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Le contrôle supervisé des automates d'intervalles

In this paper we extend supervisory control of (max,+) automata to automata with multiplicities in an interval semiring. The controller restricts the behavior of the system in the optimal way. More precisely, we propose maximally permissive (least restrictive) supervisors to guarantee the specified time windows for executing events, which can also be disabled. Composition of system with its controller is defined based on tensor product of their linear representations. The behavior of the closed-loop system corresponds to a generalized version Hadamard product of formal power series of the system and the controller, where occurrences of uncontrolable events can neither be forbidden nor delayed.

Résumé. Dans cet article on étend le contrôle supervisé des automates (max,+) aux automates à multiplicités dans un semi-anneau d'intervalles. L'action du superviseur vise à restreindre le comportement du système de façon optimale. Plus précisément, on propose des superviseurs les plus permissifs (les moins contraignants) pour garantir des intervalles spécifiés d'exécution des événements, en incluant la possibilité de supprimer des occurrences. On définit la composition du système avec son contrôleur à l'aide du produit tensoriel de leurs représentations linéaires dans un semi-anneau d'intervalles. Le comportement du système contrôlé correspond à une version généralisée du produit d'Hadamard des séries formelles du système et du contrôleur où les occurrences des événements incontrôlables ne peuvent être ni interdites, ni restreintes.

Introduction

La théorie du contrôle supervisé des systèmes à événements discrets a été introduite par Ramadge et Wonham [START_REF] Ramadge | The Control of Discrete-Event Systems[END_REF] en s'intéressant uniquement à des aspects logiques. Le besoin de considérer des contraintes temporelles a conduit à l'extension de ces techniques aux systèmes temporisés notamment dans [START_REF] Brandin | Supervisory Control of Timed Discrete Event Systems[END_REF]. On peut aussi retenir une extension aux systèmes temps-réel, basée sur des abstractions d'automates temporisés en automates booléens (logiques), appelés également automates des régions et la formulation basée sur la théorie des jeux [START_REF] Maler | On the synthesis of discrete controllers for timed systems[END_REF]. Une classe de systèmes à événements discrets temporisés peut être étudiée à l'aide des automates (max, +) [START_REF] Gaubert | Performance Evaluation of (max,+) Automata[END_REF] qui sont à même de modéliser tout réseau de Petri temporisé sauf. Leurs propriétés sont présentées dans [START_REF] Gaubert | Performance Evaluation of (max,+) Automata[END_REF] et [START_REF] Gaubert | Modeling and Analysis of Timed Petri Nets using Heaps of Pieces[END_REF]. Ils généralisent à la fois les automates logiques et les systèmes (max,+)-linéaires. Notons que les multiplicités peuvent avoir différentes interprétations : celle d'un coût pour des automates (min,+), et le plus souvent elles répresentent le temps dans le cas (max,+). Dans les réseaux de Petri temporels et les automates temporisés, les temporisations sont non déterministes, et pour étudier une classe similaire à l'aide d'automates à multiplicités, il est naturel de considérer que les pondérations appartiennent à un semi-anneau d'intervalles.

Une théorie du contrôle des automates (max,+) a été développée dans [START_REF] Komenda | Supervisory Control of (max,+) automata: a behavioral approach[END_REF]. Elle repose sur la composition parallèle du contrôleur avec le système, les deux étant modélisés par des automates (max,+). Cette composition spécifie l'interaction du contrôleur avec le système, notamment en présence d'événements incontrôlables. En termes de comportement (série formelle), la composition parallèle est représentée par le produit tensoriel des matrices de morphisme où la matrice de morphisme du contrôleur est remplacée par la matrice identité pour les événements incontrôlables. Le contrôle optimal (le moins restrictif) des automates (max,+) vis-à-vis du critère juste-à-temps est étendu aux automates d'intervalles dans cet article. Nous étudions les superviseurs les plus permissifs (les moins contraignants) pour garantir des intervalles spécifiés pour l'exécution des événements (en incluant la possibilité de supprimer certaines occurrences). Notre approche s'appuie sur la théorie de la résiduation appliquée à une extension du produit d'Hadamard des séries formelles. Nous discutons aussi la possibilité d'extension aux observations partielles.

Préliminaires

Dans cette section, on fait un rappel succinct sur les semi-anneaux idempotents (voir [START_REF] Baccelli | Synchronization and Linearity. An Algebra for Discrete Event Systems[END_REF] pour une présentation exhaustive) et on spécifie des résultats sur les séries formelles d'intérêt pour la suite. Comme exemples de dioïde, il y a ceux portant sur des nombres, mais aussi des languages ou des séries formelles. Dans le dioïde R max = (R ∪ {-∞}, max, +) le maximum joue le rôle de l'addition, i.e., a ⊕ b = max(a, b), et l'addition classique celui de la multiplication, i.e., a ⊗ b = a + b, et ε = -∞ alors que e = 0. Dualement, on a le dioïde R min = (R ∪ {∞}, min, +) où l'addition est le minimum et ε = ∞.

Semi-anneaux idempotents

Le dioïde R max enrichi de l'élément T = +∞ est noté R max , il est complet, sachant que

T ⊗ ε = ε ⊗ T = ε.
Les opérations matricielles sont définies comme dans l'algèbre linéaire classique. La matrice identité de R n×n max est notée E. Dans un dioïde complet, on définit l'étoile de Kleene selon la formule

a * = n∈ N a n , où par convention a 0 = e, et a n = a n-1 ⊗ a pour tout a.
Nous avons besoin de la notion de produit direct de dioïdes qui correspond au produit cartésien de leurs ensembles sous-jacents muni de l'addition et de la multiplication définies composantes par composantes.

Nous allons considérer uniquement le produit direct des dioïdes R min et R max , noté R max min . L'addition dans R max min correspond donc à la mimimisation des premières composantes et à la maximisation des secondes composantes. Formellement, nous avons la définition suivante.

Définition 2. R max min est le dioïde ⟨(R ∪ {∞}) × (R ∪ {-∞}), ⊕, ⊗⟩ avec [c 1 , d 1 ] ⊕ [c 2 , d 2 ] = [min(c 1 , c 2 ), max(d 1 , d 2 )], [c 1 , d 1 ] ⊗ [c 2 , d 2 ] = [c 1 + c 2 , c 2 + d 2 ] , et, ε = [∞, -∞] est l'élément zéro, e = [0, 0] est l'élément identité.
Notons que nous utilisons une notation d'intervalle, e.g. [c 1 , d 1 ], pour un élément de R max min , c'est-à-dire à une paire du produit cartésien constituant l'ensemble sous-jacent. Il ne nous suffit pas de prendre l'ensemble des intervalles (i.e., les éléments de R max min avec la borne inférieure plus petite que la borne supérieure) comme l'ensemble sous jacent avec l'union pour l'addition des intervalles, car nous allons utiliser les éléments avec borne inférieure plus grande que la borne supérieure dans les côntroleurs.

L'ordre naturel dans

R max min est donné par [a, b] ⪯ [c, d] ssi [a, b] ⊕ [c, d] = [c, d], i.e., c ≤ a et b ≤ d.
Pour les éléments de R max min qui correspondent à des intervalles, la relation d'ordre coïncide bien avec l'ordre des intervalles donné par l'inclusion (des intervalles). On va utiliser l'opération ∧ dans la version complète de R max min , noté par

R max min = R max min ∪ {[-∞, ∞]}, i.e. le produit direct de R min avec R max . Il est facile de voir que [c 1 , d 1 ] ∧ [c 2 , d 2 ] = [max(c 1 , c 2 ), min(d 1 , d 2 )].
Le produit de R max min nous amène à considérer des "intervalles dégénérés", i.e., des "intervalles" dont la borne inférieure est plus grande que la borne supérieure. Par exemple, [START_REF] Blyth | Residuation theory[END_REF][START_REF] Baccelli | Synchronization and Linearity. An Algebra for Discrete Event Systems[END_REF] appartient à R max min , et le plus petit de ces intervalles dégénérés est le zéro ε = [∞, -∞]. Dans la section suivante, nous allons considérer des intervalles dégénérés pour les pondérations dans l'automate jouant le rôle de superviseur : la borne inférieure (typiquement positive) indique la valeur de temps qui sera ajoutée à la borne inferieure d'intervalle d'occurrence d'un événement (la borne inférieure sera augmentée), et la borne supérieure (typiquement négative) indique la valeur de temps qui sera ajoutée à la borne supérieure (la borne supérieure sera donc diminuée). Ainsi l'intervalle d'occurrence d'un événement sera restreint par le contrôleur. A noter que l'élément zéro de R max min sera utilisé par le contrôleur pour interdire une transition et l'élément identité sera utilisé pour les événements incontrôlables, dont les dates d'occurrence doivent être laissées intactes. On va aussi noter par R max min la version complète de R max min , i.e., avec le plus grand élément T = ⊕ a∈R max min a = [-∞, ∞] qui est bien le plus grand intervalle (au sens de l'ordre sur R max min ). L'addition de deux matrices de même dimension dans R max min est faite composantes par composantes et pour deux matrices A ∈ (R max min

) m×n et B ∈ (R max min ) n×q , leur produit A ⊗ B ∈ (R max min ) m×q est défini par (A ⊗ B) ij = ⊕ n k=1 A ik ⊗ B kj .
La matrice identité de (R max min ) n×n , notée E, est définie comme dans l'algèbre linéaire classique par des éléments neutres sur la diagonale et des zéros partout ailleurs, i.e.

E ii = [0, 0] et E ij = [∞, -∞] pour i ̸ = j.
Rappelons que si A = (a ij ) ∈ D m×n et B ∈ D p×q , alors leur produit de Kronecker (tensoriel) A ⊗ t B correspond à la matrice mp × nq suivante :

A ⊗ t B =    a 11 ⊗ B • • • a 1n ⊗ B . . . . . . . . . a m1 ⊗ B • • • a mn ⊗ B    .
Nous allons considérer dans cet article les automates à multiplicites dans R max min introduit dans [START_REF] Komenda | Modeling of safe time Petri nets by interval weighted automata[END_REF] pour modéliser les réseaux de Petri P-temporels saufs. Nous allons les appeler automates à multiplicités dans des intervalles (AMI).

Définition 3 (AMI). Un AMI est un tuple

G = (Q, A, α, µ, β), où • Q et A sont

des ensembles finis d'états et d'événements ;

• α ∈ R max min 1×|Q| est le vecteur des délais initiaux avec α q ̸ = ε si, et seulement si, q est un état initial ;

• β ∈ R max min |Q|×1 est le vecteur des délais finaux avec β q ̸ = ε si, et seulement si, q est un état final ;

• µ : A * → R max min |Q|×|Q| est un morphisme engendré par les matrices µ(a) ∈ R max min |Q|×|Q| , pour tout a ∈ A. Pour un mot w = a 1 a 2 . . . a n , on a en effet µ(w) = µ(a 1 a 2 . . . a n ) = µ(a 1 )µ(a 2 ) . . . µ(a n ), où la multiplication matricielle est celle de R max min |Q|×|Q| . Nous avons [µ(a)] qq ′ ̸ = ε si, et seulement si, il
existe une transition menant de l'état q à l'état q ′ causée par l'occurrence de l'événement a.

Le coefficient de la matrice de morphisme associée à un événement a ∈ A et aux états q, q ′ ∈ Q, est un intervalle [µ(a)] qq ′ ∈ R max min qui spécifie les delais minimal et maximal pour la transition de q vers q ′ selon l'événement a, et [µ(a)] qq ′ = ε s'il n'y a pas de transition de q vers q ′ étiquetée par a. On dit qu'un AMI est non ambigu s'il existe au plus un chemin reconnaissant tout mot w, i.e., menant d'un état initial à un état final et étiqueté par w

. Le comportement d'un AMI G = (Q, A, α, µ, β) est l'application y(G) : A * → R max min donnée par la récurrence suivante pour w ∈ A * et a ∈ A :    x(ϵ) = α x(wa) = x(w)µ(a) y(w) = x(w)β
, où ϵ désigne le mot vide. Notons que le comportement peut être manipulée de façon équivalente comme une série formelle dans le dioïde R max min (A) introduit dans la section suivante. La théorie de la résiduation permet de définir des 'pseudo-inverses' d'applications isotones non nécessairement inversibles (f est isotone si a ⪯ b ⇒ f (a) ⪯ f (b)). Une application isotone f : D → C est dite résiduable si ∀y ∈ C, la borne supérieure de l'ensemble {x ∈ D|f (x) ⪯ y} existe et appartient à cet ensemble. Rappelons plusieurs résultats utiles par la suite. 

f • h ⪯ Id C et h • f ⪰ Id D .
(1)

Id C et Id D sont les applications identité sur C et D respectivement. L'application h, appelée résiduée de f , est unique et est notée f ♯ . Théorème 1. [3, §4.4.4] Si g : D → C et f : C → B sont des applications résiduables, alors f • g : D → B est également résiduable et (f • g) ♯ = g ♯ • f ♯ .
Il est bien connu que la multiplication dans un dioïde complet (y compris celle de (R max min ) n×n ) est résiduable. 

• /ε = T (cf. absorptivité de ε) et T • /T = T , on a bien -∞• / -∞ = ∞ dans R max , alors que -∞• / -∞ = -∞ dans R min . Il y a aussi ∞• /∞ = ∞ dans R max , alors que ∞• /∞ = -∞ dans R min .
On voit donc bien des différences sur des valeurs infinies.

Dioïde des séries formelles R max min (A)

Les langages formels sur un alphabet A sont des sous ensembles du monoïde libre A * lequel est constitué des séquences finies de lettres dans A (mots). L'ensemble des langages formels doté de l'addition (correspondant à l'union des langages) et de la multiplication (correspondant à la concaténation des langages) est un dioïde, noté par (P wr(A * ), ∪, .). Le langage nul est 0 = {}, le langage unité est noté 1 = {ϵ} où ϵ est le mot vide.

Un mot u = u 1 . . . u k ∈ A * est appelé un sous mot de v ∈ A * s'il existe une factorisation v = v 1 u 1 v 2 . . . v k u k v k+1 avec u i ∈ A * , i = 1, . . . k et v j ∈ A * , j = 1, . . . k + 1.
On peut aussi voir les langages sur un alphabet A comme des séries formelles à variables dans A et à coefficients booléens. Le dioïde des séries formelles à variables dans A et à coefficients dans R max min , noté R max min (A), est muni de l'addition mot à mot et d'une multiplication sous forme de convolution. Formellement, pour s = ⊕ w∈A * s(w)w ∈ R max min (A) et s ′ = ⊕ w∈A * s ′ (w)w ∈ R max min (A), on a :

s ⊕ s ′ ≜ ⊕ w∈A * (s(w) ⊕ s ′ (w))w , s ⊗ s ′ ≜ ⊕ w∈A * (⊕ uv=w s(u) ⊗ s ′ (v))w.
Le dioïde des séries formelles est complet si les coefficients sont dans R max min et on notera ce dioïde complet par R max min (A). Notons que pour s, s ′ ∈ R max min (A), s ⪯ s ′ (l'ordre naturel sur R max min (A)) correspond à s(w) ≤ s ′ (w) pour tout w ∈ A * , soit s(w) ⊆ s ′ (w) si les deux coefficients sont des intervalles non dégénérés). Le langage supp(s) = {w ∈ A * : s(w) ̸ = ε} est appelé le support de la série s. Une série formelle est reconnue par un AMI ssi elle est rationnelle, i.e., elle est formée par des opérations rationnelles à partir de séries polynomiales (celles avec un support fini). Nous allons utiliser le produit d'Hadamard de séries formelles de R max min (A), défini par: 

s, s ′ ∈ R max min (A), s ⊙ s ′ (w) = s(w) ⊗ s ′ (w).
Il est vrai que le produit d'Hadamard est même inversible et son inversion est appelée quotient de Hadamard dans la théorie des séries formelles sur des anneaux [START_REF] Berstel | Rational Series and their Languages[END_REF]. Par la suite on définira une version généralisée du produit d'Hadamard uniquement résiduable (non inversible), ce qui justifie le maintien de la notation utilisant la résiduée pour H y .

Nous aurons aussi besoin des projections sur les séries définies en utilisant les projections sur les langages. Considérons tout d'abord la projection naturelle P c : A → A c pour A c ⊆ A. Cette projection efface les lettres en dehors de A c : 

P c (a) = a si a ∈ A c , ϵ si a ∈ A \ A c . P c est

Contrôle supervisé des AMI

Dans cette section on va élargir le contrôle des automates (max,+) aux AMI par le biais de la composition parallèle. Dans la sous section suivante on va définir la composition d'un AMI avec son superviseur (qui est également un AMI).

Composition parallèle des AMI

La composition parallèle définie ci-dessous est une extension aux automates à multiplicités du produit d'un automate avec le superviseur pour les automates logiques. Tout d'abord, l'ensemble des événements est partitionné comme suit : A = A c ∪ A u , où A c est l'ensemble des événements contrôlables et A u est l'ensemble des événements incontrôlables. Comme dans le cas logique, les transitions contrôlables peuvent être interdites ou leurs intervalles d'éxecution peuvent être restreints dans le système composé G c ∥G g . Par exemple, si dans le système G g on a une transition contrôlable selon a de q g vers q ′ g avec l'intervalle µ g qg,q ′ g (a) = [START_REF] Maler | On the synthesis of discrete controllers for timed systems[END_REF][START_REF] Brandin | Supervisory Control of Timed Discrete Event Systems[END_REF] et dans le contrôleur G c on a une transition selon a de q c vers q ′ c avec l'intervalle µ cq c ,q ′ c (a) = [1, -1], alors dans la composition on a une transition selon a de (q c , q g ) vers (q ′ c , q ′ g ) avec l'intervalle [START_REF] Baccelli | Synchronization and Linearity. An Algebra for Discrete Event Systems[END_REF][START_REF] Blyth | Residuation theory[END_REF]. L'effet du contrôleur est donc de restreindre l'intervalle d'éxecution de a. Définition 6. Considérons les AMI correspondant au contrôleur G c et au système G g . Leur composition parallèle est un AMI, noté G c ∥G g , défini par la représentation linéaire suivante L'ensemble des événements du contrôleur coïncide avec celui du système, ce qui est une hypothèse standard en commande supervisée. Dans le cas où un automate est défini sur un sous ensemble, nous pouvons appliquer la construction classique en bouclant tous les états par des transitions qui n'appartiennent pas au sous ensemble (ici avec les poids e = [0, 0]) et nous obtenons ainsi un automate défini sur l'alphabet total. D'autres part, les pondérations des transitions incontrôlables ne sont pas modifiées, ce qui traduit le fait que l'automate correspondant au contrôleur ne peut pas invalider ou retarder un événement incontrôlable du procédé.

µ (q ′ c ,q ′ g ),(q ′ c ,q ′ g ) (a) = [1, -1]⊗[2, 5] =
G c ∥G g = (Q c × Q g , A, α, µ, β) avec α = α c ⊗ t α g , ∀a ∈ A c : µ(a) = µ c (a) ⊗ t µ g (a), ∀a ∈ A u : µ(a) = E ⊗ t µ g (a),

Superviseur le plus permissif

Nous avons proposé une extension des techniques de supervision des automates logiques aux automates (max,+) dans [START_REF] Komenda | Supervisory Control of (max,+) automata: a behavioral approach[END_REF]. Dans cette section on va proposer une approche similaire pour les AMI. Plutôt que de considérer les AMI en tant que tels, on s'intéresse à leurs comportements, correspondant à des séries formelles (à coefficients dans R max min (A)). Cette approche est naturelle, au sens où les comportements de référence de la commande supervisée sont classiquement définies par des languages de spécification, lesquels correspondent à des séries formelles dans le cadre des automates (max,+) ou AMI. La série obtenue correspondant à un superviseur le plus permissif (i.e., le moins restrictif) est alors réalisée par un AMI, sous réserve qu'elle soit rationnelle.

Le théorème suivant exprime le comportement du système composé avec le superviseur.

Théorème 5. Le comportement du système G g composé avec le superviseur G c est donné par :

y(G c ∥G)(w) = y c (P c (w)) ⊗ y(G g )(w). (3) 
Proof. On a

y(G c ∥G g )(w) = α ⊗ µ(w) ⊗ β, où (α, µ, β) est la représentation de G c ∥G g . Pour tout w = a 1 . . . a n ∈ A * on a par la propriété de morphisme µ(w) = µ(a 1 ) . . . µ(a n ), où µ(a) = µ c (a) ⊗ t µ g (a) si a ∈ A c et µ(a) = E ⊗ t µ g (a)
si a ∈ A uc . En utilisant la propriété du produit mixte (permettant de commuter le produit matriciel standard et le produit tensoriel lettre par lettre), on obtient alors µ(w) = µ c (P c (w))⊗ t µ g (w). En revenant vers le comportment, on a

y(G c ∥G g )(w) = (α c ⊗ t α g ) ⊗ (µ c (P c (w)) ⊗ t µ g (w)) ⊗ (β c ⊗ t β g ),
ce qui conduit après une nouvelle utilisation de la propriété du produit mixte à:

y(G c ∥G g )(w) = [α c ⊗ µ c (P c (w)) ⊗ β c ] ⊗ t [α g ⊗ µ g (w) ⊗ β g ] = y(G c )(P c (w)) ⊗ t y(G g )(w).
Il faut noter que le produit tensoriel dans la dernière formule peut être remplacé par le produit scalaire, car il s'agit de scalaires dans R max min (A) pour lesquels les deux produits coincïdent. On aboutit donc à : y(G c ∥G g )(w) = y c (P c (w)) ⊗ y(G g )(w).

Si nous comparons la définition du produit d'Hadamard avec la formule exprimée dans le Theorème 5, nous pouvons voir l'expression relative au comportement du système composé comme une sorte de produit d'Hadamard généralisé (en présence d'événements incontrôlables). Il en résulte la définition suivante. Autrement dit, le contrôleur doit restreindre le moins possible le langage temporel du système (correspondant à la série du système) tel que les intervalles d'exécution des séquences d'événements w du système supervisé (dont le comportement est donné par y opt C ⊙ Au y), soient inclus dans les intervalles d'exécution prescrits par la spécification.

Il faut souligner qu'afin de pouvoir utiliser le produit d'Hadamard pour contrôler les deux bornes, inférieure et supérieure, des intervalles d'exécution des événements, les bornes supérieures des "intervalles" du contrôleur seront non positives. La valeur inverse (non négative) de ces bornes du contrôleur correspond ainsi à la quantité de temps que le contrôleur impose pour diminuer la borne supérieure de l'intervalle d'éxécution.

Introduisons la notation

H Au y : s → s ⊙ Au y (4) 
correspondant au produit d'Hadamard généralisé (en présence des événements incontrôlables), où (s ⊙ Au s ′ )(w) = s(P c (w)) ⊗ s ′ (w), i.e., H Au y (s) = s(P c (w)) ⊗ s ′ (w). Le produit d'Hadamard généralisé (quand A u ̸ = ∅) est résiduable. Proof. On a alors

y c (w) = (H Au y ) ♯ (s)(w) = u∈P -1 c (w)∩supp(y) s(u)• /y(u), si w ∈ A * c , T, si w ̸ ∈ A * c . (5) 
P y • P ♯ y (s)(w) = P ♯ y (s)(P c (w)) = u∈P -1 c Pc(w)∩supp(y) s(u) ⪯ s(w),
opposés avec la règle -(-∞) = ∞. Dans le cas où il existe un AMI réalisant y qui est non ambigu, propriété purement logique, on a d'après [START_REF] Lombardy | Series which are both Max-plus and Min-plus Rational are Unambiguous[END_REF] que ȳ ∈ R max min (A), car les séries non ambigües sont celles qui sont à la fois (max,+) et (min,+)-rationnelles. Comme le produit d'Hadamard est réalisable par le produit tensoriel des representations linéaires (résultat dû à Schutzenberger), on a donc une réalisation du superviseur pour les systèmes représentables par les AMI non ambigus. En présence d'événements incontrôlables on peut utiliser un agorithme de point fixe pour calculer le langage suprémal contrôlable, où en plus de l'existence des transitions, on considère aussi leurs intervalles d'exécution.

Dans le cas où le superviseur n'observe pas tous les événements, le superviseur peut changer sa décision (de supprimer ou restreindre l'intervalle d'un événement) en se basant seulement sur l'occurrence des événements observables. Autrement dit, toutes les transitions inobservables d'un AMI réalisant le superviseur sont necessairement sous forme de boucles propres autour des états du superviseur. Comme dans le cas logique, la réalisation AMI d'un superviseur est basée sur l'automate projeté connu comme observateur du système.

Exemple

Considérons l'exemple d'un AMI

G défini par Q = {1, 2, 3}, A = {a, b, c, d}, et α = ε e ε , µ(a) =   ε ε ε [2, 5] ε ε ε ε ε   , µ(b) =   ε [1, 4] ε ε ε ε ε ε ε   , µ(c) =   ε ε ε ε ε [3, 3] ε ε ε   , µ(d) =   ε ε ε ε ε ε ε [1, 4] ε   , β = e e e
T . 

On peut vérifier que

(ab) = [2, 5]• /[2, 5] = ([2, 5]• /[2, 5]) ∧ ([4, 8]• /[3, 9]) = [1, -1] = [0, 0] ̸ = [1, -1], où on rapelle que dans R max min on a [c 1 , d 1 ] ∧ [c 2 , d 2 ] = [max(c 1 , c 2 ), min(d 1 , d 2 )].
Il y a aussi un problème de contrôlabilité logique, car pour w = abc on a P 

(ε• /[7, 16]) = [1, -1] ̸ = ε ( = [∞, -∞]).

Conclusion

Nous avons étendu dans cet article l'approche comportementale pour synthétiser des contrôleurs des automates d'intervalles, basée sur le produit parallèle de l'automate du système avec celui du contrôleur. Cette construction se traduit en termes de représentations par un produit tensoriel des représentations linéaires correspondantes, et en un produit d'Hadamard en termes de comportement. En présence d'événements incontrôlables, nous avons proposé une approche basée sur une version généralisée du produit d'Hadamard qui rend possible une application directe de la théorie de la résiduation pour calculer les contrôleurs optimaux. On a aussi discuté une extension future aux observations partielles. Notons que les contrôleurs proposés peuvent faillir à être rationnels, e.g. pour des automates ambigus des systèmes. La rationalité des contrôleurs reste un problème ouvert. En terme de pouvoir de modélisation, les automates non ambigus correspondent aux comportement des réseaux de Petri temporels sous les sématiques fortes. En terme des perspectives, cet article ouvre la voie pour développer le contrôle décentralisé et modulaire des automates d'intervalles, ce qui permettrait de réduire la complexité de la commande de systèmes répartis temporisés de grande taille.

Définition 1 .

 1 Un semi-anneau idempotent (aussi appelé dioïde) est un ensemble D muni de deux opérations binaires : l'addition et la multiplication. L'addition ⊕ est commutative, associative, et admet un zéro, noté ε, (i.e., ε ⊕ a = a pour tout a ∈ D). De plus, l'opération ⊕ est idempotente, (i.e., a ⊕ a = a pour tout a ∈ D). La multiplication ⊗ est associative, possède un élément neutre e (i.e., e ⊗ a = a ⊗ e = a pour tout a ∈ D), et est distributive par rapport à ⊕. De plus, ε est absorbant pour ⊗, i.e., ∀a ∈ D : a ⊗ ε = ε ⊗ a = ε. Dans tout dioïde, l'ordre naturel ⪯ est défini par : a ⪯ b ⇔ a⊕b = b. Un dioïde D est complet si tout sous ensemble A de D admet une plus petite borne supérieure, notée x∈A x, et si ⊗ distribue sur les sommes infinies. En particulier, T = x∈D x est le plus grand élément de D. Dans un dioïde complet, la plus grande borne inférieure ∧ existe toujours : a ∧ b = x⪯a,x⪯b x.

Définition 4 .

 4 [START_REF] Blyth | Residuation theory[END_REF] Une application isotone f : D → C, où D et C sont des ensembles ordonnés (tels que les dioïdes), est dite résiduée s'il existe une application isotone h : C → D telle que

Théorème 2 .

 2 L'application isotone R a : x → x ⊗ a dans un dioïde complet D est résiduable. La plus grande solution de x ⊗ a ⪯ b est égale à R a ♯ (b), aussi notée b• /a. Ce 'quotient' satisfait les formules suivantes :(x• /a) ⊗ a ⪯ x, (f.1) (x ⊗ a)• /a ⪰ x. (f.2)Notons que la résiduation de la multiplication dans le produit direct R max min est faite composante par composante, i.e., [a, b]• /[c, d] = [a• /c, b• /d] avec le premier • / dans R min et le second • / dans R max . Nous rapellons que sur des valeurs réelles les deux opérations coincident, i.e., a• /c = ac et b• /d = bd, mais comme dans un dioïde complet on a ε

Proposition 3 .

 3 [START_REF] Komenda | Supervisory Control of (max,+) automata: a behavioral approach[END_REF] L'application H y : R max min (A) → R max min (A), s → s ⊙ y est résiduable et sa residuée est donnée par H ♯ y (s)(w) = s(w)• /y(w).

1 c:

 1 étendue aux mots wa ∈ A * par P c (wa) = P c (w)P c (a) (morphisme pour la concaténation) avec P c (ϵ) = ϵ. Cette définition s'étend naturellement à un langage L par P c (L) = {P c (s) | s ∈ L}. La projection inverse P -Pwr(A * c ) → Pwr(A * ) est définie sur des langages : pour tout M ⊆ A * c , P -1 c (M ) = {s ∈ A * | P c (s) ∈ M }. Lemme 4. Soient A c ⊆ A, P c : A * → A * c la projections naturelle correspondante, et P -1 c : Pwr(A * c ) → Pwr(A * ) son inverse, on a les propriétés suivantes : (i) ∀M ⊆ A * c : P c (P -1 c )(M ) = L, (ii) ∀M ⊆ A * : L ⊆ P -1 c (P c )(M ). Nous utiliserons également la notion de projection suivante sur des séries formelles. Définition 5. Soient A c ⊆ A et P c : A * → A * c la projection naturelle associée, on définit pour une série s = ⊕ w∈A * s(w)w ∈ R max min (A) la série projetée P (s) comme suit : P (s)(w) = s(P c w). Il faut noter que P (s) est différent de la série P (s) = ⊕ w∈A * s(w)P c w, i.e., P (s)(w) = ⊕ u∈P -1 c (w) s(u). Par exemple, si A c = {a} ⊆ {a, u} = A et s = [0, 2] ⊕ [3, 4]au, alors P (s) = [0, 2] ⊕ [3, 4]a et P (s) = [0, 2]u * ⊕ [3, 4]u * au * . En fait, nous avons par définition P (s)(ε) = P (s)(u) = P (s)(u 2 ) = • • • = s(ϵ) = [0, 2] et P (s)(w) = s(a) = [3, 4] pour tout w ∈ u * au * .

β

  = e c ⊗ t β g , dans laquelle e c = β c représente le vecteur colonne composé d'élements identité e = [0, 0] de longueur donnée par |Q c |.

Définition 7 .

 7 Soit A = A c ∪ A u avec P c : A * → A * c la projection naturelle associée. Le produit d'Hadamard généralisé des séries formelles s, s ′ ∈ R max min (A), représentant respectivement le contrôleur et le système, est noté ⊙ Au et est défini par (s ⊙ Au s ′ )(w) = s(P c (w)) ⊗ s ′ (w). L'équation (3) dans le theorème 5 admet alors la forme suivante : y(G c ∥G) = y c ⊙ Au y. On va appliquer ces résultats pour la commande des AMI. Soient y, y ref ∈ R max min (A) les séries représentant respectivement le système initial et la spécification. Dans la spécification, on a les deux aspects (logique et temporel). Plus précisément, le support de la série de spécification restreint (est inclus dans) le support de la série du système (si ce n'est pas le cas, il faut considérer l'intersection des supports des deux séries comme dans le cas logique). Similairement, les intervalles d'éxécution des événements dans la spécification sont inclus dans les intervalles d'éxécution des événements correspondants dans le système, soit pour tout mot w ∈ supp(y ref ) dans l'intersection des supports on a y ref (w) ⊆ y(w) (en tant qu'intervalles), ce que l'on écrit: y ref (w) ≤ y(w). Comme on suppose (sans perte de généralité) aussi l'inclusion des supports supp(y ref ) ⊆ supp(y) et donc, de façon équivalente, pour tout mot w ̸ ∈ supp(y ref ) : y ref (w) = ε ≤ y(w), on a pour tout w ∈ A * : y ref (w) ≤ y, i.e., y ref ≤ y pour les séries du système et de la spécification. Notre but est de trouver la plus petite série correspondant au contrôleur, notée y C telle que y C ⊙ Au y ⪯ y ref . Comme la relation d'ordre ci-dessus est l'ordre naturel de R max min (A), il s'ensuit l'interprétation suivante. Il s'agit de trouver la plus petite série y C , c'est-à-dire les plus petits coefficients y opt C (w) de restriction pour tout w, et par conséquent (par isotonie du produit de Hamadard généralisé) les plus petits coefficients (y C ⊙ Au y)(w) tels que (y opt C ⊙ Au y)(w) ⪯ y ref (w).

Proposition 6 .

 6 L'application isotone H Au y : R max min (A) → R max min (A) est résiduable et sa residuée (correspondant à la série du contrôleur le moins restrictif ) est donnée par

y♯ 1 c 1 c 1 c 1 c

 1111 (s)](w) = H Au y ♯ (s)(P c (w)) ⊗ y(w) Pc(w)∩supp(y) (s(u)• /y(u))   ⊗ y(w), car P c (w) ∈ A * c . Il suffit maintenant de noter que l'ensemble {P -1 c P c (w) ∩ supp(y)} inclut w (si w ∈ supp(y)) ou est vide (si w ̸ ∈ supp(y)). Dans le premier cas, nous avons   u∈P -Pc(w)∩supp(y) (s(u)• /y(u))   ⪯ s(w)• /y(w) et [s(w)• /y(w)] ⊗ y(w) ⪯ s(w) en utilisant (f.1). Dans le second cas, nous avons y(w) = ε, i.e., (H Au y • (H Au y ) ♯ )(s)(w) = ε ⪯ s(w). D'autre part, on obtient (H Au y ♯ • H Au y )(s)(w) = H Au y ♯ [H Au y (s)](w) = u∈P -(w)∩supp(y) H Au y (s)(u)• /y(u) = u∈P -1 c (w)∩supp(y) [s(P c (u)) ⊗ y(u)• /y(u)], si w ∈ A * c , ⊤, si w ̸ ∈ A * c . Comme ⊤ ⪰ s(w), seul le premier cas (w ∈ A * c ) est pertinent. Pour u ∈ P -1 c (w) ∩ supp(y), on a d'après le lemme 4-(i), P c (u) ∈ P c P -1 c (w) = w. Grâce à (f.2) on a alors [s(P c (w))⊗y(u)]• /y(u) ⪰ s(P c (w)) = s(w). Le cas {u ∈ P -1 c (w) ∩ supp(y)} = ∅ découle du fait que l'infimum d'un ensemble vide est égal à ⊤ = [-∞, ∞]. On conclut que H Au y est résiduable et la résiduée (H Au y ) ♯ admet la forme énoncée. Une autre manière de prouver le théorème 6 est d'utiliser la projection P y . En effet, on a H Au y = H y • P y , i.e., ∀s ∈ R max min (A): H Au y (s) = H y (P y (s)). Comme ε est absorbant pour ⊗, i.e., pour w ̸ ∈ supp(y) on peut poser P y (s)(w) = ε sans l'effet sur H Au y (s)(w). Proposition 7. L'application P y : R max min (A) → R max min (A) est résiduable et sa résiduée est donnée par: P ♯ y (s)(w) = u∈P -(w)∩supp(y) s(u), si w ∈ A * c , ⊤, sinon (i.e.,w ̸ ∈ A * c ).

  G est non ambigu (et même déterministe) et comme le comportement de G est donné par y(w) = α ⊗ µ * (w) ⊗ β, nous obtenons que pour des mots de supp(y) = [(ab) * + (cd) * ] * , on a y(a) = [2, 5], y(ab) = [2, 5] ⊗ [1, 4] = [3, 9], y(aba) = [3, 9] ⊗ [2, 5] = [5, 14], y(abab) = [6, 18] etc. Similairement, y(c) = [3, 3], y(cd) = [3, 3] ⊗ [1, 4] = [4, 7], etc. On suppose que les événements incontrôlables dont on peut ni restreindre l'intervalle d'exécution ni supprimer l'occurrence est A u = {b, d}. Nous avons donc A = {a, b, c, d} et A c = {a, c}. La spécification est d'interdire d et de restreindre l'intervalle associé à b pour la transition partant de l'état 1 à [2, 3] ⊆ [1, 4]. Les automates correspondant au système G et à la spécification G ref sont sur les figures 1a et 1b. On voit que la série y ref n'est pas contrôlable par rapport à y et A u . En effet, pour w = a on a P -1 c P c (w) = (b + d) * a(b + d) * , i.e., P -1 c P c (w) ∩ supp(y) = {a, ab} et y ref (a)• /y(a) y ref (a)• /y(a) ∧ y ref (ab)• /y

- 1 c

 1 P c (w) = (b + d) * a(b + d) * c(b + d) * , i.e., P -1 c P c (w) ∩ supp(y) = {abc, abcd} et y ref (abc)• /y(abc) y ref (abc)• /y(abc) ∧ y ref (abcd)• /y(abcd) = = [7, 11]• /[6, 12] ([5, 7]• /6, 12]) ∧

Figure 1 :Figure 2 :

 12 Figure 1: Système et spécification considérés pour l'exemple

car P c (w) ∈ A * c et donc seul le premier cas intervient dans la formule pour P ♯ y . Pour la deuxiéme propriété d'une application résiduable, on a P ♯ y • P y (s)(w) = u∈P -1 c (w)∩supp(y) P y (s)(u) = u∈P -1 c (w)∩supp(y) s(P c (u)) ⪰ s(w), si w ∈ A * c , ⊤ ⪰ s(w), sinon .

L'argumentation pour le reste est identique à celle dans la preuve de Proposition 6.

Il reste à appliquer la formule pour la résiduée de la composition de deux applications (cf. Th. / dans R max min est défini composante par composante. On a donc H ♯ y (s)(w) = s ⊙ ȳ, où pour y = (y 1 , y 2 ) ∈ R max min (A) on note par ȳ(w) = (-y 1 (w), -y 2 (w))) la série avec les coefficients

Plus grande spécification contrôlable