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RESEARCH ARTICLE

Bayesian filter for failure times identification of moving heat sources

in 2D geometry

Mohamed Salim Bidoua, Sylvain Verrona, Laetitia Pereza, Laurent Autriquea

aLARIS, Polytech, University of Angers, 62 avenue notre dame du lac, 49000 Angers, France.

ABSTRACT

This study investigates the application of the Bayesian filter method for identifying

failure times in a 2D parabolic partial differential equation system. The identification

of failure times in thermal systems, which are subject to partial differential equa-

tions, presents significant difficulties, especially due to their ill-posed nature, which

makes them highly sensitive to measurement errors. A Bayesian inference framework

was previously developed in a related study, aiming to solve inverse heat conduction

problems by utilizing temperature measurements from sensors to estimate failure

times or potential restarts of fixed heat sources. This paper focuses on the case of

mobile sources, where a set of fixed sensors is considered and the trajectories of the

heating sources are known and follow a constant velocity. The main objective is to

accurately identify the failing heat sources and determine the exact failure time, as

well as the possibility of resuming normal operation. A Monte Carlo simulation is

performed to assess the impact of sensor measurements.

KEYWORDS

Failure times identification; fault diagnosis; kalman filters; heat measurement;

inverse problems; partial differential equations

1. Introduction

Due to the growing complexity of industrial systems and the growing concern for their

safety, there has been an increase in interest in fault diagnosis in recent decades. The

use of theories based on partial differential equations (PDEs) has become prevalent in
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Nomenclature

∆t time step, s
∆tobs time step of the observations, s
∆x,∆y space step, m
Γ boundary of Ω
λ thermal conductivity, W · m−1 ·

K−1

Ω geometric domain
−→n unit external outward-pointing

vector
ρC volumetric heat, J ·m−3 ·K−1

e thickness, m
h natural convection coefficient

Natural convection coefficient,
W ·m−2 ·K−1

T temperature, K
t time, s
tf final time, s
T0 initial temperature, K
x space variable, m
y space variable, m

modeling various phenomena within complex physical systems. For instance, Fourier’s

law in thermal sciences, which governs heat exchange, leads to a system of parabolic

PDEs. Ordinary differential equations (ODEs) are insufficient for accurately captur-

ing the dynamic behaviors of most practical engineering models due to their limited

ability to account for spatial and temporal evolution. Model-based fault detection

and diagnosis systems have emerged as a prominent approach for addressing these

challenges. Faults are characterized as malfunctions in system components, sensors,

or actuators. If these faults go undetected and unaddressed during system operation,

they can severely impact the overall system performance, leading to system failure or

significant human and material losses. Thus, timely and accurate fault detection plays

a crucial role in ensuring system reliability and preventing adverse consequences.

In industrial heating systems, failures in heating sources can lead to decreased ef-

ficiency, product quality issues, or safety hazards. Heating, ventilation, and air con-

ditioning (HVAC) systems require accurate identification of failure times to ensure

temperature consistency, energy efficiency, and occupant comfort. Power generation

plants heavily rely on heating sources, and any faults can result in power outages or

reduced capacity. Solar thermal systems, which utilize sunlight as a heating source,

require reliable fault detection to maximize energy output. Process industries, such

as petrochemical plants or food processing facilities, depend on thermal systems, and

timely fault detection is crucial for maintaining production schedules, ensuring product

quality, and preventing safety risks.
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The field of controlling and estimating of PDEs has been an active area of research

for several decades. There are generally two approaches for PDE control and estima-

tion: (i) Early lumping, where the PDEs is approximated by ODEs and the design is

conducted in a finite-dimensional space (Cheng et al., 2009; Wu & Li, 2008); and (ii)

Late lumping, which involves designing in an infinite-dimensional space and directly

studying the PDEs without using approximate methods (Krstic & Smyshlyaev, 2008;

Wu et al., 2011). While control and estimation research has received significant atten-

tion, system fault diagnosis, on the other hand, has been relatively less explored. Ex-

isting PDEs diagnostic schemes mainly employ early lumping approaches (Demetriou,

2002; El-Farra & Ghan- tasala, 2007; Ghantasala & El-Farra, 2009; Ju et al., 2021;

Pourdadashi Komachali & Shafiee, 2020). The early lumping method has been exten-

sively employed in early research on system fault diagnosis utilizing PDEs modeling.

Nevertheless, this approach suffers from certain drawbacks. The finite dimensional ap-

proximation frequently results in the loss of crucial intrinsic characteristics inherent

in the original PDEs model. The other “late lumping” based on PDEs observer-based

fault diagnosis schemes has been successfully applied to parabolic systems in research

projects such as (Cai et al., 2016; Duan & Patton, 2001; Feng et al., 2022; Ferdowsi

et al., 2022, 2023; Frank, 1994; Lei et al., 2022).

This article presents an approach for identifying failure times in heating sources

within a thermal system using a parametric estimation method. Within the framework

of parametric estimation, it is reasonable to view the search for failures in a system

governed by a PDE system under normal conditions as an inverse problem (Bidou

et al., 2022b). Consequently, in the thermal domain, a Bayesian-based approach is

employed to solve Inverse Heat Conduction Problems (IHCPs).

In recent years, there has been significant development in Bayesian approaches for

solving IHCPs (Patel et al., 2022; Yeonjong et al., 2020; Yin et al., 2021). These ap-

proaches utilize statistical inference to estimate unknown parameters based on their

probability density functions, which are defined using observed data. State estima-

tion problems have also been addressed using Bayesian filter-based approaches. The

Kalman filter (KF) (Kalman, 1960) is a widely used Bayesian filter, but its applicabil-

ity is limited to linear models with additive Gaussian noise. Currently, there is active
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research on applying the KF to inverse heat transfer problems. The Kalman proce-

dures in the time domain, including filtering, smoothing, and prediction, have been

utilized in various studies. For instance, in Massard et al. (2012), a KF-based method

was developed to estimate the intensity and positioning of a heating flux on a plate at

each instant, allowing for the estimation of a source’s trajectory. Similarly, in Wang et

al. (2020) , a real-time method based on KF was proposed and improved to locate a

moving heat source in a three-dimensional heat transfer system. In Gaaloul & Daouas

(2018), the Kalman smoother (KS) was employed to inversely estimate the heat flux

on the front and back surfaces of a cylindrical nonlinear two-dimensional system using

future temperature data from the back surface. The KS method was also utilized in

Wen et al. (2020) to resolve the inverse estimation of radiation-conduction problems

by combining the KF and Rauch-Tung-Striebel smoothing (Rauch et al., 1965).

In the context of parametric estimation, the identification of failure times in a sys-

tem governed by a set of PDEs, representing its fault-free behavior, can be viewed

as an inverse problem. Consequently, failure instants within the thermal framework

can be identified by solving an IHCPs based on observations obtained from the mal-

functioning system. However, there are several important considerations to address.

Firstly, IHCPs are highly sensitive to measurement errors due to their ill-posed nature

(Alifanov, 1994). Additionally, the failures under investigation are characterized as

”on-off” events, and the study’s structure bears resemblance to hybrid systems with

delays caused by discontinuous switching associated with heat transport phenomena.

To tackle these challenges, a methodology was proposed in our previous work (Bidou

et al., 2022a) for estimating failures and restarts of heat sources. This approach is

based on the KS and uses a search strategy by solving an optimization problem. It

is important to note that the previous work primarily focused on fixed heat sources.

However, in order to address a more challenging scenario, we further explore the case of

mobile heat sources with known trajectories. Unlike fixed sources, mobile heat sources

introduce additional complexities in accurately identifying which specific heat source

has failed and determining the exact time of failure. The mobility of heat sources

adds dynamism to the system as the sources continuously move along their known

trajectories.
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The structure of this article is organized as follows. Section 2 provides a detailed

description of the physical problem formulation in a two-dimensional geometry. In

Section 3, we introduce a Bayesian filter based on conventional Kalman filtering and

smoother techniques to address the inverse problem. This section begins by formulating

the direct problem as a state estimation problem, followed by the presentation of the

inverse problem. We then propose a methodology for estimating failure and restart

instants using a search strategy that considers various candidate signals from the

heating sources. Section 4 presents and discusses the numerical results obtained for

both fixed and mobile heat sources. Finally, the study concludes in Section 5, where

we provide an overview of the main findings and outline potential directions for future

research.

2. Application description

2.1. The direct problem

The application given here is a 1 meter long by 1 meter wide by 2 mm thick aluminum

plate. On this are positioned four temperature sensors and three heating sources. The

locations of the three sources and four sensors are known. The behavior of the heat-

ing sources is unpredictable. These, specifically, will encounter all-or-nothing failures.

Consequently, a source may stop operating (in which case its heat flow would be zero)

and then return to its regular behavior, and this could occur frequently.

Let’s define the geometric domain as Ω = [−0.5, 0.5]2 ⊂ R2 and every point in

space possesses coordinates (x, y) ∈ Ω. The time variable is t ∈ [0, tf ]. T (x, y, t) rep-

resents the temperature at every point in space. The following set of mathematical

equations (Vergnaud et al., 2016) describes the temperature’s temporal evolution in

the Ω domain:


ρC

∂T (x, y, t)

∂t
− λ∆T (x, y, t) =

q(x, y, t)− 2h (T (x, y, t)− T0)

e
, (x, y, t) ∈ Ω× [0, tf ] ,

T (x, y, 0) = T0, (x, y) ∈ Ω,

−λ∂T (x, y, t)
∂−→n

= 0, (x, y, t) ∈ Γ× [0, tf ] ,

(1)
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where ∆ is the Laplacian operator:

∆T (x, y, t) =
∂2T (x, y, t)

∂x2
+
∂2T (x, y, t)

∂y2
.

It is crucial to mention that the previous mathematical model is based on knowledge

of physical behavior perfectly described by physical law. Such a white box model in

thermal sciences is issued from Fourier’s law leading to direct problem (1). In general,

this so called heat equation (parabolic PDE) is considered in order to describe energy

balance and is adapted to conductive, convective and radiative exchanges (see for

example H.S. Carslaw & Jaeger, 1986). For both convective and radiative transfers

grey boxes models could be additionally taken into account. Thus, in the following a

valid mathematical model is implemented in order to develop a whole methodology

adapted to a wide range of experimental configurations. Examples can be proposed in

L. Autrique et al., 2009 ; Lascoup et al., 2014 ; Museux et al., 2012. Thermophysical

parameters of the considered metallic plate are issued from Ashby, 1993. The input

parameters for the model are listed in Table 1. Figure 1 illustrates the locations of the

sources and sensors.

Table 1.: Mathematical model input parameters.

Symbol Definition Values

ρC Volumetric heat 2.421.106 J ·m−3 ·K−1

h Natural convection coefficient 10 W ·m−2 ·K−1

λ Thermal conductivity 178 W ·m−1 ·K−1

T0 Initial temperature 293 K

tf Final time 3600 s

e Thickness 2 · 10−3 m

Several heating sources contribute to the heat flux q(x, y, t):

q(x, y, t) =

nheat∑
i=1

qi(x, y, t), with: nheat = 3. (2)

Each heat source, qi(x, y, t), can be described by the product of three separate func-
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Figure 1.: Positions of the plate’s 3 sources and 4 sensors.

tions:

qi(x, y, t) = ψi(x, y, t)ϕi(t)ϱi(t), (3)

the function ψi(x, y) determines the spatial support of the heat source and represents

its spatial distribution. It is modeled as a Gaussian distribution centered at the point

(xi, yi):

ψi(x, y, t) = exp

(
−(x− xi(t))

2 + (y − yi(t))
2

(5× 10−2)2

)
. (4)

The spread of the Gaussian is controlled by a standard deviation of 5 × 10−2. This

function essentially quantifies the extent to which each source influences its surround-

ing region. The function ϕi(t) characterizes the temporal behavior of each heat source,

representing the normal heat flux generated by source i. It describes how the heat flux

changes over time for each specific source. The plot in Figure 2 illustrates the evolution

of the heat flux for the three sources. Moreover, the function χi(t) is introduced to
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account for possible faults or failures in heating source i:

ϱi(t) =

 1 without failure,

0 in case of failure.
(5)

This function serves as an indicator, assuming a value of 1 when the source is oper-

ating without any failure and 0 in the event of a failure. The occurrence of failures is

represented by discontinuous steps in the function ϱi(t), transitioning between 1 and

0, or vice versa. If a heating source experiences a failure, a step from 1 to 0 is observed,

indicating a cessation of heat generation. Conversely, a step from 0 to 1 signifies the

successful restart of a previously failed source. An example demonstrating the behav-

ior of the function ϱi(t) i = 1, 2, 3 is depicted in Figure 3. In this example, source 1

experiences a failure at 1000s and restarts operation at 2500s, source 2 fails at 2000s,

and source 3 operates without any failure.

Figure 2.: The flux of the three sources ϕ1(t), ϕ2(t), and ϕ3(t) in normal operation,
without any failures.
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Figure 3.: Illustrations of ϱ1(t), ϱ2(t) and ϱ3(t).

3. The inverse problem

3.1. State estimation problem

State estimation inverse problems are highly relevant in practical applications (J. Kai-

pio & Somersalo, 2006; J. P. Kaipio & Fox, 2011; Özisik & Orlande, 2021). These

problems involve the estimation of dynamic variables using observable data and prior

knowledge of physical processes. They are typically addressed through Bayesian filters.

The KF is the most widely used Bayesian filter method, particularly for linear mod-

els with additive Gaussian noises. In order to address the evolution and observation

problems within this framework, it is necessary to redefine the direct problem (1).

A numerical approach utilizing the finite difference method is proposed for this task

(Özisik et al., 2017). The discretization of the system (1) using finite differences and

the construction of the evolution and observation models are explicitly demonstrated

and analyzed in Bidou et al. (2022a). Consequently, the application can be formulated
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as follows:


T k+1 = L · T k +Bk ·Gk +H,

T k
obs = C · T k.

(6)

In the discretized evolution problem, T k represents the matrix of temperature values

at all discretized points on the plate at the discrete time step k. The transition matrix

L is pivotal as it encodes the linear relationships between the states at time step k and

k+ 1, effectively determining the progression of the system in time due to conductive

heat transfer.

The core aspect of modeling moving sources is encapsulated in the function qi(x, y, t)

and ψi(x, y, t) in equations (3) and (4), which defines the spatial support of the heat

source, represented by a Gaussian distribution centered around a time-dependent point

(xi(t), yi(t)). This Gaussian distribution captures the spatial influence of the heat

source, with its mobility directly influencing the temperature distribution within the

domain Ω.

In transitioning to an evolution problem, this mobile characteristic is embedded

within the matrix Bk. For each time step k, the matrix Bk is recalculated to reflect the

new positions of the moving heat sources. This is crucial as the Gaussian distribution,

which represents the spatial influence of each source, changes its center according to

the source’s trajectory (xi(t), yi(t)). In essence, Bk dynamically updates the spatial

weighting of the heat source’s influence within the grid at each time step, ensuring that

the model captures the mobility of the sources. In the case of fixed sources, the heat

flux is consistent over time, and therefore Bk reduces to a static matrix B, reflecting

the unchanging position of the Gaussian distribution centers (xi, yi).

The heat flux for each source at each time step k, denoted in equation (3) by ϕki

for i = 1, .., 3, is encoded by the matrix Gk. This matrix is critical for representing

the time-varying heat input from each source into the system, allowing for a direct

coupling between the source activity and the resulting temperature field. The matrix

C encodes the positions of fixed sensors within the domain, which are instrumental

in monitoring the system’s response to the dynamic heating conditions. Lastly, the
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vector H is a constant vector defined as H = (∆t · 2h · θ0)/(ρC · e). It is determined

by the system’s discretization parameters, including the time step ∆t, and its physical

properties such as ρC, h, θ0 and e, ensuring a precise representation of the thermal

environment.

This numerical framework, incorporating the matrices L, Bk, Gk, and the vector

H, alongside the fixed sensor matrix C, allows to create a comprehensive numerical

model that effectively captures both the static and dynamic aspects of heat trans-

fer induced by moving heat sources. The finite difference approach (see for example

Strikwerda, 2004 and LeVeque, 2007) provides a robust platform for the integration

of these components, facilitating a precise simulation of the heat distribution across

the plate.

The direct problem described by Equation (6) can be solved numerically when all

input parameters of the model are determined using Matlab software (Figure 4). In

Figure 4, the temperature variation on the plate is presented at a specific time of

3600s, demonstrating the absence of any failures in the three heat sources. This obser-

vation corresponds to their expected and normal behavior. Finally, Figure 5 depicts

the observed temperature T k
obs, captured by four sensors. The sensor measurements

are subject to a Gaussian noise level of σ = 1◦.

Figure 5.: Measurement data provided by the four sensors without failures.
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(a) Results of the Direct Problem in 2D Geometry
with 3D Visualization

(b) Results of the Direct Problem in 2D Geometry
with 2D Visualization

Figure 4.: Solving the direct problem using finite difference method: Temperature
distribution at t=3600s under normal operating conditions (no failures).

3.2. The Bayesian filter

With the assumption that both the evolution and observation models defined in system

(6) are linear, the Kalman filter was used. In such models, it is assumed that the

noises are Gaussian with known means and covariances, and that they are additive.

The system (6) is then modified as follows:


T k+1 = L · T k +Bk ·Gk +H +wk,

T k
obs = C · T k + vk,

(7)
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where wk, vk are the evolution and observation noises respectively with zero means

and covariances matrices Q and R respectively. To estimate the input vector Gk, a

technique involves modifying the classical Kalman filter to incorporate the input vector

into the state vector. By including the input vector, we can estimate the behavior of

the heat flux ϕki for each source (i = 1, · · · , 3). This estimation of the heat flux behavior

provides valuable insights and aids in identifying potential failures in the heat sources.

The evolution and observation models may be respectively expressed as follows:


T k+1 = Lk · T k +H ′ +w′

k,

T k
obs = C ′ · T k + vk,

(8)

where:

T k+1 =

 T k+1

Gk+1

 , Lk =

 L Bk

0 I

 and C ′ =
[
C 0

]
.

Figure 6 shows the integrated procedure using the Kalman filter. Finally, after refor-

mulating the system (7) into (8) with the integration of the input vector G into the

state vector, we are ready to use the Kalman filter. The posteriori density is Gaussian

and the Kalman filter gives the optimal solution to the state estimation problem. Lk

and C ′ are given matrices for the corresponding state T k and observation T k
obs, also,

H ′ is a constant vector for the model of the state evolution T k, and I is the matrix

identity. In the following, T is a Gaussian with calculable mean and covariance. We

denote by µ and Σ the means and covariance, respectively. Given that Q′ and R are

also Gaussian. Considering the noises, w′ with zero mean multivariate normal distri-

bution N and covariance matrix Q′: w′ ∼ N (0,Q′), and v with a zero mean and

covariance matrix R: v ∼ N (0,R). The prediction and update steps of the Kalman

filter, for each k = 1, · · · , t∗, where t∗ = tf/∆tobs, are given by Algorithm 1.

The Kalman gain matrix is represented by Kk in this algorithm, T k
obs is the ob-

servation vector at time k. In the application, temperatures are not measured at each

time (they are only measured every 9 seconds), therefore if there is no measurement at

time k, then µ̂k|k = µ̂k|k−1. To determine the different instants of failure and restart
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Figure 6.: Kalman filter schema.

Algorithm 1 Kalman filter.

i. Initialize: µ̂0|0 and Σ0|0.
ii. For k = 1, 2, ..., t∗:

Prediction:

µ̂k|k−1 = Lkµ̂k−1|k−1 +H ′, (9)

Σ̂k|k−1 = LkΣ̂k−1|k−1Lk
T +Q. (10)

Update:

Kk = Σ̂k|k−1C
′T
(
C ′Σ̂k|k−1C

′T +R
)−1

, (11)

µ̂k|k = µ̂k|k−1 +Kk

(
T k

obs −C ′µ̂k|k−1

)
, (12)

Σ̂k|k =
(
I−KkC

′) Σ̂k|k−1. (13)

of the sources, we will assume an offline analysis of this application. In this scenario,

the Kalman smoother (Murphy, 2012) likewise known as Rauch-Tung-Striebel (RTS)

smoother (Rauch et al., 1965) could provide a more accurate estimate of the state

vector. For this algorithm, we assume that the Kalman filter has already been applied;

the reverse steps are detailed in Algorithm 2.

3.3. Estimation methodology

To estimate the failure time tfail and the restart time trest, an assumption was made

that the failures of the sources are independent events, allowing them to be treated

individually. Furthermore, the knowledge of the theoretical signal of each source with-

out failure, denoted as ϕki and graphically represented in Figure 2, was utilized. Given

a set of candidate vectors ϱcand, the problem is to find the optimal candidate vector
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Algorithm 2 Kalman Smoother.

i. Initialize: µ̂t∗|t∗ , Σ̂t∗|t∗ .
ii. For k = t∗ − 1, t∗ − 2, · · · , 1:

Pk = Σ̂k|kL
T
k Σ̂

−1
k+1|k.

µ̂k|t∗ = µ̂k|k +Pk(µk+1|t∗ − µ̂k+1|k).

Σ̂k|t∗ = Σ̂k|k +Pk(Σk+1|t∗ − Σ̂k+1|k)PT
k .

ϱopt that minimizes the squared error (SE) between ϕki × ϱicand and ϕ̂ki .

Mathematically, this can be expressed as follows:

ϱiopt = Argmin
ϱcand

t∗∑
k

(
ϕki × ϱicand − ϕ̂ki

)2
, (14)

where ϱicand represents the candidate vector which corresponds to source i, ϕki is the

theoretical signal of each source without failure, and ϕ̂ki is the estimated flux of ϕki .

Thus, for each source, the following algorithm can be used:

Algorithm 3 Search strategy algorithm.

i. Initialize and define the bounds of the candidate vector ϱicand.

ii. Compute the squared error (SE) between ϕi(t)× ϱicand and ϕ̂i(t).
iii. Solve problem (14) by performing an iterative search to find the value of ϱicand

that minimizes the squared error, while respecting the constraints defined by the
bounds.

iv. Return the optimal value of ϱiopt that minimizes the squared error, along with
the minimum value of the squared error.

3.4. Illustration of the proposed methodology

For the purpose of demonstrating the proposed methodology, let us consider the sce-

nario when the first mobile heat source q1 fails at t = 1500s within a one-hour mon-

itoring period (3600s). The sources are the same as shown in Figure 2, we can apply

the Kalman filter and then the Kalman smoother after we get the measurements data

(Figure 7), and we obtain the signals shown in Figure 8 for ϕ1. Finally, with the ϕ̂1

estimated by a Kalman smoother, we may use the search technique described in the
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previous subsection. Figure 9 depicts the multiple ϕ1: the theoretical heat flux, the real

failure, the estimated by Kalman smoother, and the optimum computed candidate.

The best selected candidate gives his failure instant at t1fail = 1503s.

Figure 7.: Measurements data with σ = 0.1◦.

Figure 8.: Estimated heat flux ϕ1(t) by using Kalman filter and smoother.
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Figure 9.: The chosen candidate provides his failure instant at t1fail = 1503s.

In the next section, a general study will be conducted, starting with the case of

fixed sources, followed by mobile sources, to highlight the search approach based on

the Kalman smoother (KS) technique for determining the failure times and switching

instants for one or more mobile heat sources.

4. Numerical results

4.1. Fixed sources

Let’s analyze the illustrative setting when the 3 sources are fixed. The mathematical

model parameters are listed in Table 2. Matlab has been used to evaluate the data

collected from a Comsol-Multiphysics simulation (preventing inverse crime). The four

sensors’ data uncertainty is represented by a Gaussian noise with a zero mean and

different σ standard deviations, similarly to a real system. In order to adequately un-

derstand the impact of this parameter, the mean and standard deviation (in brackets)

of 30 simulations for each configuration are presented. Let suppose that the first heat

source has a failure time t1fail = 1500s. The evolution of the temperatures at the four
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sensors C1, C2, C3, C4 are shown in Figure 10a.

Table 2.: Mathematical model parameters.

Symbol Definition Values

ρC Volumetric heat 2.421.106 J ·m−3 ·K−1

h Natural convection coefficient 10 W ·m−2K−1

λ Thermal conductivity 178 W ·m−1 ·K−1

T0 Initial temperature 293 K

tf Final time 3600 s

e Thickness 2 · 10−3 m

∆t Time step 3 s

∆tobs Time step of the observations 9 s

∆x,∆y Space step 0.05m

(a) Case when the heat source q1 fail. (b) Case where source q1 and q2 fails.

(c) Case source q1 and q2 fails with restart of
the first source q1.

Figure 10.: Sensor Measurements: without any failure and noise, represented as con-
tinuous data, and with failure and noise, represented as discrete points.

Numerical results are obtained using Matlab software with a personal computer

having the following characteristics: CPU: Intel® Core(TM) i5-10210U CPU 2.11 GHz,

RAM: 8.00 Go, OS: Windows 10 (64). The results are given in Table 3 with different
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noise levels. With this approach, it is clear that the search strategy gives a good result

for estimating the failure times, when the noise levels of the sensors are less significant.

However, the accuracy of the failure time detection is reduced considerably due to the

increase in the measurement noise of the sensors.

Table 3.: Heat source q1 failure times with different noise levels.

Failure t1fail

σ = 0.1◦C 1500s (1.03)

σ = 0.5◦C 1516.9s (3.09)

σ = 1◦C 1531.5s (6.19)

4.1.1. Source separation

The objective in this new scenario is to identify the exact failure instants when two

different sources experience failures. Specifically, we assume that the first source fails at

t1fail = 1000s and the second source fails at t2fail = 2000s. For example, the measurements

at the four sensors are given in Figure 10b with standard deviation σ = 0.5◦. By using

the parameters listed in Table 2, we obtained the results presented in Table 4.

Table 4.: Heat sources q1 and q2 failure times.

Failure t1fail Failure t2fail

σ = 0.1◦C 1001(2.17) 2003(2.31)

σ = 0.5◦C 1003.2(5.06) 2008.9(4.41)

σ = 1◦C 975.8(9.21) 2041.7(7.68)

In Table 4, it is evident that approach have successfully identified the failure in-

stants for two separate sources. When the measurement noises are less significant, the

methods produce excellent outcomes. However, when the measurement noise of the

sensors are increased, it becomes more difficult to identify the failure instants of the

two sources.

4.1.2. Identifying the failure and restart with source separation

The objective in this new scenario is to not only identify the failure instants for two

distinct sources using the provided approach, but also identify when the sources restart

(resume heating). In this particular configuration, we assume that the first source fails
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at t1fail = 1000s and then restarts at t1rest = 2500s, while the second source fails at

t2fail = 2000s. The measurements recorded by the four sensors are depicted in Figure

10c, with a standard deviation of σ = 0.5◦. With the same parameters as before, we

have obtained the results presented in Table 5.

Table 5.: Failure and restart times for q1 and failure times for q2.

Failure t1fail Failure t1fail Restart t1rest

σ = 0.1◦C 1001.4(1.4) 2005(1.4) 2504.5(1.14)

σ = 0.5◦C 999.5(3.92) 2014(5.15) 2513.8(4.09)

σ = 1◦C 976.7(8.41) 2041.2(6.44) 2539.4(5.68)

In the table above, the approach successfully identified the failure and restart times.

We acquire a reasonable result when the measurement noise is less substantial; when

it becomes more severe, the switching instants are marginally less precisely identified.

In conclusion, the above table indicates the usefulness of the method for determining

the failure and restart instants in the scenario of fixed heat source separation.

4.2. Mobile sources

After studying the case of fixed sources and evaluating the performance of the method-

ology, we will now investigate the more complex case where the heat sources are mobile.

Each heat source’s exact trajectory is known (see Figure 1) with a constant velocity.

The main challenge is to determine the failure and restart instants of this mobile heat

sources, from the noisy measurements given by the fixed sensors. It is important to

note that the failures exclusively impact the heating flux and do not affect the mobility

of the sources. Let’s start by supposing the first mobile heat source q1 has a failure

time t1fail = 1500s. The model input parameters are given in the Table 2, the evolution

of the temperatures at the four fixed sensors Ci, i = 1, · · · , 4 are shown in Figure 11a.

The results are given in Table 6 with different noise levels.

Table 6.: Heat source q1 failure times with different noise levels.

Failure t1fail

σ = 0.1◦C 1503s (0.319)

σ = 0.5◦ C 1505.9s (0.844)

σ = 1◦C 1505.2s (1.315)
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(a) Case when the heat source q1 fail.
(b) Case when the heat sources q1 and q2
fails.

(c) Case when the source q1 and q2 fails with
restart of the source q1.

Figure 11.: Sensor Measurements: without any failure and noise, represented as con-
tinuous data, and with failure and noise, represented as discrete points.

When the sensor noise levels are less significant, it is obvious that the search strategy

produces great results for calculating the failure times for this mobile heat source.

However, when taking into account the number of sensors utilized for this specific

application, the accuracy of the failure times identification is significantly improved

compared to the case of fixed sources, due to reduced distance between the mobile

heat source q1 and the fixed sensors.

4.2.1. Source separation

After having successfully identified the failure instants for a single mobile heat source,

The objective in this new scenario is to identify the failure instants for two distinct

sources. In this configuration, we consider that first source q1 fails at t1fail = 1000s and

the second source q2 fails at t2fail = 2000s. For example, the measurements at the four

sensors are given in Figure 11b with standard deviation σ = 0.5◦.The results obtained
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using the same parameters as before are summarized in Table 7.

Table 7.: Heat sources q1 and q2 failure times.

Failure t1fail Failure t2fail

σ = 0.1◦C 1002.7(0.606) 2004.1(0.48)

σ = 0.5◦C 999.4(1.52) 2007.7(1.30)

σ = 1◦C 999.8(3.98) 2009.8(2.8)

It is clear from the previous table that this method has successfully detected the

failure instants for two distinct sources. When measurement noises are insignificant, the

approach yields excellent results. However, when the measurement noise of the sensors

is increased, the failure instants of the two sources have been identified with higher

accuracy compared to fixed sources. As in the previous case, the effect of distance can

be clearly seen in the obtained results.

4.2.2. Identifying the failure and restart with source separation

After identifying the failure instants for two distinct sources using the proposed ap-

proaches, the challenge in this new scenario is to not only identify the failure instants,

but also the restart (heating up again) of the sources. For this last configuration, we

consider that first source q1 fails at t1fail = 1000s then restarts at t1rest = 2500s and

the second source q2 fails at t2fail = 2000s. For example, the measurements at the four

sensors are given in Figure 11c with standard deviation σ = 0.5◦. Using the same

parameters as before, we obtain the results presented in the Table 8

Table 8.: Failure and restart times for q1 and failure times for q2.

Failure t1fail Failure t2fail Restart t1rest
σ = 0.1◦C 998.6(0.498) 2009.6(0.5) 2509.2(0.406)

σ = 0.5◦C 989.4(1.79) 2027.4(1.1) 2512.7(0.98)

σ = 1◦C 984.1(3.19) 2042.9(3.82) 2514.6(1.65)

The approach has successfully identified the failure and restart times in the table

shown above. When the measurement noise is less significant, we achieve a satisfactory

result; when it becomes more significant, the switching instants are marginally bet-

ter identified compared to the previous fixed case. In conclusion, the preceding table

demonstrates the method’s suitability for identifying failure and restart times in this

problem characterized by parabolic partial differential equations.
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5. Conclusion

This paper presents an approach for failure times identification in a heating system us-

ing a Bayesian filter.The focus of the research is on the challenging scenario of mobile

heat sources with known trajectories. The proposed methodology involves two steps:

applying a Bayesian filter to solve the IHCPs and employing a search strategy to es-

timate failure or restart times. By applying this approach, we can estimate failures

and potential restart times for different mobile heat sources within a thermal sys-

tem described by parabolic PDEs. The results demonstrate significant improvement

compared to the case of fixed heat sources, highlighting the impact of the distance

between the mobile heat source and fixed sensors. Several future research directions

can be explored, including considering cases with varying velocities to examine their

influence on result accuracy, incorporating mobile sensors for enhanced failure identi-

fication, and developing decision support methods for different scenarios within this

framework, particularly for online detection and identification. Additionally, it is quite

attractive to extend our research to include experimental implementation. This will

involve constructing experimental setups that mirror our simulation scenarios, with

a specific focus on replicating the trajectories of mobile heat sources and examining

their interaction with sensor networks. This experimental validation is pivotal, as it

will corroborate our theoretical results, bridging the gap between simulation-based

predictions and real-world applications. It will provide valuable insights into the prac-

tical challenges and effectiveness of our Bayesian filter approach in dynamic thermal

systems. Finally, we must not overlook the fact that confrontation with experimen-

tal set-ups often leads to the emergence of new problems and promising avenues of

thought.
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