead to more accurate
identification of failure instants. In other terms, the more data available
to the KF, the more accurate the estimates.

In the following section, we explore different configurations to
present the implementation of the Conjugate Gradient Method (CGM)
and compare it to the second approach based on Kalman smoother (KS).
Through this in-depth evaluation, we aim to provide a comprehensive
assessment that highlights both the advantages and disadvantages of
our recent approach.

4. Numerical results

In this section, several scenarios have been simulated in order to
illustrate the appropriateness of the proposed approaches. Starting by
10
Table 4
Mathematical model parameters.

Symbol Definition Values

𝜌𝐶 Volumetric heat 2.421.106 J m−3 K−1

ℎ Natural convection coefficient 10 W m−2 K−1

𝜆 Thermal conductivity 178 W m−1 K−1

𝜃0 Initial temperature 293 K
𝑡𝑓 Final time 3600 s
𝑒 Thickness 2 ⋅ 10−3 m
𝛥𝑡 Time step 3 s
𝛥𝑡𝑜𝑏𝑠 Time step of the observations 9 s
𝛥𝑥, 𝛥𝑦 Space step 0.05m

Fig. 12. Illustration of failure detection followed by identification using both
approaches.

preventing the inverse crime, data have been collected from a Comsol-
Multiphysics simulation with different parameters: time step 𝛥𝑡 = 1 s
and space step 𝛥𝑥 = 𝛥𝑦 = 0.01 m. Matlab has been used to analyze this
data.

Building on the previous section’s description and analysis of the
quasi-online diagnostic approach, which integrates real-time fault de-
tection via the EWMA control chart and an identification process
based on two distinct methodologies, Fig. 12 illustrates this integrated
diagnostic process. The four sensors’ data uncertainty is represented by
a Gaussian noise with a zero mean and different 𝜎 standard deviations,
similarly to a real system.

To fully understand the effect of this factor, the obtained results are
presented in a manner similar to the preceding section, based on 30
simulations for each scenario.

4.1. Source separation: 3 heat sources with same failure instant

In the next phase of our study, we extend our focus from identifying
the failure instants of a single source to a more complex scenario
involving several sources. More precisely, we aim to identify the failure
instants of three distinct heat sources. In this multi-source framework,
all three sources q1, q2 and q3 are assumed to fail simultaneously at
t=1500 s. This complexity makes it even more difficult to accurately
identify individual failure sources, especially when they fail simul-
taneously. The aim is to evaluate the ability of our two diagnostic
approaches to accurately differentiate and identify the failure instants
of these sources under such complex conditions (see Fig. 13).

Table 5 shows the identification results obtained by the two ap-
proaches for 30 simulations, where 𝑡1 , 𝑡2 , and 𝑡3 represent
nok ,1 nok ,1 nok ,1
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Table 5
Quasi-online identification of q1, q2 and q3 heat sources failure instants by CGM and KS methods, with varying noise levels.

Identification result Detection instant 𝑡detect Availability of diagnostics 𝑡diag

𝜎 = 0.1 ◦C

CGM

𝑡1nok,1 = 1504.8 s (2.74)
𝑡2nok,1 = 1499.1 s (2.64)
𝑡3nok,1 = 1490.3 s (5.88)

1562.9 s (2.11) 1648.1 s (9.6)

KS

𝑡1nok,1 = 1505.2 s (1.32)
𝑡2nok,1 = 1497.8 s (1.63)
𝑡3nok,1 = 1586.4 s (6.22)

1563.4 s (1.69) 1631.3 s (5.75)

𝜎 = 0.5 ◦C

CGM

𝑡1nok,1 = 1503.1 s (3.25)
𝑡2nok,1 = 1499.8 s (4.17)
𝑡3nok,1 = 1494.1 s (4.07)

1574 s (4.04) 1669.9 s (15.4)

KS

𝑡1nok,1 = 1505.3 s (4.82)
𝑡2nok,1 = 1497.3 s (7.30)
𝑡3nok,1 = 1578 s (5.35)

1575.3 s (1.57) 1639.1 s (7.47)

𝜎 = 1 ◦C

CGM

𝑡1nok,1 = 1501.8 s (4.31)
𝑡2nok,1 = 1500.5 s (5.64)
𝑡3nok,1 = 1496.3 s (7.98)

1585.8 s (6.42) 1702.3 s (21.4)

KS

𝑡1nok,1 = 1505.1 s (9.4)
𝑡2nok,1 = 1506.2 s (8.3)
𝑡3nok,1 = 1576.8 s (6.98)

1585.8 s (2.1) 1646.4 s (7.4)
Fig. 13. Illustration of online detection of three heat sources q1, q2 and q3 using the parameters: 𝜁 = 0.2 and 𝜎 = 0.1 ◦C.
the identification result, 𝑡detect and 𝑡diag represent detection time and
diagnosis time respectively.

Under conditions of low measurement noise, both the CGM and
KS methods demonstrate excellent efficiency in identifying sources q1
and q2. However, when it comes to the q3 source, the CGM method
clearly outperforms the KS method. This better performance of the
CGM method is largely due to its better handling of the sensor’s
delay in responding to changes from this more distant source, which
intrinsically complicates the identification process. In situations where
measurement noise levels are higher, the CGM method continues to
display a higher degree of identification accuracy than the KS method.
This is particularly evident in scenarios involving late failure detection,
where the CGM method’s ability to make effective use of a larger
volume of observation data significantly improves the accuracy of
identifying the exact time of failure.

4.2. Source separation: 2 heat sources with different failure instants

Following the successful identification of simultaneous failures of
three separate heat sources, the focus now shifts to a more complex
scenario: the identification of non-simultaneous failures of two separate
sources. In this specific configuration, the initial source fails at 𝑡1nok,1 =
1000 s, while the second source fails later, precisely 𝑡2nok,1 = 2000 s after
the start of the simulation.
11
When a failure is detected by the control chart, the system proceeds
to the identification phase to specify the failed heat source (Figs. 14(a),
14(b)). The results of this identification are shown in Table 6. Having
identified the failure time of the first heat source, a direct problem is
solved using this identification, with the aim of updating the system
behavior according to the new observations. The time required for this
update is called 𝛥𝑅𝑒𝑠𝑡 . Once this update is complete, the detection phase
is reset and reactivated (Figs. 14(c), 14(d)). Once the second failure
has been identified, the availability of the next diagnosis is given by
𝑡diag = 𝑡detect + convergence time + 𝛥𝑅𝑒𝑠𝑡 .

Table 6 shows the results of failure identification using two different
methods over 30 simulations. In situations where the measurement
noise is low, both methods were remarkably effective in identifying
failures. However, in scenarios characterized by high measurement
noise, the CGM approach notably outperformed the KS method in terms
of accuracy. Furthermore, in line with previous results, the proposed
GCM-based approach gave solid results for failure identification in
cases of late detection. This improved performance can be attributed
to the increased number of observations available during late detection
phases, which contributes significantly to more accurate fault iden-
tification. This comparison underlines the superior adaptability and
efficiency of the CGM method, particularly under difficult high-noise
conditions.
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Fig. 14. Illustration of online failure detection for two heat sources q1 and q2 using the parameters: 𝜁 = 0.2 and 𝜎 = 0.1 ◦C.
Table 6
Quasi-online identification of q1 and q2 heat sources failure instants by CGM and KS methods, with varying noise levels.

Identification result 𝑡1nok ,1 𝑡detect and 𝑡diag Identification result 𝑡2nok ,1 𝑡detect and 𝑡diag

𝜎 = 0.1 ◦C
MGC 1003.9 s (1.36) 1154.3 s(0.96)

1203.9 s(10.77)
2001.6 s (1.79) 2119.5 s(1.19)

2228.4 s(12.2)

KS 1015.7 s (2.88) 1147 s(2.23)
1191.7 s (11.24)

2003.9 s (0.71) 2135.2 s(0.44)
2211.9 s (4.7)

𝜎 = 0.5 ◦C
MGC 1004.2 s (3.64) 1206 s(2.27)

1271.8 s (25.7)
1999.1 s (2.1) 2175.8 s(1.91)

2301.1 s (22.07)

KS 1008.6 s (4.5) 1211 s(1.84)
1257.5 s (16.28)

2004 s (2.52) 2182.2 s(1.2)
2277.8 s (12.4)

𝜎 = 1 ◦C
MGC 1004.7 s (3.28) 1240.6 s (3.19)

1336.6 s (31.77)
1999.3 s (3.71) 2221.1 s(4.1)

2348 s (31.1)

KS 1007.3 s (8.99) 1242 s(3.29)
1290 s (30.33)

2005.1 s (5.3) 2228.8 s(3.52)
2329.8 s (34.54)
Table 7
Quasi-online identification of q2 and q3 heat sources failure instants and restart for q2 by CGM and KS methods, with varying noise levels.

𝑡2nok ,1 𝑡detect and 𝑡diag 𝑡3nok ,1 𝑡detect and 𝑡diag 𝑡2ok ,1 𝑡detect and 𝑡diag

𝜎 = 0.1 ◦C
CGM 1001.5 s (3.1) 1165 s(2.01)

1257.6 s(11.8)
1503.3 s (2.08) 1610.9 s(2.6)

1659 s(7.02)
2505.6 s (7.97) 2808.4 s(2.3)

2903 s(13.4)

KS 1007.2 s (2.3) 1165.8 s(1.45)
1209.5 s (14.32)

1507.4 s (1.96) 1611.1 s(3.2)
1651.7 s (5.6)

2512.4 s (7.01) 2799.2 s(3.48)
2910.3 s(3.2)

𝜎 = 0.5 ◦C
CGM 1001.3 s (4.84) 1244 s(2.03)

1281.4 s (32.14)
1505.2 s (6.55) 1665.1 s(2.63)

1744.4 s (14.76)
2504.1 s (10.4) 2934.3 s(5.91)

3046.3 s(22.2)

KS 1004.7 s (13.8) 1244.5 s(2.18)
1290.3 s (20.4)

1508.4 s (5.31) 1656 s(1.15)
1721.6 s (10.7)

2535 s (9.79) 2925 s(8.5)
3033.8 s(10.1)

𝜎 = 1 ◦C
CGM 1001.2 s (5.28) 1276.6 s (3.19)

1336.6 s (31.77)
1504.8 s (3.71) 1692.1 s(2.1)

1772 s (29.7)
2504.6 s (12.7) 3123.5 s(1.19)

2228.4 s(12.2)

KS 1004.3 s (8.9) 1277.7 s(2.85)
1330.6 s (25.33)

1508.8 s (8.6) 1691.8 s(2.15)
1751.7 s (22.34)

2522.6 s (10.2) 3106 s(1.19)
3278.4 s(12.2)
12
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Fig. 15. Illustration of online failure detection for two heat sources q2, q3 and restart for q2 using the parameters: 𝜁 = 0.2 and 𝜎 = 0.1 ◦C.
4.3. Identifying of failure and restart instants

After successfully identifying failure cases for two distinct sources
using both approaches, we extend the challenge of identifying failure
instants alone to also include source restart instants. In this advanced
scenario, we focus on two distinct heat sources with more complex
behaviors. Specifically, we are considering a situation in which the
second heat source q2 fails at 𝑡2nok,1 = 1000 s then restarts at 𝑡2𝑜𝑘,1 =
2500 s. At the same time, the third heat source q3 fails at 𝑡3nok,1 =
1500s. The aim of this new complexity is to evaluate the adaptability
and accuracy of our two diagnostic approaches in identifying not only
failures, but also restarts of the heat sources.

As explained in the previous configuration, once the first failure has
been detected and identified (Figs. 15(a), 15(b)), we proceed to solve
a ‘‘direct problem’’ using the identification results. This step serves
to reconfigure the system’s behavior based on the identified failure
times. The time allocated to this process is denoted as 𝛥𝑅𝑒𝑠1𝑡 . Once
this update has been carried out, the detection mechanism is reset and
13
restarted (Figs. 15(c), 15(d)). When a new failure is identified, the
availability of the next diagnostic step is determined by the equation
𝑡diag = 𝑡detect + convergence time + 𝛥𝑅𝑒𝑠1𝑡 .

Finally, when both failures have been identified and the system’s
behavior updated accordingly (requiring an additional 𝛥𝑅𝑒𝑠2𝑡 time), we
reset the detection process once again (Figs. 15(e), 15(f)). The system
then proceeds on to the identification phase, this time with the specific
aim of identifying instants of restarting failed heat sources. The time
taken to provide the next diagnostic data after restart identification is
calculated as follows: 𝑡diag = 𝑡detect + convergence time +𝛥𝑅𝑒𝑠1𝑡 +𝛥𝑅𝑒𝑠1𝑡 .

Table 7 compares the performance of the CGM and KS approaches
in identifying failure and restart instances. In conditions where mea-
surement noise is relatively low, both methods give satisfactory results.
However, in situations where measurement noise is high, the CGM
approach clearly outperforms the KS method, demonstrating greater
accuracy in identifying failure and restart times. This comparison high-
lights the superior performance of the CGM method, particularly in
environments with high noise levels. Overall, the table reinforces the
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effectiveness of our CGM method in accurately identifying these crit-
ical moments, particularly in contexts involving systems governed by
parabolic partial differential equations.

5. Conclusion

In this article, we introduced a quasi-online methodology designed
to identify failure instants within a physical system governed by a
set of linear parabolic partial differential equations. Our objective was
to determine when and which mobile heat source had experienced a
failure or restart based on noisy temperature observations from four
fixed sensors.

The quasi-online diagnosis process consists of two key phases: de-
tection and identification. For real-time failure detection, we employed
the EWMA control chart, which effectively detects failures when one
or more heat sources malfunction, subsequently triggering the identi-
fication process. In this identification phase, we proposed an original
method formulated as a quadratic criterion minimization problem and
solved using an iterative regularization technique. To comprehensively
assess its performance, we conducted a comparative analysis with a
second approach grounded in Bayesian filtering techniques.

Our comparative analysis revealed that the first approach excelled
in accurately identifying failure and restart instants, even in the pres-
ence of substantial measurement noise, highlighting the effectiveness of
our method. The use of the CGM in the first approach brought several
advantages over traditional methods. Notably, it enabled the simulta-
neous identification of failures in multiple heating sources, a challeng-
ing task for conventional approaches. Additionally, the CGM ensured
numerical stability, resulting in efficient and precise computations.

In the context of our study, the unique solution of the IHCP was
influenced not only by the sensor placement but also significantly by
the parameters and geometric configuration of the system. This aspect
becomes particularly crucial in scenarios involving mobile sensors,
where an iterative sensitivity analysis is vital to establish the optimum
sensor trajectory. Such a positioning strategy ensures the unique solv-
ability of the inverse problem, which is paramount for accurate and
reliable failure identification.

There are several perspectives for future research following this
work. One potential extension involves incorporating mobile sensors
that require repositioning to enhance the precision of failure identifi-
cation. In this context, the development of decision-support strategies
based on predefined scenarios holds promise for further exploration.
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