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Abstract: Two-dimensional layered coordination polymers based on the hetero-substituted 3-chloro-
6-cyano-2,5-dihydroxybenzoquinone ligands, hereafter ClCNAn2− anilate, and LnIII ions (Tb and Eu)
are reported. Compounds 1 and 2, formulated as Ln2(ClCNAn)3(DMSO)6 (LnIII = Tb, 1; Eu, 2), and
their related intermediates 1′ and 2′, formulated as Ln2(ClCNAn)3(H2O)x·yH2O (x + y likely = 12, Ln
= Tb, 1′; and Eu, 2′), were prepared by a conventional one-pot reaction (the latter) and recrystallized
from DMSO solvent (the former). Polyhydrated intermediates 1′ and 2′ show very similar XRPD
patterns, while, despite their common stoichiometry, 1 and 2 are not isostructural. Compound 1
consists of a 2D coordination framework of 3,6 topology, where [Tb(DMSO)3]III moieties are bridged
by three bis-chelating ClCNAn2− ligands, forming distorted hexagons. Ultrathin nanosheets of 1 were
obtained by exfoliation via the liquid-assisted sonication method and characterized by atomic force
microscopy, confirming the 2D nature of 1. The crystal structure of 2, still showing the presence of 2D
sheets with a “hexagonal” mesh and a common (3,6) connectivity, is based onto flat, non-corrugated
slabs. Indeed, at a larger scale, the different “rectangular tiles” show clear roofing in 1, which is totally
absent in 2. The magnetic behavior of 1 very likely indicates depopulation of the highest crystal-field
levels, as expected for TbIII compounds.

Keywords: lanthanides; 2D coordination polymers; nanosheets; anilates

1. Introduction

Lanthanide-based Coordination Polymers (Ln-CPs) and Metal-Organic Frameworks
(Ln-MOFs) have attracted considerable interest in material science thanks to their peculiar
supramolecular architectures (extending in one, two or three dimensions: 1D, 2D and
3D), their versatile optical properties in the visible (EuIII and TbIII) [1–3] and near-IR (NIR,
for NdIII, ErIII and YbIII) regions, and also their unique magnetic (HoIII, DyIII and TbIII)
properties, due to their intrinsically high magnetic anisotropy, at the origin of interest-
ing magnetic phenomena such as hard magnets or single-molecule magnets. By virtue
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of these features, they find applications in several applied fields, ranging from telecom-
munication and data storage to drug delivery, sensing and catalysis [4–7]. Among these
materials, two-dimensional coordination polymers (2D CPs), containing self-assembling
metal-ligand-based sheets mutually interacting through weak(er) non-covalent-type in-
teractions as Van der Waals, dipolar and hydrogen-bonding, are of ever-growing interest
in material chemistry, as their ultrathin nature favors unique optical, electronic and mag-
netic properties [8–10], as well as chemical processing and rheology, through swelling or
exfoliation [11,12].

Among the plethora of ligands which have been employed to fabricate multi-dimensional
CPs, 3,6-disubstituted-2,5-dihydroxy-1,4-benzoquinone derivatives, commonly known as
anilates, have been widely investigated, by virtue of their Janus-type ability of chelating dif-
ferent metal ions on two opposite sides of the central (and planar) benzoquinone core [13].
The introduction of Lewis-basic functional groups at the 3,6-positions has soon become a
viable strategy to avoid the formation of polymeric ribbons, improving material’s dimen-
sionality to sheets of the chess-board type [14]. The resulting 2D materials thus manifested
interesting physical properties, as they were found to behave as organic ferroelectrics [15],
magnetic conductors [16] or multifunctional MOFs [17].

In 2015, some of us reported on the synthesis and characterization of the first exam-
ple of a heterosubstituted anilate ligand, 3-chloro-6-cyano-2,5-dihydroxybenzoquinone
(in the form of its potassium salt, labeled as KHClCNAn) [18]. In 2018, by using this
novel anilate, Gomez-Garcia et al. obtained [Ln2(ClCNAn)3(solv)6]·CPs [LnIII = Ce, Pr,
solv = N,N-dimethylformamide (DMF); Yb, Pr, solv = dimethyl sulfoxide (DMSO); Dy,
solv = water (H2O)] [19] by strictly controlling the reaction conditions (solvent and LnIII

size). Furthermore, some of us highlighted the suitability of KHClCNAn to act as an efficient
building block for functional (optical and magnetic) 2D CPs and as a sensitizer for NIR lan-
thanide emission (by the antenna effect). Specifically, by combining a doubly deprotonated
ClCNAn2− ligand with ErIII, YbIII and NdIII ions, 2D [Ln2(ClCNAn)3(DMF)6]·nCH2Cl2
(Ln = Yb (n = 0), Nd, and Er (n = 2)) CPs, which manifested an efficient energy transfer
from triplet states of the ligands to LnIII ions [20], have been prepared. Their 2D structure
made this possible by the well-known top-down approach of liquid-assisted exfoliation
to ultrathin nanosheets [21,22]. Chart 1 illustrates the basic structural motif present in all
these CPs.
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Chart 1. Potassium chlorocyananilate (left) and coordination mode of the ligand (right).

In 2019, some of us investigated the structural polymorphism of chlorocyanoanilate-
based DyIII CPs. Therein, it was reported how, by changing the synthetic methods (layering
technique, solvothermal or conventional one-pot reactions) and conditions (solvent, con-
centration, etc.), different types of structurally and magnetically characterized 2D extended
networks could be selectively obtained. Later, in 2020, YbIII-based nanosheets containing
two mixed linkers (anilate/carboxylate) were obtained by exfoliation of bulk CPs via the
solvent-assisted sonication method [8]. Ultrathin nanosheets were characterized by imaging
(atomic force microscopy—AFM and high-resolution transmission electron microscopy—
HRTEM) and diffraction (X-ray powder diffraction—XRPD) techniques, highlighting how
their optical properties can be affected by the presence of different analytes.

As a further development and investigation of such materials, herein we report the
synthesis and structural and magnetic characterization of two 2D CPs, formulated as
Ln2(ClCNAn)3(DMSO)6 (LnIII = Tb, 1; Eu, 2), which were obtained by recrystallization in
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DMSO solvent of the related Ln2(ClCNAn)3(H2O)x·yH2O intermediates (x + y likely = 12,
Ln = Tb, 1′; and Eu, 2′) synthesized by a one-pot reaction in water.

2. Results

Lanthanide ClCNAn2−-based polyhydrated compounds 1′ and 2′ are formed by self-
assembly of LnIII and chlorocyananilate ions in aqueous solution (Figure 1). Precipitated
as reddish polycrystalline powders, they showed very similar XRPD traces (shown in
Figure 2a,b, together with their structureless Le Bail fit, obtained after successful index-
ing of isomorphous unit cells; see Methods and Table 1). Unfortunately, the quality of
the diffraction data and the presence of unavoidable contaminant peaks along with the
complexity of the material did not enable the determination of the crystal structure and
molecular connectivity. This problem was not encountered in the structural determination
of the 2D CPs 1 (from conventional single-crystal X-ray diffraction data) and 2 (from PXRD
data), later discussed. Notwithstanding, the cell volume of ca. 920 Å3 gives a clear indica-
tion, following Hofmann’s rules [23], of the material stoichiometry, which we propose to be
Ln2(ClCNAn)3(H2O)x·yH2O, with x + y = 12.
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Table 1. Crystal data for compounds Ln2(ClCNAn)3(H2O)x·y(H2O) x + y = 12 (Ln = Tb, 1′; Eu, 2′).

Species Symmetry a, Å b, Å c, Å α, ◦ β, ◦ γ, ◦ V, Å3

1′ Triclinic 10.12 10.68 10.36 73.3 88.0 60.0 920.7
2′ Triclinic 10.13 10.70 10.36 73.4 88.0 59.9 922.5

As illustrated in Figure 2, these hydrated species were further recrystallized in DMSO
to obtain single crystals of 1, suitable for X-ray diffraction, and a monophasic polycrys-
talline material, 2, characterized by structural PXRD. Eventually, both these species were
formulated as Ln2(ClCNAn)3(DMSO)6 (LnIII = Tb for 1 and Eu for 2).

Despite their common stoichiometry, compounds 1, Tb2(ClCNAn)3(DMSO)6, and 2,
Eu2(ClCNAn)3(DMSO)6, are not isostructural and crystallize in the monoclinic P21/n and
triclinic P-1 space groups, respectively. Given that the structure of compound 1 has been
determined by conventional single-crystal analysis (and not by the less accurate structural
powder diffraction methods), the stereochemical description will be mostly focused on
1 (Tb-CP). In this structure, the asymmetric unit contains one TbIII ion, one and a half
ClCNAn2− ligands and three DMSO molecules (see Figure 3a). In the ClCNAn2− ligands,
chloro and cyano substituents are 50:50 disordered for the (crystallographically imposed)
centrosymmetric anilate, and 58:42 for the fully independent ligand. Such a disorder,
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attributed to residues with similar steric requirements, is indeed commonly observed in
ClCNAn2−-based CPs [20,24,25].
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In addition, the DMSO solvent molecules (apart from the metal-bound oxygen atoms)
were found to be severely disordered.

In 1, the TbIII ion is ennea-coordinated by six oxygen atoms from three different (chelat-
ing) ClCNAn2− ligands and by three oxygen atoms from DMSO molecules (Figure 3a),
forming a slightly distorted tri-capped trigonal prismatic geometry (Figure 3b). Tb−O
bond lengths fall in the 2.332(4)–2.359(4) Å (O=S(CH3)2) and 2.432(4)–2.483(4) Å (anilate
oxygen atoms) ranges, which then cluster into two well-defined classes, differing by ca
0.1 Å. The complex LnO9 cage (shown in Figure 3b) shows 36 O-Tb-O bond angles falling
in the very wide 63.6(1)–146.6(1)◦ range, as expected for the very crowded coordination
environment of the TbIII ion. Nevertheless, three distinct sets of angles can be envisaged:
(i) those near 135◦ (12×, attributable to six trans cap-Tb-prism and six cap-Tb-cap angles);
(ii) those below 90◦, for 21 cis Ox-Tb-Oy angles (x, y = cap or prism); and (iii) three intermedi-
ate ones (typically > 100◦) for the remaining cis Ox-Tb-Oy angles. Two crystallographically
distinct (but very similar) Tb···Tb distances are found at 8.807 and 8.825 Å, for terbium
atoms bridged by µ2,η4-chlorocyananilates. These distances are similar to those observed
in Dy-ClCNAn2-CP (8.167(1) Å) [10].
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Figure 3. (a) Full coordination environment around TbIII; (b) sketch of the distorted tricapped trigonal
prismatic geometry around TbIII (hydrogen and disordered C,S ghosts removed for clarity); (c) view
of one pseudo-rectangular cavity in ac plane; (d) view of three consecutive layers stacking parallel to
the (a–c) vector. Color code: Tb—dark green; O—red; C—gray; S—yellow; Cl—green; N—blue.

The whole CP structure contains a 2D coordination network (of 3,6 topology, Figure 3c)
where three bis-chelating ClCNAn2− ligands bridge [Tb(DMSO)3]3+ moieties forming
distorted hexagons. Indeed, the angles between TbIII ions, taken as the network connecting
nodes, are 92.9, 100.5◦ and 162.9◦ (2× each, adding up to 712◦, witnessing the substantially
flat nature of such hexagons—ideal value = (n − 2) × 180◦, that is, for n = 6, 720◦). These
values also offer an estimate of the large deviation of the structure of 2 (the brick-wall type,
with 90 and 180◦ angles) from a regular (3,6) honeycomb structure, where all these angles
are exactly 120◦, towards degenerate hexagons: that is, rectangles of 2:1 aspect ratios.

In the structure shown in Figure 3d, the corrugated 2D layers (drawn by omitting, for
clarity, the disordered Cl/CN and DMSO atoms) are arranged parallel to the (10-1) plane
and are highly corrugated, their nominal thickness being ca. 18 Å (the length of the a–c
diagonal). As commonly seen in lanthanide-anilate-based CPs, within these wavy 2D slabs
the coordinated DMSO molecules stick out toward the concave potions of the neighboring
layers (Figure 3d). A similar structure type was reported for Ln2(ClCNAn)3(DMSO)6
(Ln3+ = Dy [10] and Pr [19]).

In Figure 4a, one can appreciate the ca. 18 Å periodicity in the sequence of the layers
(2×), which can be used to estimate the number of these slabs (ns) within an exfoliated 2D
nanocrystal of thickness t (vide infra) as ns = t/9.

Morphological characterization of the corresponding nanosheets of 1 CP was per-
formed by AFM, on drop-casted suspensions, obtained by crystal sonication, confirming
the 2D nature of 1 bulk size CP. Remarkably, micrometer-sized nanosheets were obtained,
with heights ranging from one to four layers, as clearly shown in Figure 4b.

The structure of compound 2, determined (in the absence of single crystal specimens of
suitable size and quality) by unconventional powder diffraction methods, is here discussed
only from a connectivity and topological point of view. Indeed, as several restraints
were added to stabilize convergence to physically meaningful results, with an extensive
usage of rigid bodies to describe the chlorocyananilate and DMSO ligands, no substantial
stereochemical (bond distances and angles) descriptors can be taken as being accurate
enough. Nevertheless, the following discussion does not suffer from such inaccuracy, and
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includes fully reliable (packing) features. In the crystal structure of 2, the asymmetric unit
contains one EuIII ion, three distinct half ClCNAn2− ligands and three DMSO molecules
(see Figure 5a for a slightly larger fragment, excised from the whole structure). All being
chlorocyananilate ligands located onto three different inversion centers, they all have
crystallographically imposed disordered 50:50 Cl/CN residues. Also, in compound 2, the
lanthanide ion is ennea-coordinated, with three chelating chlorocyananilates and three
individual O-bound DMSO molecules.
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Figure 4. (a) The interdigitation of symmetry-related (and heavily corrugated) 2D layers of compound
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viewed down the a axis, showing that slabs, interacting only through weak van der Waals contacts
mostly attributed to the DMSO ligands, stack along b with a ca. 9.7 Å periodicity.
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Differently from the structure of 1, the overall crystal structure of Eu2(ClCNAn)3(DMSO)6,
still showing the presence of 2D sheets with a “hexagonal” mesh and a common (3,6)
connectivity, is based onto flat, non-corrugated slabs (as per Figure 5b,c). The internal
angles of these degenerate hexagons are 88.1, 109.5 and 156.9◦ (2×, adding up to 709◦). All
very similar to those found in compound 1 and presented above, the interionic Eu· · ·Eu
separations of 8.83, 8.84 and 8.89 Å alone do not provide any direct hint of the significantly
different warping of the 2D slabs in 1 and 2. Indeed, the differences arise at a larger scale,
where the different “rectangular tiles” show clear roofing in 1, which is totally absent in 2
(dihedral angles between tiles of 102.1◦ and 0◦, respectively).

Magnetic measurements were carried out with a fine powder sample of 1 as a func-
tion of temperature (Figure 6). The χmT value at room temperature (25.1 cm3 K mol–1)
is in good agreement with the expected value for two magnetically independent TbIII

cations. The high spin–orbit coupling found in rare earths is responsible for such a high
magnetic moment, arising from a ground state defined by J = 6. For a theoretical g = 3/2,
a χmT ≈ 11.81 cm3 K mol–1 is expected [26], but room temperature χmT products up to
≈ 13 cm3 K mol–1 have been reported for a single TbIII cation [27]. Also expected for TbIII,
the χmT value decreases when the temperature is decreased, because of the depopulation
of the higher crystal-field levels. The high anisotropy of the TbIII centers does not allow
detection of any additional super-exchange interactions promoted by the bridging organic
ligands. Dynamic (AC) magnetic susceptibility measurements were performed down to
2 K at different frequencies (Figure 6). No out-of-phase χ′′ signal was observed, not even
when an additional DC magnetic field was applied, indicating no SMM (Single Molecular
Magnet) behavior for this compound.
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3. Conclusions

The ditopic capability of chlorocyanoanilate ligands to chelate metal ions on two oppo-
site sides of a central (and planar) benzoquinone core has been successfully exploited in the
construction of 2D lanthanide coordination polymers formulated as Ln2(ClCNAn)3(DMSO)6
(LnIII =Tb for 1 and Eu for 2), generated from corresponding hydrated intermediates. Re-
markably, the polyhydrated intermediates are isostructural, while recrystallization from
DMSO by slow evaporation affords 1 and 2, which are not isostructural despite their com-
mon stoichiometry and crystallize in the monoclinic P21/n and triclinic P-1 space groups,
respectively. A single-crystal X-ray study of 1 shows that the TbIII ion is ennea-coordinated
within a slightly distorted tri-capped trigonal prismatic geometry, where bis-chelating
ClCNAn2− ligands bridge [Tb(DMSO)3]3+ moieties, providing 2D corrugated layers. The
2D character of the coordination network in 1 allowed its exfoliation into nanosheets imaged
by AFM. The magnetic susceptibility measurements of 1 are in agreement with isolated
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TbIII centers without slow magnetic relaxation. Despite their high magnetic anisotropy, the
appearance of SMM behavior in rare earth complexes is fully dependent on the geometry
imposed by the ligands, which is difficult to predict or tune in the solid state structure,
especially with flexible organic ligands/linkers [28]. The structure of the EuIII coordination
polymer 2, as determined from PXRD measurements, is slightly different compared to that
of 1 since the slabs are not corrugated. These results nicely complete and complement the
series of coordination polymers based on chlorocyananilate ligands and lanthanide ions.
Variation of the anilate substituents and lanthanides co-ligands is envisaged in order to
tailor the magnetic and optical properties of these 2D materials.

4. Materials and Methods

Materials Reagents were purchased from Zentek (TCI) and used without further
purification. HPLC-grade solvents were purchased from Thermofisher Scientific Alfa-
Aesar. KHClCNAn was synthesized as reported in literature [18].

Synthesis of Tb2(ClCNAn)3(DMSO)6. (1). An aqueous solution of Tb(NO3)3·5H2O
(0.30 mmol; 103 mg) was added dropwise to an aqueous red solution of KHClCN (0.15 mmol;
36 mg) and NaOH (0.10 mmol; 7.2 mg), showing an immediate color change to purple.
After stirring at 90 ◦C for ca. 4 h, a purple precipitate appeared (1′). The mixture was
cooled down to room temperature and the powder was collected from the mother liquor
by vacuum filtration. The solid was then washed several times with cold deionized water.

Analytical evidence suggested a Tb2(ClCNAn)3(H2O)x chemical formula for this
intermediate (1′). Red prismatic crystals of 1, suitable for X-ray analysis, were obtained by
recrystallization from DMSO (15 mg of 1′ in 10 mL of DMSO) by slow evaporation, in a
petri vial, at room temperature (T = 25 ◦C), within one week.

Synthesis of Eu2(ClCNAn)3(DMSO)6. (2) This compound was synthesized with a similar
synthetic approach, using Eu(NO3)3·5H2O instead of Tb(NO3)3·5H2O. As for the above
synthesis, the 2′ and 2 labels are associated with a red hydrated polycrystalline intermediate
and DMSO-containing recrystallized polycrystalline material, respectively.

Synthesis of Nanosheets of 1. Nanosheets were fabricated using the top-down sonication-
assisted exfoliation method. Delamination was achieved by sonicating (Bandelin electronic
equipment at 230 V) the dried powder of 1 CPs (1 mg) samples in isopropanol (1 mL) for
15 min at room temperature.

X-ray Single-Crystal Structure Determination. A single crystal of compound 1 was
mounted on a glass fiber loop using a viscous crystal-coating hydrocarbon oil and was
immediately transferred to the diffractometer cradle equipped with a cold N2 stream.
Data collection was performed at 150 K on an Agilent Supernova Diffractometer with
monochromatized Cu Kα radiation (λ = 1.54184 Å). The structure was solved by direct
methods with the SIR97 program [29] and refined against all F2 values using the SHELXL-
97/ WinGX suite of programs [30]. All H atoms were placed in calculated positions and
refined isotropically with a riding model. Non-H atoms were refined anisotropically except
for the disordered ones: C7, C8 and C12 within the cyano groups and the methyl residues
of the DMSO molecules. Crystallographic data and refinement parameters for 1 are listed
in Table 2. Full crystal data, in the standard Crystallographic Information File format, have
been deposited at the Cambridge Crystallographic Data Centre (CCDC Code: 2284151).

X-ray Powder Diffraction-Crystal Structure Determination. Samples of 1′, 2′ and
2 were gently ground in an agate mortar and then deposited in the hollow of a silicon
monocrystal zero-background plate (supplied by Assing SpA, Monterotondo, Italy). XRPD
measurements were performed using a Bruker AXS D8 Advance diffractometer in Bragg-
Brentano θ:θ geometry, equipped with a Lynxeye position sensitive detector. DS: 0.5◦;
generator setting: 40 kV, 40 mA; Ni-filtered Cu-Kα radiation, λ = 1.5418 Å, 2θ-range: 3–50◦.
XRPD data for structure solution and refinement of species 2 were collected in the 3–105◦

2θ range, sampling at 0.02◦, with scan time lasting approximately 16 h.
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Table 2. Crystallographic data and details of the refinement procedure for compounds 1 and 2.

Compound (1) (2)

Formula C33H36Cl3N3O18S6Tb2 C33H36Cl3Eu2N3O18S6
Few 1379.20 1365.28

Crystal color Red Red
Sample size (mm3) 0.02 × 0.04 × 0.07 0.02 × 8.0 × 10.0

Temperature (K) 150 (2) 298 (2)
Wavelength (Å) 1.54184 1.54184

Crystal system, Z Monoclinic, 2 Triclinic, 1
Space group P21/n P-1

a (Å) 9.6868 (2) 9.704 (1)
b (Å) 16.3511 (3) 9.710 (1)
c (Å) 15.1558 (3) 14.146 (1)
α (◦) 90 84.003 (6)
β (◦) 93.683 (2) 97.145 (6)
γ (◦) 90 78.526 (5)

V (Å3) 2395.57 (8) 1284.6 (4)
ρcalc (g.cm−3) 1.912 1.764

µ(CuKα) (mm−1) 18.94 19.92
θ range (◦) 3.981–73.587 2.5–52.5

Data collected 19515 5001
Data unique 4767 -

Data observed 4408 -
Number of parameters/restraints 388/65 58/9

R(int) 0.0486 -
R1(F), a I > 2σ(I) 0.0490 (Rp) 0.0491

wR2(F2), b all data 0.1253 (Rwp) 0.0755
S(F2), c all data 1.106 6.13

a R1(F) = Σ‖ Fo|− |Fc‖/Σ|Fo|; b wR2(F2) = [Σw(Fo2 − Fc2)2/ΣwFo4]1/2; c S(F2) = [Σw(Fo2 − Fc2)2/(n + r− p)]1/2.

4.1. Cell Determination from X-ray Diffraction Data

Standard peak search methods followed by the accurate estimate of the low-angle
peak position and the use of the singular value decomposition protocol [31] implemented in
TOPAS-R (V.3.0, 2005, Bruker AXS, Karlsruhe, Germany) enabled the detection of triclinic
unit cells with GOF(20) = 26.1 and 61.5, for 1′ and 2, respectively. The structureless Le
Bail whole pattern profile fitting method was used to refine the lattice parameters of
the isomorphous 1 and 2 species, evidencing the presence of unavoidable contaminants
(perhaps differently hydrated species). Therefore, no structure solution attempt was found
to be successful in retrieving a suitable model.

4.2. Ab Initio Crystal Structure Solution from X-ray Diffraction Data

An XRPD structure solution of the species 2 phases was performed in space group
P-1 using TOPAS-R software with the Monte Carlo/Simulated Annealing technique using
a single Eu3+ ion, rigid models for ClCNAn2− and DMSO ligands described by the Z-
matrix formalism with standard geometrical parameters. It was eventually found that all
chlorocyananilate ligands lie on inversion centers with consequent 50:50 Cl/CN disorder.
Due to the less-than-ideal quality of the XRPD data, no attempt to determine (static or
dynamic) disorder of the DMSO molecules was made.

Final refinements were eventually carried out by the Rietveld method [32], maintaining
the rigid bodies introduced at the structure solution stage and the crystallographically im-
posed symmetries. The background was modelled by a polynomial function of the Cheby-
shev type; peak profiles were described by the Fundamental Parameters Approach [33] and
a common (refinable) isotropic thermal factor was attributed to all atoms. Fractional atomic
coordinates and crystal structure details are supplied in the Supplementary Materials. The
final Rietveld plot is shown in Figure 7.
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Magnetic Measurements Magnetic measurements were carried out using a Quantum
Design MPMS-XL magnetometer. Magnetic susceptibility data were recorded in the 2–300 K
temperature range in an external field of 1000 Oe. Diamagnetic corrections were calculated
using Pascal’s constants. Dynamic magnetic susceptibility data were obtained in the
frequency range of 0.1–1000 Hz in an oscillating field of 3 Oe.

AFM characterization NT-MDT Solver-Pro atomic force microscopy (AFM) was used
to study the topography and roughness of the nanosheets. AFM measurements were
performed at 0.5–1 Hz scan speed in semicontact mode in air. Topographic image analysis
and calculation of surface roughness were performed using WSxM 5.0 Develop3.2 software.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/molecules28186453/s1, Figure S1: AFM topographic image showing exfoliation of 1; Table
S1: Crystal Data for compound 2.
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