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Estimating the parameters of parametric lifetime distributions through an efficient
acceptance-rejection sampler

Anis Ben Abdessalema,∗

aUniv Angers, LARIS, SFR MATHSTIC, F-49000 Angers, France

Abstract

The three-parameter (3-p) Weibull distribution is an extremely important distribution to characterise the statistical be-

haviour of a large number of real world phenomenons. It is also useful as a failure model in analysing the reliability

of different types of mechanical and electrical components/systems. Successful applications of the distribution rely on

an accurate estimation of its three parameters because it directly affects the reliability and lifetime analysis. Due to

the intricate system of nonlinear equations and the complexity of the likelihood function, derivative-based optimisation

methods may fail to converge. Thus, an efficient and effective method for estimating the parameters of the model is

important from the practical viewpoint. In this paper, an optimisation scheme based on an acceptance-rejection (AR)

mechanism coupled with an elegant nested sampling (NS) technique is proposed to tackle this problem. The idea is to

gradually approach the region of optimal solutions through an efficient sampling technique and a reweighting scheme.

The AR-NS algorithm allows a good exploration of the parameter space and converges towards higher likelihood

regions by decreasing progressively a pre-specified tolerance threshold. The proposed approach gives the entire distri-

butions of the optimal estimates rather than a single point estimates. To demonstrate the practicality and the efficiency

of the proposed approach, numerous numerical examples using simulated data and real-world engineering cases will

be given. The obtained results show that the AR-NS algorithm is a suitable method for estimating the parameters of

lifetime distributions using different distances.

Keywords: Weibull distribution, Likelihood function, Wasserstein distance, Acceptance-rejection sampler, Parameter

estimation, Nested sampling, Failure times

1. Introduction

Weibull family distributions contains a large number of models with different degrees of complexity which have

been broadly applied in reliability engineering and lifetime studies [1–12]. The three-parameter (3-p) Weibull dis-

tribution is a member of this family which is extremely flexible and can fit very well an extremely wide range of

empirical observations. Also, it is especially useful as a failure model in analysing the reliability of different types5
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of components/systems. It exhibits a wide range of shapes for the density and hazard functions, which are suitable

to model complex failure data sets. A successful application of the 3-p Weibull distribution depends on having ac-

ceptable statistical estimates of the parameters of the model because it directly affects the accuracy of the reliability

analysis. However, estimating the parameters of the 3-p Weibull distribution is intrinsically a very difficult task as well

reported in the literature [13–18]. There are several different methods for estimating the model parameters. These in-10

clude the maximum likelihood (ML), method of moments (MM), modified maximum likelihood (MML), least squares

(LS), and other methods; see for example, Kantar and Senoglu [19] and the references therein. Among the estimation

methods, the ML is arguably the most widely-used because it has several desirable properties often not enjoyed by

alternative methods of estimation. The ML method does not provide explicit estimators of the parameters in certain

cases, therefore, we turn to numerical methods. However, numerical methods may have the following problems: (i)15

non-convergence of iterations, (ii) slow convergence, and (iii) convergence to the wrong root [20–24].

Due to the practical importance of this distribution, the development of an efficient and effective optimisation

techniques has been an important area of research in reliability engineering and lifetime studies to overcome the in-

efficiency of the numerical methods. Nagatsuka et al. [3] proposed a method based on a data transformation, which20

avoids the problem of unbounded likelihood. Through Monte Carlo simulations, the authors showed that the proposed

method performs better than some existing methods in terms of bias and root mean squared error. Abbasi et al. [13] ap-

plied a simulated annealing algorithm to maximise the likelihood function to estimate the parameters of a 3-p Weibull

distribution and then they employed an artificial neural network in estimating Weibull’s parameters [25]. Hasan et

al. [26] focused on likelihood method and used differential evolution algorithm to maximise the likelihood function.25

Nosal and Nosal [27] used Monte Carlo simulation and array processing language to investigate the performance of

the gradient random search minimisation procedure for fitting a Weibull distribution to a given data set using minimum

Kolmogorov-Smirnov distance approach. In Acitas et al. [28], the maximum likelihood (ML) estimation method has

been considered using particle swarm optimisation (PSO) with a new adaptive search space using confidence intervals

based on a modified maximum likelihood estimators. Örkcü et al. [29] used a population based heuristic optimisa-30

tion technique based on particle swarm optimisation to estimate the parameters of the 3-p Weibull distribution. They

demonstrated the efficiency of the PSO using three numerical examples under different control parameters. Babak

et al. [30] proposed a new hybrid methodology based on a variable neighborhood search and a simulated annealing

approach to maximise the likelihood function. The efficiency of their method has been demonstrated through a wide

range of numerical examples. Luus and Jammer [31] showed that MLE gives the most reliable parameter estimation in35

comparison with the errors-in-variables and least-squares methods. Cousineau [32] reviewed estimation methods for

3-p Weibull distribution. Yang and Yue [33] proposed a new method based on the kernel density estimation using the

neural network and genetic algorithm to estimate the parameters of 3-p Weibull distribution. Nagatsuka and Balakrish-

nan [34] proposed a method for the estimation of parameters and quantiles of the 3-p Weibull distribution. Markovich

and Jukic [35] examined moments method for Weibull distribution. Moeni et al. [36] proposed a Cross Entropy (CE)40
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method in the context of maximum likelihood estimation (MLE) of a 3-p Weibull distribution. Bartolucci et al. [37],

Bartkute and Sakalauskas [38], Jukic et al. [39], Jukic and Markovich [40], and Markovich and Jukic [41] examined

moments method for Weibull distribution.

In this paper, a new approach based on the concept of the Approximate Bayesian Computation (ABC) method is45

considered for solving the optimisation problem and estimating the parameters of the 3-p Weibull distribution. The

ABC method, which corresponds to a class of sequential particle filter methods, has proved to be quite effective in

a number of Bayesian model inference problems [42–48]. In this study, the inference problem is translated into an

optimisation problem using the same concept of the ABC algorithm. In short, the optimisation scheme is based on an

acceptance-rejection (AR) mechanism coupled with an efficient nested sampling (NS) technique. It has been named50

AR-NS. The AR-NS algorithm approaches gradually the optimal solution by propagating “good” particles and lower-

ing progressively a pre-specified tolerance threshold. The proposed algorithm considers the optimisation process by

generating several populations and each population contains a fixed number of particles. The algorithm accepts/rejects

the particles by comparing the objective function value associated to a given particle to a tolerance threshold which

itself evolves over the iterations. Through the algorithm a scoring rule is defined to reward good particles by assigning55

a high weight. The proposed scheme pushes the best particles towards the region of minimum cost function values. In

order to show the high performance of the proposed AR-NS algorithm, an extensive Monte-Carlo simulation study is

conducted. In addition, the proposed scheme is applied to real life data in order to show the practical side of the method.

The paper is organised as follows. Section 2 introduces briefly the mathematical structure of the 3-p Weibull model60

and its specifications. The mathematical expression of the likelihood function and the formulation of the optimisation

problem are given in the same Section. Section 3 details the principle of the AR-NS algorithm, and the way it can be

applied to the present problem. Several aspects related to the implementation of the proposed optimisation algorithm

are adressed in the same section. Four numerical examples based on simulated data sets are provided in Sections 4 and

5 to demonstrate the efficiency and the practicality of the AR-NS algorithm. Section 6 demonstrates the efficiency of65

the algorithm using real data sets. Section 7 closes the paper with some conclusions and future research efforts.

2. The 3-p Weibull distribution specifications

2.1. Model structure

The cumulative distribution function (CDF) of the 3-p Weibull distribution is given by:

F(t;α,β ,γ) =

 1− exp
{
−
( t−γ

α

)β
}
, t > γ

0, t ≤ γ

(1)
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where γ ≥ 0 is a location parameter, α > 0 is the scale parameter, and β > 0 is the shape parameter and t is the time to

failure. The corresponding probability density function (PDF) is given by:70

f (t;α,β ,γ) =


β

α

( t−γ

α

)β−1
exp
{
−
( t−γ

α

)β
}
, t > γ

0, t ≤ γ

(2)

If γ = 0, the resulting distribution is called the two-parameter (2-p) Weibull distribution.

The reliability function R(t) and the failure rate function h(t) (also known as the hazard rate) for the 3-p Weibull

distribution are given in Eqs. (3) and (4), respectively:

R(t;α,β ,γ) = exp

{
−
(

t− γ

α

)β
}

(3)

and

h(t;α,β ,γ) =
f (t;α,β ,γ)

1−F(t;α,β ,γ)
=

β

α

(
t− γ

α

)β−1

(4)

The 3-p Weibull distribution can allow for decreasing, constant, and increasing hazard rates. This is one of the

beautiful properties that made the Weibull distribution so applicable.

2.2. Maximum likelihood estimator (MLE)

Maximum likelihood estimation (MLE) is a commonly used technique for parameter estimation for a large class of75

distributions. It is widely known that maximum likelihood estimators are asymptotically unbiased with the minimum

variance. In this section, we use the method of maximum likelihood to discuss the estimation of model parameters

based on a complete sample. Let (t1, t2, . . . , tn) be a random sample of size n drawn from a 3-p Weibull probability

density function, f (ti;ϑ), of unknown parameters, ϑ . The likelihood function (LF) is formulated as follows:

L =
n

∏
i=1

f (ti;ϑ) (5)

where ϑ is a parameter vector representing the unknown parameters, i.e.,

ϑ = (β ,α,γ) (6)

The goal, here is to find a vector ϑ , that maximises the so-called likelihood function. To maximise L , we may80

equivalently use its logarithm, say ln(L ). Estimates are obtained through solving the following equation set:

∂ ln(L )

∂ϑ
= 0 (7)

Equation (7) is hard to solve when applied to Weibull distribution, and many others. In this regard, we may be

forced to use numerical procedures.

The LF for Weibull distribution is as follows:

L (ti,ϑ) =
n

∏
i=1

[
β

α

(
ti− γ

α

)β−1

exp

{
−
(

ti− γ

α

)β
}]

(8)
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Its logarithm will be as follows:

`WE(ti,ϑ) = n ln
(

β

α

)
+

n

∑
i=1

[
−
(

ti− γ

α

)β

+(β −1) ln
(

ti− γ

α

)]
(9)

It is very difficult to maximise L (or `WE), using ordinary optimisation techniques. Gradient method which is de-

pendent on the partial derivations of the objective function is not a good method to use here, because it is very hard85

to evaluate the gradient terms and the objective function itself at different points the algorithm needs. Also worth

noting, that it is quite challenging to derive the gradient of this complicated objective function. It is well known that

the regularity conditions are not satisfied for the maximum likelihood (ML) estimation of the three parameter Weibull

distribution because the support of the PDF depends on the unknown parameter when the threshold parameter γ is

unknown. Then, the maximum likelihood estimators (MLEs) may not exist, and may not have the classical asymptotic90

properties even if they exist (see Refs. [49–52] for details). For this reason, various alternative methods have been

sought in the literature. In this paper, a gradient-free optimisation algorithm is proposed offering to the statistical and

reliability analyst another alternative to deal with parameter estimation.

3. Optimisation strategy

3.1. Formulation of the optimisation problem95

In the framework of this study, the optimisation problem is formulated as follows:



Minimise
ϑ

ρ(ϑ) =−`WE(ϑ |ti)

subject to : β l ≤ β ≤ β u

α l ≤ α ≤ αu

γ l ≤ γ ≤ γu

(10)

Here, ρ(ϑ) is the objective function (the distance/metric measuring the discrepancies in the ABC jargon), −`WE(ϑ |ti)

is the minus log-likelihood function. (β l ,β u), (α l , αu), and (γ l , γu) are the upper and the lower boundaries of γ , α , β ,

respectively. To solve the optimisation problem, the proposed AR-NS algorithm and its implementation are detailed in

the next section.100

3.2. AR-NS sampler

In this section, the iterative process of the AR-NS algorithm given in Algorithm 1 is detailed and each of the steps

will be discussed. The algorithm starts by sampling N particles from the parameter space satisfying the constraint

ρ(·)≤ ε1. Here, ρ(·) is the objective function to be minimised and ε1 is a pre-specified tolerance level. The accepted

particles are then weighted following the formula given in Step 9 and the next tolerance threshold is computed based105

on the objective function values ranked in descending order (highest on top, see, Step 11) as the (ϕ0N)th value where

ϕ0 is the proportion of discarded particles defined by the user. Then, a weight of zero is assigned to the dropped
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particles. After that, we normalise the weights of the remaining particles (see, Step 13). From the remaining particles,

one selects in a probabilistic way λ0N particles based on the updated weight values, where λ0 is the proportion of

particles, so-called “surviving” particles (see Step 14). The objective of this step is to ensure a good exploration of the110

parameter space by giving the possibility to select “bad” particles and to avoid the trapping attraction of local minima.

The alive particles are then enclosed in an ellipsoid in which the center µ and the covariance matrix C are estimated

based on the remaining particles; one denotes this ellipsoid by E = (µ,C ). To guarantee that the particles on the

borders are inside the ellipsoid, one may enlarge the volume by a factor f0. This technique was firstly proposed in [53]

to improve the efficiency of the NS algorithm which has been widely used in different domains, mainly in cosmology115

[54]. Finally, the population is populated by resampling (1− λ0)N particles inside the enlarged ellipsoid (see Step

20) following the same scheme and a re-weighting step is carried out (Step 28) [55]. The entire process is repeated

in the subsequent iterations until some stopping criterion is met. It should be noted that employing a naive approach

that draws blindly from the parameter space would result in a steady decrease in the acceptance rate of new samples

with increasing likelihood. To overcome this issue, the algorithm uses an elliptical bound containing the current alive120

particles at each stage of the process to restrict the region around the optimal solutions from which new samples are

drawn. Ellipsoids are intended to reduce the effective initial volume of the parameter space where the drawing has to

take place. This considerably improves the speed of the AR-NS algorithm because sampling from uninteresting regions

of the parameter space is avoided.

As in other population-based optimisation methods, the AR-NS algorithm requires the selection of some tuning125

parameters. In this study, the parameters associated to the AR-NS algorithm are defined as follows: the number of

particles is set to N = 1000; ϕ0, λ0, and f0 are set to 0.3, 0.6, and 1.1, respectively. The initial tolerance threshold ε1 is

selected with the goal to guarantee an acceptance rate roughly equal or higher than 40% at the first iteration. A detailed

discussion concerning the effects of these settings can be found in [46].

130

3.3. Definition of the parameter space

In order to use the AR-NS algorithm, upper and lower bounds on the parameters being optimised should be deter-

mined. To get a crude estimates of the model parameters ϑ = (α0,β0,γ0), a very simple method in concept is used. A

precise description of the applied method is given in the sequel. Throughout this section:

0 < t1 < t2 < .. . < tn

denotes the data generated from the three-parameter Weibull distribution.

To estimate the model parameter, the Weibull probability plot is used which is based on the following transformation

of the Weibull distribution F(t;α,β ,γ):

y = ln
{

ln
[

1
1−F(t;α,β ,γ)

]}
= β ln(t− γ)−β lnα (11)
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Algorithm 1 AR-NS FOR PARAMETER ESTIMATION

Require: Data ti, Initial tolerance ε1, Objective function ρ(·), Tuning parameters (ϕ0, λ0, f0), Precision level ξ

1:
�� ��Iteration t = 1: . First iteration

2: for i = 1 to N do

3: repeat

4: Sample a parameter vector, ϑ ∗, from the parameter space

5: Evaluate the minus log-likelihood function ρ(·) =−`WE(ϑ
∗|ti).

6: until ρ(·)≤ ε1

7: Store the pair (ϑ ∗,ρ(·)) in population P1 . ei = ρ(·)

8: end for

9: Evaluate weights for all particles: ωi =
1
ε1

(
1−
(

ei
ε1

)2
)

10: Sort ei in descending order and store them in et .

11: Compute the next tolerance threshold: ε2 = et(ϕ0N) =⇒ ϕ0 = 0.3

12: Drop particles with ρ(·)> ε2, ωi=1:ϕ0N = 0

13: Normalise the weights of the remaining particles such that
(1−ϕ0)N

∑
i=1

ωi = 1

14: Select At = λ0N particles from the remaining based on the assigned weights =⇒ λ0 = 0.6

15: Define the ellipsoid by its centre of the mass and covariance matrix E1 = {µ1,C1}

16: Enlarge the ellipsoid E1 by f0 = 1.1

17:
�� ��Iteration t = 2: while the stop criterion is not reached do . Subsequent iterations

18: while |εt − εt−1| ≤ ξ do

19: for j = 1 to (1−λ0)N do

20: repeat

21: Sample a parameter vector ϑ ∗ inside the ellipsoid Et−1

22: Evaluate the objective function ρ(·) =−`WE(ϑ
∗|ti)

23: until ρ(·)≤ εt

24: Store the pair (ϑ ∗,ρ(·)) in St , e j = ρ(·)

25: end for

26: Get the new population, Pt = {At−1} ∪{St} with their correspondent distance values et . Pt : is the

t-th replenished population

27: Sort et and define εt+1 = et(ϕ0N)

28: Compute new weights for all particles as in Step (9) and normalise them

29: Define the new set of selected particles At as in Step (14)

30: Update the centre of the mass and covariance matrix of the ellipsoid . The same enlargement factor is

used for all the simulations

31: end while

Ensure: The entire distribution of the optimal estimates
7



The initial approximation of γ is given by γ0 = t1−1/n [17]. For the scale and shape parameters, the initial approxi-

mations are then obtained by using the following steps:135

• Compute the empirical CDF F̂ corresponding to the sample data, t1, . . . , tn. The mean rank estimator for the

empirical cumulative distribution function is given by Eq. (12):

F̂(ti) =
i− c

n+1−2c
0≤ c≤ 1 (12)

There are many different ways of computing empirical distribution function F̂ corrresponding to the sample data

t1, . . . , tn. They all involve arranging the data in ascending order so that t1 < t2 < .. . < tn. The estimator used in

this study is expressed in the following form (i.e., c = 0.3):

F̂(ti) =
i−0.3
n+0.4

(13)

• Compute

yi = ln[− ln(1− F̂(ti))] and xi = ln(ti− γ0) for 1≤ i≤ n

• Fit a straight line: y = ax+b to the data {(xi,yi)}n
i=1, by using the least square method.

• Let y = a?x+b? be the fitting line.

• Let β0 = a? and α0 = exp(−b?/β0) the initial estimates of the shape and scale parameters, respectively.

Based on the crude estimates, one may define the parameter space. In this study, the shape and scale parameters

were given uniform priors spanning a range one order of magnitude above and below the crude estimates while the140

location parameter is varying between zero and the minus of the data as illustrated in Table 9.

Parameter Type of distribution Lower bound Upper bound

β Uniform 0.1×β0 10×β0

α Uniform 0.1×α0 10×α0

γ Uniform 0 min(t)

Table 1: Parameter bounds for the considered 3-p Weibull model.

4. Numerical examples

To demonstrate the performance of the proposed AR-NS, I shall present some numerical examples using simulated

data with different parameter settings and sample sizes. It should be noted that no restriction has been imposed on the

maximum number of iterations and convergence is assumed when the absolute difference between successive tolerance145

threshold drops below 10−6.
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4.1. Example # 1: ϑ = (2,2,2)

The first example is to estimate the parameters of a 3-p Weibull distribution with ϑ = (2,2,2) as previously per-

formed by [13, 26]. Furthermore, one investigates the effects of the sample size on the precision estimates. The

considered sample sizes are n = 100, 500, 1000, and 2500. Table 2 displays the obtained results for the considered150

sample sizes. It should be noted that each optimal vector is being estimated as the mean values of the particles obtained

at the last population. It can be seen that as the sample size increases, the more will be better the estimation. It is

observed that for n = 500, 1000, and 2500 the estimated parameters are very close to the true values. Additionally, it

can be noted that the absolute relative difference between the log-likelihood functions evaluated at the real and optimal

estimates is becoming smaller as we increase the sample size. The same finding was found in [13].155

Weibull parameters ϑ = (2,2,2)

Sample size 100 500 1000 2500

Estimated parameters β̂ 1.7021 1.9250 2.0178 1.9843

(mean values) α̂ 1.7639 1.9860 2.0005 1.9892

γ̂ 2.1013 2.0704 1.9841 2.0047

L (ϑ̂ |ti) −128.2156 −655.6756 −1281.9445 −3239.8829

L (ϑ |ti) −129.2754 −657.4319 −1282.2499 −3240.1048∣∣∣∣ (L (ϑ̂ |ti)−L (ϑ |ti))
L (ϑ |ti)

∣∣∣∣ 0.0082 0.0027 2.3818×10−4 6.8485×10−5

Table 2: Optimal estimates of the 3-p Weibull parameters using the AR-NS algorithm.

Figs. 1-4 show how the algorithm converges progressively to the optimal estimates considering all the sample sizes.

The blue lines represent the mean value obtained at each population while the orange lines delimit the 95% credible

intervals over the populations (the dashed line shows the exact value). It is obvious that the bigger the sample size

the better the estimation. Figs. 5-8 show trace plots and corresponding histograms of the model parameters at the

last population for all the sample sizes. It can be seen that the histograms are too peaked and all the parameters are160

recovered with small uncertainty.

Fig. 9 shows the evolution of the particles over some intermediate populations. One can see that the prior volume

shrinks down and particles move to approach the region of optimal solutions (i.e., high likelihood region) by decreasing

progressively the tolerance threshold over the iterations. At the last iteration, the algorithm gives the entire distributions

of the optimal parameters rather than simply producing point estimates. From the last population, one may get a point165
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Figure 1: Evolution of the model parameters over the populations for n = 100.
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Figure 2: Evolution of the model parameters over the populations for n = 500.

estimates by taking the mean values.

Now, I shall estimate the parameters of a Weibull distribution with ϑ = (2,2,2) using 10,000 replications for each
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Figure 3: Evolution of the model parameters over the populations for n = 1000.
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Figure 4: Evolution of the model parameters over the populations for n = 2500.

sample size. The results of the simulation runs are reported in Table 3 for all the sample sizes. It can be seen that as

the sample size increases, not only the estimates get closer to the real values of the parameters, but also more precise
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Figure 5: Trace plots (the dashed line represents the mean value) and corresponding histograms of the model parameters (the triangles represent the

mean values) at the last population for n = 100.

Figure 6: Trace plots (the dashed line represents the posterior mean value) and corresponding histograms of the model parameters (the triangles

represent the mean values) at the last population for n = 500.

confidence intervals are obtained. The obtained results prove that the proposed AR-NS performs quite well. Fig. 10170

shows the histograms of the model parameters for the different sample sizes (at the end of each simulation, one takes

the mean values to get a point estimates). One can see that the histograms are too peaked around the true values mainly

12



Figure 7: Trace plots (the dashed line represents the mean value) and corresponding histograms of the model parameters (the triangles represent the

mean values) at the last population for n = 1000.

Figure 8: Trace plots (the dashed line represents the mean value) and corresponding histograms of the model parameters (the triangles represent the

mean values) at the last population for n = 2500.

when the sample size increases.

Fig. 11 shows the kernel density function of the minus log-likelihood function values computed at the true and

estimated parameters and for all the sample sizes. Overall, we can visually see a good agreement between both kernels

13



Figure 9: Evolution of the particles over some intermediate populations.
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True values n Estimated values Mean Standard deviation C.I. (95%)

β = 2 100 β̂ 1.9529 0.2584 1.5167 2.5239

α = 2 α̂ 1.9304 0.1910 1.5645 2.3239

γ = 2 γ̂ 2.0545 0.1332 1.7846 2.3185

L (ϑ̂ |ti) −127.2106 - - -

L (ϑ |ti) −128.7654 - - -

500 β̂ 1.9804 0.0982 1.7971 2.1793

α̂ 1.9776 0.0728 1.8359 2.1203

γ̂ 2.0180 0.0467 1.9319 2.1188

L (ϑ̂ |ti) −642.6323 - - -

L (ϑ |ti) −644.1584 - - -

1000 β̂ 1.9882 0.0659 1.8620 2.1228

α̂ 1.9874 0.0489 1.8892 2.0827

γ̂ 2.0108 0.0302 1.8620 2.1228

L (ϑ̂ |ti) −1287.1290 - - -

L (ϑ |ti) −1288.6113 - - -

2500 β̂ 1.9932 0.0403 1.9155 2.0715

α̂ 1.9930 0.0295 1.9338 2.0500

γ̂ 2.0058 0.0176 1.9740 2.0440

L (ϑ̂ |ti) −3219.5967 - - -

L (ϑ |ti) −3221.0721 - - -

Table 3: Results obtained by implementation of the AR-NS algorithm in 10,000 replications for n = 100,500,1000,2500.
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Figure 10: Histograms of the optimal estimates using 10,000 replications considering sample sizes of n = 100,500,1000,2500 from the top to the

bottom.

except for n = 100, where the fit is reasonably well only in the central part of the distribution and poorly in the tails.

For more objective analysis, the quality of the estimation method is studied by considering the bias and mean square

error (MSE) of the MLEs given by:

Bias(ϑ̂) = ϑ̄ −ϑ (14)

such that:

ϑ̄ =
1

10,000

10,000

∑
i=1

ϑ̂i (15)

MSE(ϑ̂) =
1

10,000

10,000

∑
i=1

(ϑ̂i−ϑ)2 (16)

Table 4 gives the bias and mean squared error estimates of the 3-p Weibull model for the different sample sizes.175

Bias and MSE were calculated for the estimators based on the above formula (ϑ can be replaced by β , α , and γ). It

can be seen that the MSE and the bias becomes smaller for all the parameters as the sample size increases.
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Figure 11: Comparison between the kernel density functions of the negative log-likelihood function estimated at the true and estimated parameters.

Sample size
β̂ α̂ γ̂

Bias MSE Bias MSE Bias MSE

100 −0.0471 0.0690 −0.0696 0.0413 0.0545 0.0207

500 −0.0196 0.0100 −0.0224 0.0058 0.0180 0.0025

1000 −0.0118 0.0045 −0.0126 0.0025 0.0108 0.0010

2500 −0.0068 0.0017 −0.0070 0.0009 0.0058 0.0003

Table 4: Bias and mean squared error for 3-p Weibull distribution with ϑ = (2,2,2).

4.2. Example # 2: ϑ = (2,3,4)

This example considers a Weibull distribution with ϑ = (2,3,4). For the AR-NS algorithm, we use the same tuning180

parameters and we run the algorithm for the different sample sizes. The obtained results are displayed in Table 5 and

Fig. 12. One can notice that the estimates get closer to the true values as we increase the sample size, but also narrower

confidence intervals are obtained. From Fig. 12, it can be seen that the estimated values are all too peaked on the true

values.
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True values n Estimated values Mean Standard deviation C.I. (95%)

β = 2 100 β̂ 1.9487 0.2536 1.5164 2.5206

α = 3 α̂ 2.8956 0.2811 2.3564 3.4742

γ = 4 γ̂ 4.0834 0.1963 3.6899 4.4790

L (ϑ̂ |ti) −167.9083 - - -

L (ϑ |ti) −169.4719 - - -

500 β̂ 1.9811 0.0996 1.7964 2.1848

α̂ 2.9675 0.1093 2.7517 3.1813

γ̂ 4.0270 0.0687 3.9022 4.1740

L (ϑ̂ |ti) −845.4235 - - -

L (ϑ |ti) −846.9379 - - -

1000 β̂ 1.9869 0.0671 1.8620 2.1213

α̂ 2.9802 0.0742 2.8299 3.1198

γ̂ 4.0165 0.0459 3.9359 4.1148

L (ϑ̂ |ti) −1692.7590 - - -

L (ϑ |t) −1694.2608 - - -

2500 β̂ 1.9920 0.0404 1.9147 2.0715

α̂ 2.9895 0.0445 2.8998 3.0767

γ̂ 4.0086 0.0261 3.9620 4.0656

L (ϑ̂ |ti) −4234.3051 - - -

L (ϑ |ti) −4235.7830 - - -

Table 5: Results obtained by implementation of the AR-NS algorithm in 10,000 replications for n = 100,500,1000,2500.
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Figure 12: Histograms of the optimal estimates using 10,000 replications considering different sample sizes n = 100,500,1000,2500 from the top

to the bottom.

Table 6 gives the bias and the mean squared error estimates for the various sample sizes and for all the model185

parameters. The estimated parameters have considerably smaller biases and mean squared errors as we increase the

sample sizes as previously noticed. Fig. 13 displays the kernel density functions of the minus log-likelihood evaluated

at the true and estimated values for all the sample sizes. Except for n = 100, the kernels were in very good agreement.

Sample size
β̂ α̂ γ̂

Bias MSE Bias MSE Bias MSE

100 −0.0513 0.0670 −0.1044 0.0899 0.0834 0.0455

500 −0.0189 0.0103 −0.0325 0.0130 0.0270 0.0054

1000 −0.0131 0.0047 −0.0198 0.0059 0.0165 0.0024

2500 −0.0080 0.0017 −0.0105 0.0021 0.0086 0.0008

Table 6: Bias and mean squared error for 3-p Weibull distribution for ϑ = (2,3,4).
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Figure 13: Comparison between the kernel density functions of the negative log-likelihood function estimated at the true and estimated parameters.

4.3. Example # 3, ϑ = (3,2,5)190

To further evaluate the accuracy and efficiency of the AR-NS algorithm, we consider in this example a Weibull

distribution with ϑ = (3,2,5). The obtained results are tabulated and depicted in Table 7 and Fig. 14. It can be seen

that the AR-NS estimates are very close to the true parameter values. As expected, the optimal estimates become better

when the sample size increases and the confidence intervals become narrower as well. One can see from Fig. 14 that the

histograms are too peaked on the true parameters. It may be concluded that the AR-NS algorithm may be considered as195

an effective parameter estimation method for the 3-p Weibull distribution. Table 8 gives the bias and the mean squared

error estimates for the various sample sizes and for all the model parameters. It can be seen that both the biases and

mean squared errors were reduced as the sample size increases as expected. As for previous examples, we superimpose

the minus log-likelihood functions values obtained from the true and estimated parameters for the considered sample

sizes. From Fig. 21, one can see that the kernels are very close to each other except in the tails and only for n = 100 as200

previously noticed.

Throughout the whole numerical examples, it has to be noted that the estimates are quite stable and, more impor-

tantly, are close to the true values for the considered sample sizes and for all the setting parameters. Additionally,

as the sample size increases, the bias and the MSE decrease. To conclude and as it has been shown via numerical
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True values n Estimated values Mean Standard deviation C.I. (95%)

β = 3 100 β̂ 2.9835 0.6309 2.0695 4.5087

α = 2 α̂ 1.9549 0.3284 1.4270 2.7086

γ = 5 γ̂ 5.0362 0.3014 4.3500 5.5161

L (ϑ̂ |ti) −96.3374 - - -

L (ϑ |ti) −97.8588 - - -

500 β̂ 2.9797 0.2260 2.5735 3.4545

α̂ 1.9814 0.1202 1.7534 2.2259

γ̂ 5.0163 0.1080 4.7975 5.2235

L (ϑ̂ |ti) −488.1443 - - -

L (ϑ |ti) −489.6400 - - -

1000 β̂ 2.9883 0.1564 2.6946 3.3116

α̂ 1.9900 0.0841 1.8262 2.1559

γ̂ 5.0090 0.0754 4.8622 5.1543

L (ϑ̂ |ti) −977.9615 - - -

L (ϑ |ti) −979.4857 - - -

2500 β̂ 2.9931 0.0945 2.8097 3.1793

α̂ 1.9941 0.0500 1.8953 2.0898

γ̂ 5.0054 0.0447 4.9193 5.0940

L (ϑ̂ |ti) −2446.2312 - - -

L (ϑ |ti) −2447.7345 - - -

Table 7: Results obtained by implementation of the AR-NS algorithm in 10,000 replications.
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experiments, the algorithm presents beautiful properties required for a good estimator such as consistency, asymptotic205

efficiency, normality, and invariance. In addition, the algorithm is less sensitive to the control parameters, compared

with the method proposed in [29].

Sample size
β̂ α̂ γ̂

Bias MSE Bias MSE Bias MSE

100 −0.0165 0.3983 −0.0451 0.1099 0.0362 0.0921

500 −0.0203 0.0515 −0.0186 0.0148 0.0163 0.0119

1000 −0.0117 0.0246 −0.0100 0.0072 0.0090 0.0058

2500 −0.0069 0.0090 −0.0059 0.0025 0.0054 0.0020

Table 8: Bias and MSE values for the model ϑ = (3,2,5).
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Figure 14: Histograms of the optimum mean values using 10,000 replications considering different sample sizes.
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Figure 15: Comparison between the kernel density functions of the negative log-likelihood function estimated at the true and estimated parameters.

5. The CE2G distribution specifications

5.1. Model structure210

To demonstrate and validate the efficiency of the AR-NS algorithm, we apply it to the Complementary Exponenti-

ated Exponential Geometric (CE2G) distribution [56]. The PDF and the reliability function are given by:

f (t;α,θ ,λ ) =
αλθe−λ t(1− e−λ t)α−1

[1− (1−θ)(1− e−λ t)α ]2
, t > 0, (17)

R(t;α,θ ,λ ) =
1− (1− e−λ t)α

1− (1−θ)(1− e−λ t)α
, t > 0, (18)

where λ is a scale parameter of the distribution, and α and θ are shape parameters, (α > 0, θ ∈ (0,1), and λ > 0).

Assuming the lifetimes are independently distributed, the MLEs of the parameters are obtained by direct maximi-

sation of the log-likelihood function given by:

`CE2G(ti,ϑ) = n ln(αθλ )−λ

n

∑
i=1

ti +(α−1)
n

∑
i=1

ln(1− e−λ ti)−2
n

∑
i=1

ln
(

1− (1−θ)(1− e−λ ti)α

)
(19)

5.2. Example # 4, ϑ = (3,0.5,1)

A simulation study was performed based on generated data sets from the CE2G distribution for different sample

sizes, n = 100,500,1000,and 2500. The true parameter values were taken as α = 3, θ = 0.5 and λ = 1. All of the
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model parameters were given uniform priors (see Table 9).215

Parameter True value Prior range

α 3 U (0, 10)

θ 0.5 U (0, 1)

λ 1 U (0, 10)

Table 9: Parameter bounds for the considered CE2G model.

The results are given in Table 10, which shows the mean values of the MLE, together with the standard deviation,

and the 95% confidence intervals for parameters of the CE2G model. The results suggest that the ML estimates have

performed adequately. One can notice that the estimates get closer to the true values as we increase the sample size,

but also narrower confidence intervals are obtained. Once again, the maximum likelihood estimator is robust against220

various sample sizes. From Table 11, we can see that the Bias and the MSE of all estimators tend to zero for large n,

i.e., the estimates are asymptotically unbiased for the parameters.

6. Real data analysis

6.1. Example # 5: Failure data of ceramic material225

In this example, we shall consider the real data set presented by [57], which represents the failure data of ceramic

material shown in Table 12. Table 13 provides some descriptive summary statistics of the data. We note a positive

skewness, in consequence, the 3p-Weibull model may be suitable for describing the asymmetry detected in these data.

For illustrative purposes, we consider the 2-p Weibull distribution as a competing model which has been widely used

for ceramic material.230

The histogram of the data and the Weibull plotting plot (WPP) using the 2-p Weibull model are shown in Figs. 16a

and 16b, respectively. The 2-p Weibull model may be an initial choice because of its positively skewed density shape

and its simplicity. However, one can clearly see from Fig. 16b that the 2-p Weibull distribution could not provide a

good fit because the data points do not scatter on a straight line. The 3-p Weibull model would be an appropriate model

to fit the data. We will prove this by using the AR-NS algorithm and through a number of goodness-of-fit (GOF)235

statistics and information criterions (IC).

The AR-NS algorithm is now employed to estimate the parameters of the 2-p and 3-p Weibull models. It should be

noted that we keep the same tuning parameters as for the numerical examples. Table 14 displays the optimal estimates
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True values n Estimated values Mean Standard deviation C.I. (95%)

α = 3 100 α̂ 3.0949 0.8017 1.7008 4.8613

θ = 0.5 θ̂ 0.5586 0.2841 0.1254 1.000

λ = 1 λ̂ 1.0241 0.1539 0.7668 1.3624

L (ϑ̂ |ti) −156.3107 - - -

L (ϑ |ti) −157.7530 - - -

500 α̂ 3.0278 0.3645 2.3366 3.7804

θ̂ 0.5267 0.1641 0.2712 0.9356

λ̂ 1.0029 0.0759 0.8596 1.1539

L (ϑ̂ |ti) −788.9552 - - -

L (ϑ |ti) −788.4600 - - -

1000 α̂ 3.0094 0.2546 2.5262 3.5212

θ̂ 0.5129 0.1153 0.3264 0.7817

λ̂ 1.0012 0.0544 0.8942 1.1074

L (ϑ̂ |ti) −1576.3156 - - -

L (ϑ |ti) −1577.8084 - - -

2500 α̂ 3.0047 0.1627 2.6960 3.3336

θ̂ 0.5059 0.0724 0.3802 0.6654

λ̂ 1.0003 0.0345 0.9324 1.0685

L (ϑ̂ |ti) −3942.9761 - - -

L (ϑ |ti) −3944.4847 - - -

Table 10: Results obtained by implementation of the AR-NS algorithm in 10,000 replications (CE2G distribution).

25



Sample size
α̂ θ̂ λ̂

Bias MSE Bias MSE Bias MSE

100 0.0949 0.6516 0.0586 0.0841 0.0241 0.0243

500 0.0278 0.1336 0.0267 0.0277 0.0029 0.0058

1000 0.0094 0.0649 0.0129 0.0135 0.0012 0.0030

2500 0.0047 0.0132 0.0059 0.0026 0.0003 0.0006

Table 11: Bias and MSE values for the CE2G model, ϑ = (3,0.5,1).

307 308 322 328 328 329 331 332 335

337 343 345 347 350 352 353 355 356

357 364 371 373 374 375 376 376 381

385 388 395 402 411 413 415 456

Table 12: Failure data of ceramic material in Megapascal [MPa].

Mean Median Standard deviation Skewness Kurtosis n

362 356 33.1130 0.6279 3.2812 35

Table 13: Descriptive statistics of the failure data of ceramic material.

for the considered models and the log-likelihood value associated to each model. To illustrate how appropriate the

considered models describe failure data of ceramic material, we display in Fig. 17a the fitted PDF curves with the op-240

timal estimates. We can visually see that 3-p Weibull model produces a better fit than the 2-p Weibull model. Fig. 17b

shows the failure times and the fitted CDFs, one can see that the 3-p Weibull distribution provides a better fit to the

data compared with the 2-p Weibull model.

The verification of the fitting performance for the fitted distributions is carried out now by comparing the values of245

their Kolmogorov-Smirnov, Anderson-Darling, Cramer-Von-Mises, AIC, BIC, and the AICc goodness-of-fit statistics.
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Figure 16: (a) Histogram of the failure data of ceramic material, (b) Weibull probability plot.

Distribution
Estimates

−L (ϑ̂ |ti)

β̂ α̂ γ̂

2-p Weibull 10.6020 377.4461 - 175.4064

3-p Weibull 123 69.8395 300.0082 169.9322

Table 14: Optimal estimates and the minus log-likelihood function values for the 2-p and the 3-p Weibull models.
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Figure 17: (a) Histogram of the data and the fitted PDFs, (b) failure times and the fitted CDFs.
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These statistics have been widely used in the literature to discriminate between competing models when more than

one model could fit the data. In general, the distribution with the smallest goodness-of-fit statistics is the best. The

analytical expressions for the goodness-of-fit measures are given below:

• Kolmogorov-Smirnov (KS) criterion [58]:

KS = max
1≤i≤n

{
i
n
− zi,zi−

i−1
n

}
(20)

• The Cramer-von-Mises (CVM) distance [59]:

CVM =
1

12n
+

n

∑
i=1

[
zi−

2i−1
2n

]2

(21)

• The Anderson-Darling (AD) distance [60]:

AD =−n− 1
n

n

∑
i=1

(2i−1) [ln(zi)+ ln(1− zn+1−i)] (22)

• Akaike information criterion (AIC) due to Akaike (1974) [61]:

AIC =−2L̂ +2k (23)

• Bayes information criterion (BIC) due to Schwarz (1978) [62]:

BIC =−2L̂ + k log(n) (24)

• AIC with a correction (AICc) due to Hurvich and Tsai (1989) [63]:250

AICc =−2L̂ +
2k(k+1)
n− k−1

(25)

where, L̂ , k, n and zi = F̂(·) correspond to the estimate of the model maximised log-likelihood function, number

of parameters in the distribution, the sample size of the fitted data, and the estimated distribution function under the

ordered data, respectively.

Results from the model fittings are reported in Table 15. One can see that the 3-p Weibull distribution performs255

better due to lower information criterions and GOF statistics values. As a result, the superiority of the 3p-Weibull

model is obvious for this data set.

Fig. 21 shows the histograms of the optimal estimates for the 2-p and the 3-p Weibull models. It can be seen

that the five parameters have been identified with small uncertainty. Figs. 20a-h display for the selected model, the260

evolution of the particles inside the ellipsoids over some intermediate populations and how the prior parameter space
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IC and GOF statistics

Model AIC BIC AICc KS CVM AD

2-p Weibull 354.81 357.92 351.18 0.1257 0.8753 0.3534

3-p Weibull 345.86 350.53 340.64 0.0726 0.0225 0.1913

Table 15: IC and goodness-of-fit statistics of the fitted models for the failure data of ceramic material.

shrinks down by gradually reducing the tolerance threshold values. Finally, Fig. 19 displays the acceptance rates over

the populations for the considered models. It is measured by dividing the number of particles required to replenish a

population by the total number of simulations at each population. It can be seen that the AR-NS algorithm maintains

after a few populations a high acceptance rates around 50∼ 70% until convergence.265
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Figure 18: Histograms of the optimal estimates obtained for the 2-p (first row) and 3-p (second row) Weibull distributions.
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Figure 19: Acceptance rates over the populations for the 2-p and 3-p Weibull distributions.
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Figure 20: Evolution of the particles for the 3-p Weibull model over some intermediate populations.
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6.2. Example # 6: Fatigue lives data set

The second data set is bearings’ fatigue life data initially reported by McCool [64] and later reanalysed by a number

of authors; see for example, Cohen et al. [65]; Cohen and Whitten [66] and Upadhyyay and Mukherjee [67]. The data

consist of fatigue life in hours of 10 bearings of a certain type given in Table 16.270

152.7 172.0 172.5 173.3 193.0

204.7 216.5 234.9 262.6 422.6

Table 16: Fatigue lives in hours of 10 bearings from McCool [64].

Let consider the problem of parameter estimation. For this data set, when the maximum likelihood method is used

to estimate the parameters of the 3p-Weibull distribution, there is no convergent solution [3]. To overcome this issue,

the AR-NS algorithm is used by using the Wasserstein distance. In the next section, we first review the definitions of

the Wasserstein distance.275

6.2.1. Wasserstein distance

The Wasserstein distance is a powerful metric based on the theory of optimal mass transport [68]. It gives a natural

measure of the distance between two distributions with a wide range of applications [69, 70]. Let P(Rd) be the set

of Borel probability measures on Rd and let Pp(Rd) be the subset of such measures with a finite moment of order

p ∈ [1,∞). For P,Q ∈P(Rd), let Γ(P,Q) be the set of probability measures γ on Rd ×Rd with marginals P and Q,280

i.e., such that γ(B×Rd) = P(B) and γ(Rd ×B) = Q(B) for Borel sets B ⊆ Rd . The p-Wasserstein distance between

P, Q ∈Pp(Rd) is defined by:

Wp(P,Q) =

(
inf

γ∈Γ(P,Q)

∫
Rd×Rd

||x− y||pdγ(x,y)
)1/p

(26)

|| · || denotes the Euclidean norm. In terms of random variabes X and Y with laws P and Q, respectively, the p-

Wasserstein distance is the smallest value of {E(||X −Y ||p)}1/p over all possible joint distributions γ ∈ Γ(P,Q) of

(X ,Y ).285

The p-Wasserstein distance Wp defines a metric on Pp(Rd), which thereby becomes a complete separable metric

space [68]. Convergence in the Wp metric is equivalent to weak convergence plus convergence of moments of order p;

see for instance [71] and [68].

For univariate distributions P and Q with distributions functions F and G, the p-Wasserstein distance is defined as:

Wp(P,Q) =

(∫ 1

0
|F−1(u)−G−1(u)|pdu

)1/p

(27)

where F−1 and G−1 are the quantile functions of P and Q, respectively.
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6.2.2. Results290

The optimal estimates given by minimising the Wasserstein distance are given in Table 17. Fig. 21 shows a com-

parison of the observed cumulative probability and the expected cumulative distribution curves obtained by the AR-NS

algorithm using the Wasserstein distance. One can clearly see that overall the optimal estimates fit very well the data.

Distribution
Estimates

Distance measure

β̂ α̂ γ̂

3-p Weibull 1.3190 73.5351 142.9422 0.0272

Table 17: Optimal estimates of the 3-p Weibull model using the Wasserstein distance.
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Figure 21: Empirical data and fitted CDF using the 3-p Weibull model.

7. Conclusion

In this paper, an efficient acceptance-rejection algorithm coupled with an elegant nested sampling technique for295

estimating the 3-p Weibull distribution is proposed. The algorithm approaches gradually the optimal solutions in an

efficient way by reducing progressively a pre-specified tolerance threshold and through a proper reweighting scheme to
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gain in efficiency. We conducted simulation studies to demonstrate the efficiency and the robustness of the algorithm.

It has shown through various numerical examples and real-world engineering cases that the AR-NS algorithm yields

quite efficient results. Consequently, the AR-NS algorithm which is rooted on a well-developed and widely used ABC300

method can be considered as an effective and an efficient population-based algorithm for parameter estimation avail-

able for the reliability and statistical analyst. In addition to being simple, stable, and easily implemented, the algorithm

gives the entire distribution of the optimal solutions rather than a single point estimates.

In the framework of this study, although, we have only considered only two parametric distributions, the proposed305

AR-NS algorithm can be applied to any other family of lifetime distributions having the same or larger number of

parameters. More importantly, the algorithm is fairly flexible as it can be implemented with other minimum distance

estimators (Cramér-von Mises, Anderson-Darling, etc.) to estimate the model parameters. This property is of great

interest mainly when the derivation of the likelihood function is not trivial, intractable, or when one has to deal with

small/moderate sample sizes which is often the case in practical applications and where the use of likelihood-based310

methods are questionable. Moreover, the proposed optimisation scheme, which is based on an acceptance/rejection

mechanism, is suitable for a parallel implementation in a high-performance computing environment. Work in these

directions is currently under way.
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