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egalitarian value1

Florian Navarro2

Laboratoire GRANEM, Angers, France

Abstract

This article introduces a new axiom of sub-game order preservation for TU-

games as well as a model of cooperative games with types. The axiom, alongside

efficiency, characterizes the egalitarian value. The model addresses situations

where players of different types are needed. Each player has a specific type and

coalitions are feasible only if it contains at most one player of each type. We

use the new characterization of the egalitarian value for TU-games to obtain

the following result in our class of problems: the egalitarian value is the only

sharing rule that ensures that each player of the most productive group is better

off joining this most productive group. We characterize the egalitarian value

without fairness requirement and show that, for this new class of problems,

egalitarianism can provide some form of incentives towards optimal cooperation.

Keywords: Cooperative game theory, Shapley value, equal division,

egalitarian value, type structure, incentives

1. Introduction

In the present article we develop a model of cooperative games in which we

need players of different types. Several players are of the same type, but a

player can only be of a single type. The type structure restricts the feasibility

1I would like to thank Sylvain Béal who was always available to provide insightful feedbacks
and comments at various stages of this paper. I also thank Stéphane Gonzalez for seeing some
merits in the original draft, which gave me the confidence to pursue this idea.

2Email address: floriannavarro.unipro@gmail.com

Preprint submitted to Elsevier January 8, 2025
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ofof coalitions: a coalition is feasible if it contains at most one player of each type.

This means we have situations in which the grand coalition cannot form. Such

a situation can arise when members of an organization have to form a subgroup

to tackle a specific project (see Example 3). Several groups having to choose a

representative to participate in a committee can also be a situation covered by

our model. The problem raised by our model is thus different than the usual

problem of cooperative games (sharing the worth of the grand coalition).

A solution ϕ to this model consists of two mechanisms: a function µ that

selects a group of players specifying, for each type, a single player of this type,

and a sharing rule ψ that shares the worth produced by the group amongst

its members. We are interested in a solution that fosters the emergence of the

most productive group with all types. To this end, we propose an axiom of

optimality (the solution selects the best group) on µ and an axiom of no outside

options (no member of the selected group can be better off in another group)

that apply to the solution ϕ. Together, these axioms impose requirements on

the solution ψ that is applied to the allocation problem for the chosen group.

We introduce an axiom of sub-game order preservation for the sharing rule ψ.

This axiom states that no member of a population can be worse off by choosing

to associate with a group of a given size with which they have the best synergy.

We show that requiring the axiom of no outside option on ϕ for all µ that satisfy

optimality is equivalent to requiring sub-game order preservation on ψ. As an

intermediary result, we offer a characterization of the egalitarian value (which

shares the total worth equally between all players) that relies on the sub-game

order preservation axiom alongside the standard axiom of efficiency. As such

we characterize the egalitarian principle without any fairness criteria.

Formally, our model is related to the Aumann-Drèze model (Aumann and

Dreze, 1974) as it also involves coalition structures. In a coalition structure,

players are part of pre-existing groups that can not communicate with each

other. This structure has an effect on the worth of coalitions and alter the

characteristic function of the underlying transferable utility game (TU-game).

Owen (1977) also relies on coalition structures (called a-priori unions) although

2
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ofthey directly affect the payoff of the players. In the present article we take

yet another direction: this structure restricts the formation of coalitions and

therefore their feasibility.

More generally, this paper joins a line of works which enrich the standard

model of cooperative game theory by considering new structures of cooperation.

A large part of this research focuses on structures that restrict cooperation by

modelling either asymmetries in communication, or hierarchical constraints. In

two papers, Myerson modeled communication by respectively a graph (1977)

and an hyper-graph (1980). Both represent a restriction of communication

between players. Various solution concepts have been proposed for such games.

We can cite for instance the Position-value (Meessen, 1988), the Average-Tree

Value (Herings et al., 2008), the Mean value (Hamiache, 2004), the F-value

(Hamiache, 1999), the Hamiache-Navarro value (Hamiache and Navarro, 2019)

and numerous variations of the Myerson value3. Additionally, different forms of

hierarchical constraints have been explored by Gilles et al. (1992), Faigle and

Kern (1992) and more recently by Béal et al. (2021). The distinction between the

framework of Aumann and Dreze (1974), Owen (1977) and ours can similarly be

made for, respectively, the framework of Gilles et al. (1992), Béal et al. (2021)

and Faigle and Kern (1992). Béal et al. (2021) offer a deeper discussion on

how the same mathematical model (in their case, of hierarchical constraint) can

affect the underlying game in different ways. In this sense, our work is in line

with this trend of research.

Another approach to types, or more precisely differently skilled players, has

been proposed by Bachrach et al. (2013) with coalitional skill games (CSG).

However, in a CSG framework, certain players can perform certain tasks and

the worth of a coalition depends on the nature or number of tasks that can be

performed by the coalition. The model is thus similar to the standard model of

cooperative game theory but restricts itself to a certain type of characteristic

3For instance two efficient extensions of the Myerson value were proposed by Hamiache
(2012) and Béal et al. (2015). Examples of variations on the theme can be found by Gómez
et al. (2003) and González-Arangüena et al. (2003).

3
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few models have been proposed to enrich the individual characteristics of the

players.

Our model tackles issues not addressed by existing research and contributes

to the economic theory literature on several levels. For the standard model

of TU-games, we provide a new characterization of the egalitarian value. In

addition, we use a formal framework of coalition structure to develop a novel

class of unexplored problems as of yet. Within this class, we investigate the

effect of sharing rules on the spontaneous emergence of coalitions, making it

somewhat endogenous to the model. We give a solution for these problems and

show that, for this class of problems, egalitarianism can provide an incentive

whereas approaches based on the evaluation of marginal contributions can be

detrimental for cooperation.

In section 2 of this paper we introduce the canonical model of cooperative

games with transferable utility and present the axiom of sub-game order preser-

vation as well as a weaker variant. We build a new characterization of the

egalitarian value and study how this characterization holds when weakening the

sub-game order preservation axiom. In section 3 we present our new model of

games with types and we propose axioms for a desirable solution to this new

type of problems as well as present our main results. We conclude in section 4.

2. TU-games, egalitarian value and sub-game or-
der preservation

Let U be a non-empty and infinite set of players. A coalition is a non-empty

and finite subset of U. A coalitional game with transferable utility (also called

a cooperative TU-game) is a pair (N, v) where N is a coalition and v is a

function satisfying v : 2N → R and v(∅) = 0. We denote by Γ the set of these

games. Given a coalition S ⊆ N we write s = |S| to denote its cardinality. For

any S ⊊ N we will write (S, v|S) the sub-game restricted to coalition S with

v|S(T ) = v(T ), ∀T ⊆ S. A player i ∈ N is a null player in the game (N, v) if

4
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the game (N, v) if v(S) = 0, for all S ⊆ N such that i ∈ S. Two players i, j ∈ N

are equals in the game (N, v) if v(S ∪{i}) = v(S ∪{j}) for all S ⊆ N \ {i, j}. A

permutation π on N assigns a position π(i) ∈ {1, . . . , n} to each player i ∈ N .

A TU-game v is said to be a convex game if it satisfies v(S ∪ {i})− v(S) ≤
v(T ∪ {i}) − v(T ) for all i ∈ N and all S ⊆ T ⊆ N \ {i}. Convex games have

been shown by Shapley (1971) to have a non-empty core4 .

A sharing rule on Γ is a function ψ which associates with each game (N, v) ∈
Γ a vector ψ(N, v) ∈ RN . The Shapley value, first presented by Shapley (1953),

rewards players based on their marginal contributions, weighted by all the pos-

sible orders of entry of players in coalitions. We denote this sharing rule by Sh

and define it as

Shi(N, v) =
∑

S⊆N
i∈S

(s− 1)!(n− s)!

n!
[v(S)− v(S \ {i})], ∀i ∈ N.

The Egalitarian value divides equally the worth of coalition N between all

players. We denote this sharing rule EG and define it as

EGi(N, v) =
v(N)

n
, ∀i ∈ N.

We introduce the following classical axioms for sharing rules over TU-games.

Efficiency. For each game (N, v) ∈ Γ it holds that
∑

i∈N ψi(N, v) = v(N).

Linearity. For each pair of games (N, v), (N,w) ∈ Γ and each real number

α ∈ R, it holds that ψ(N, v + αw) = ψ(N, v) + αψ(N,w).

Null player. For each game (N, v) ∈ Γ and each null player i ∈ N , it holds

that ψi(N, v) = 0.

Nullifying player. For each game (N, v) ∈ Γ and each nullifying player i ∈ N ,

it holds that ψi(N, v) = 0.

Equal treatment of equals. For each game (N, v) ∈ Γ and each pair of play-

ers i, j ∈ N who are equals in (N, v), it holds that ψi(N, v) = ψj(N, v).

4Quoting Shapley (1971), “the core of [a TU-game] is the set of feasible outcomes that
cannot be improved upon by any coalition of players".
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ψi(N, v) = ψπ(i)(N, πv), for all i ∈ N , with πv(S) = v(∪i∈Sπ(i)), for all S ⊆ N .

As shown by Shapley (1953), the Shapley value is the unique sharing rule

satisfying efficiency, linearity, null player and equal treatment of equals. The

egalitarian value has been shown by van den Brink (2007) to be the unique shar-

ing rule satisfying efficiency, linearity, nullifying player and the equal treatment

of equals.

Thomson (1983) introduced the axiom of population monotonicity in the

context of fair division. This axiom states that when facing a given problem

of fair division, no player should be better off by having to share with more

players. Chun (1986) and later Chun and Park (2012) expanded on this idea

and proposed a similar axiom for, respectively, fair division problems and allo-

cation problems in cooperative games. This weaker variant states that when a

population is joined by newcomers, all members of the original population are

either all better off or all worse off.

We introduce a new axiom of sub-game order preservation that have some

conceptual relation to the axioms of population monotonicity introduced by

Thomson (1983), Chun (1986) and Chun and Park (2012). Let us consider a

given population P offered with the choice of cooperating with two different

groups of the same size. Our axiom states that no member of population P

can be worse off if the population chooses the group with whom it has the best

synergy. In the context of cooperative games, given two coalition of players

whose intersection is non-empty, we ask that no member of the intersection is

rewarded less when joining the coalition with the better worth. Formally5,

Sub-game order preservation. For each game (N, v) with n ≥ 3 and each

pair of coalitions S, T ⊆ N with s = t, S ∩ T ̸= ∅ if v(S) ≥ v(T ) it holds that

ψi(S, v|S ) ≥ ψi(T, v|T ), ∀i ∈ S ∩ T .

5P corresponds to S ∩ T in the definition of sub-game order preservation

6
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decides to replace the other members of S by a set of outsiders of the same size,

then the members of P should not be worse off if the newly formed coalition

T is at least as productive as the original coalition S. Note that this axiom

puts no requirement on any payoffs in the game (N, v). Moreover, for the two

sub-games considered, it says nothing about the payoffs of players not belonging

to the intersection of S and T . As a result, this axiom does not appear that

strong.

The axiom of sub-game order preservation is also quite different from the

axiom of grand coalition monotonicity used by Casajus and Huettner (2014)

to characterize the egalitarian value. Grand coalition monotonicity compares

the same population involved in two different games, whereas we compare two

different populations.

We now provide two examples to illustrate that the Shapley value violates

sub-game order preservation.

Example 1. We consider the game (N, v) with N = {1, 2, 3, 4} and v such that

v(S) = 0 for all singletons and

S 12 13 14 23 24 34 123 124 134 234 1234

v(S) 1 2 1 1 1.5 1 4 3 4 3 6

Observe that (N, v) is convex. We focus on the two coalitions S = {1, 2, 3}
and T = {1, 2, 4}. We might want to provide an incentive for players 1 and 2

to join with player 3 instead of player 4. However, the Shapley value of the

7
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Shi v|{1,2,3} v|{1,2,4}

1 1.5 10
12

2 1 13
12

3 1.5 -

4 - 13
12∑

i∈N Shi 4 3

Player 1 would prefer to join with 3 and player 2 would prefer to join with 4.

The Shapley value therefore does not satisfy sub-game order preservation, even

for convex games.

■

This second example shows that the Shapley value can even “reverse the

order" in the sub-games.

Example 2. We consider the game (N, v) with N = {1, 2, 3, 4}, v such that

S 1 2 3 4 12 13 14 23 24 34 123 124 134 234 1234

v(S) 0.5 0 0.5 0 1 1.2 0.5 1 0 0.5 2 1 1.2 1 2

Observe that this game is also convex. We focus on the four coalitions of size

2. The Shapley value of the corresponding sub-games are

Shi v|{1,2} v|{1,3} v|{2,4} v|{3,4}

1 0.75 0.6 - -

2 0.25 - 0 -

3 - 0.6 - 0.5

4 - - 0 0
∑

1 1.2 0 0.5

In this example, player 1 and player 2 both have incentives to form {1, 2} which

has a worth lower than {1, 3}.

8
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We first introduce a lemma used to prove our main theorem.

Lemma 1 If a sharing rule ψ on Γ satisfies efficiency and sub-game order

preservation then it satisfies equal treatment of equals.

Proof . We consider a game (N, v) such that two players i, j ∈ N are equals in

v. Let P ⊂ U \N with p = n − 1. We build a larger game (N+, w) such that

N+ = N ∪P . We denote Ni = P ∪{i} and Nj = P ∪{j}. We take w such that

• w(S) = v(S) for all S ⊆ N ,

• w(Ni) = w(Nj) = w(N) = v(N),

Since U is infinite, such a construction is always possible.

We consider coalition N and we will prove that ψi(N,w|N ) = ψj(N,w|N ).

Since the worths of coalitions Ni, Nj and N are equal, we use sub-game order

preservation in both directions and obtain the following useful conditions on ψ:

ψp(Ni, w|Ni
) = ψp(Nj , w|Nj

), ∀p ∈ P = Ni ∩Nj ,

ψi(Ni, w|Ni
) = ψi(N,w|N ), (1)

ψj(Nj , w|Nj
) = ψj(N,w|N ).

By efficiency we have the following condition on ψ:

∑

k∈Ni

ψk(Ni, w|Ni
) = w(Ni) = w(Nj) =

∑

k∈Nj

ψk(Nj , w|Nj
).

Therefore we obtain that

w(Ni) = w(Nj)

⇔
∑

k∈Ni

ψk(Ni, w|Ni
) =

∑

k∈Nj

ψk(Nj , w|Nj
)

⇔
∑

p∈P

ψp(Nj , w|Nj
) + ψi(Ni, w|Ni

) =
∑

p∈P

ψp(Nj , w|Nj
) + ψj(Nj , w|Nj

)

⇔ ψi(Ni, w|Ni
) = ψj(Nj , w|Nj

)

⇔ ψi(N,w|N ) = ψj(N,w|N ).

9
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come from conditions in (1). We therefore obtain that ψi(N,w|N ) = ψj(N,w|N )

which, by definition of w, is equivalent to ψi(N, v) = ψj(N, v).

□

Theorem 1

The sharing rule ψ on Γ satisfies efficiency and sub-game order preserva-

tion if and only if ψ = EG.

Proof . We know that EG satisfies efficiency. It is trivial that it satisfies

sub-game order preservation. Let us prove that, for any game (N, v) ∈ Γ, if a

sharing rule ψ satisfies efficiency and sub-game order preservation then it is the

egalitarian value.

Let us consider a game (N, v) and a player i ∈ N . We can build a game

(Ni, wi) with Ni such that

N ⊊ Ni,

∃T ⊊ Ni with N ∩ T = {i} and n = t.

We also put the following conditions on wi:

wi(P ) = v(P ), ∀P ⊆ N

wi(T ) = v(N),

wi(P ) = v({i}), ∀P ⊊ T.

Such a construction is always possible since U is infinite. By definition we

have (wi)|N (S) = v(S) for all S ⊆ N hence ψi(N, (wi)|N ) = ψi(N, v). Using

efficiency and Lemma 1 we have

ψi(T, (wi)|T ) =
(wi)|T (T )

t
=
v(N)

n

since all players j ∈ T are equals in (wi)|T . As we have N,T ⊆ Ni, n = t and

10
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ψi(T, (wi)|T ) ≥ ψi(N, (wi)|N ) and ψi(N, (wi)|N ) ≥ ψi(T, (wi)|T ),

which means that

ψi(N, (wi)|N ) = ψi(T, (wi)|T ) =
v(N)

n
= ψi(N, v).

Since U is an infinite set it is possible to build a game (Ni, wi) that satisfies our

above conditions for every i ∈ N . Hence we have that ψi(N, v) =
v(N)
n , ∀i ∈ N ,

which concludes our proof.

□

We now prove that our axioms are logically independent.

Dropping efficiency

Consider the sharing rule f1(N, v) = αEG(N, v) with α ̸= 1. It obviously sat-

isfies sub-game order preservation but not efficiency.

Dropping sub-game order preservation

Consider the Shapley value. It satisfies efficiency. Example 1 shows it does not

satisfy sub-game order preservation.

Next, we consider a weaker variant of sub-game order preservation. The ax-

iom of sub-game order preservation is build on the following idea of coalitional

stability: a coalition can only form if each player consents to its formation. This

conception is in line with the model 1 of stability presented in Hart and Kurz

(1983). Additionally, this conception can also be interpreted as a requirement

for a deviation. Therefore, coalitional stability can be thought as the inability

for players to form another coalition than the one they are currently in. This

gives us ground on which we define a weaker version of sub-game order preser-

vation :

Weak sub-game order preservation. For each game (N, v) ∈ Γ with n ≥ 3

and each pair of coalitions S, T ⊆ N with s = t, S ∩ T ̸= ∅, if v(S) ≥ v(T ) it

11
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The reasoning behind this axiom is the following: assume that coalition S

is formed. Players in P could choose to break off from S and form T . However

for this to be possible it would require that all players in P agree to do so.

Hence, if we want the coalition with the highest worth to be maintained, we

need only one player to oppose the deviation. To sum up, whereas sub-game

order preservation asks all players in P to be better off when joining a group

with which they have a higher synergy, weak sub-game order preservation only

requires that some players in P are better off.

Below we show that Lemma 1 does hold with this weaker version of sub-

game order preservation.

Lemma 2 If a sharing rule ψ on Γ satisfies efficiency and weak sub-game

order preservation then it satisfies equal treatment of equals.

Proof . In order to prove that efficiency and weak sub-game order preservation

implies equal treatment of equals we will show that if a sharing rule ψ violates

equal treatment of equals then it does not satisfy efficiency and weak sub-game

order preservation together.

Let us consider a sharing rule ψ and let us assume that it violates equal

treatment of equals but satisfies both efficiency and weak sub-game order preser-

vation. We will show this leads to a contradiction. If ψ does not satisfy equal

treatment of equals, then there exists a game (N, v) such that, for some equal

players i, j in (N, v), ψi(N, v) ̸= ψj(N, v). Let us consider such a game. We

will note g(N) the set of players in N which are equals to i and j (including

themselves). By efficiency, if ψ was to satisfy equal treatment of equals we would

have

ψi(N, v) =

v(N)−
∑

j∈N\g(N)

ψj(N, v)

|g(N)| , ∀i ∈ g(N).

12
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exists some i ∈ g(N) such that

ψi(N, v) =

v(N)−
∑

j∈N\g(N)

ψj(N, v)

|g(N)| + ϵNi .

We denote the set of these players by g+(N). Similarly there must exists some

i ∈ g(N) such that

ψi(N, v) =

v(N)−
∑

j∈N\g(N)

ψj(N, v)

|g(N)| − ϵNi .

We denote the set of these players by g−(N). By efficiency we must have
∑

i∈g+(N)∪g−(N)

ϵNi = 0. In order for ψ to violates equal treatment of equals we

must also have that g+(N) ̸= ∅ and g−(N) ̸= ∅ as well as ϵNi > 0 for all

i ∈ g+(N) ∪ g−(N).

Let us now consider a larger game (N+, w) with N ⊊ N+ and such that

there exists a T ⊊ N+ with N ∩ T = {i}, i ∈ g−(N). Therefore there exists a

bijection π : N → T with π(i) = i. We build w such that

• w(P ) = v(P ) for all P ⊆ N ,

• w(∪j∈Pπ(j)) = v(P ), for all P ⊆ N .

We can deduce the following from these conditions. First we know that w(T ) =

w(N). Second, we know that there are as many players equal to i in T as

there is in N , i.e. |g(N)| = |g(T )|. Finally, since ψ does not satisfy equal

treatment of equals, it also violates anonymity. In turn this means it violates

the following requirement: for each game (N, v) and each bijection π : N → T ,

ψi(N, v) = ψπ(i)(T, πv), ∀i ∈ N6. Since ψ violates this requirement on (N, v),

we can conclude that there exists a set T and a bijection π : N → T such that

6Observe that if π is a bijection of N on itself this requirement coincides with anonymity.
It follows that if anonymity is not satisfied, this requirement is not satisfied either.
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ψπ(j)(T,w|T ) = ψj(N,w|N ) + λj , ∀j ∈ N,

with λj ∈ R,
∑

j∈N λj = 0. We necessarily have that there exists some j ∈ N

for which λj ̸= 0. And thus, by efficiency, there must be at least two players

j for which λj ̸= 0. In addition, note that the determination of the λj must

depend on the players’ labels. Therefore, for any given set T , there are multiple

bijections π such that ψ violates the above requirement.

Since N ∩ T = {i} and w(N) = w(T ), weak sub-game order preservation

requires that

ψi(N,w|N ) = ψi(T,w|T ).

Now, even though i ∈ g−(N), it is possible that i ∈ g−(T ) or i ∈ g+(T ). We

focus on the latter. The previous equation becomes

w(N)−
∑

j∈N\g(N)

ψj(N,w|N )

|g(N)| − ϵNi =

w(T )−
∑

j∈T\g(T )

ψj(T,w|T )

|g(T )| + ϵTi .

Since w(N) = w(T ) and |g(N)| = |g(T )| we obtain

−

∑

j∈N\g(N)

ψj(N,w|N )

|g(N)| − ϵNi = −

∑

j∈T\g(T )

ψj(T,w|T )

|g(N)| + ϵTi .

Rearranging,

∑

j∈T\g(T )

ψj(T,w|T )−
∑

j∈N\g(N)

ψj(N,w|N ) = (ϵTi + ϵNi )|g(N)|.

Since (ϵTi + ϵNi )|g(N)| > 0 we obtain that

∑

j∈T\g(T )

ψj(T,w|T ) >
∑

j∈N\g(N)

ψj(N,w|N ).
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w(T )−
∑

j∈g(T )

ψj(T,w|T ) > w(N)−
∑

j∈g(N)

ψj(N,w|N )

⇔−
∑

j∈g(T )\{i}
ψj(T,w|T )− ψi(T,w|T ) > −

∑

j∈g(N)\{i}
ψj(N,w|N )− ψi(N,w|N ),

⇔ψi(N,w|N )− ψi(T,w|T ) >
∑

j∈g(T )\{i}
ψj(T,w|T )−

∑

j∈g(N)\{i}
ψj(N,w|N )

Since ψπ(j)(T,w|T ) = ψj(N,w|N ) + λj , ∀j ∈ N, and j ∈ g(N) if and only if

π(j) ∈ g(T ) we have

ψi(N,w|N )− ψi(T,w|T ) >
∑

j∈g(N)\{i}
λj .

Since U is an infinite set, we can choose the k ∈ N+ \ N and π such that, for

all
∑

j∈g(N)\{i} λj ≥ 0, and obtain

ψi(N,w|N )− ψi(T,w|T ) > 0

which contradicts weak sub-game order preservation.

□

We now show that Theorem 1 remains true even if we replace sub-game order

preservation with weak sub-game order preservation.

Theorem 2

A sharing rule ψ on Γ satisfies efficiency and weak sub-game order preser-

vation if and only if ψ = EG.

Proof . In the proof of Theorem 1 we used a construction where S ∩ T is a

singleton. Therefore the proof for this theorem is identical except we use the

Lemma 2 where Lemma 1 was previously used.

□

Note that the two axioms are independent : Sh satisfies efficiency but not

weak sub-game order preservation as shown in Example 2 and f1 satisfies weak

sub-game order preservation but not efficiency.
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Now, we introduce a new model of cooperative games in which players are of a

given type.

Consider an entity (a firm for instance) is setting up a project that asks for

specific types of players. It potentially has several players (candidates, employ-

ees, other firms) of each type. Each player is of a given type but several players

are of the same type. Once the team is put together, the players who are part

of the team will work on the project which implies working all together as well

as in subgroups and alone.

Formally, we consider k types with 1 < k < n. Each player i ∈ N is of only

one type and we denote by Kα ⊊ N the set of players of type α ∈ {1, . . . , k}.
We write K = {K1,K2, ...,Kk} to denote the set of those sets. We denote

by Ki the set of players of the same type as player i. Letting P(N) denote

the partitions of the player set N , the set K ∈ P(N) can be understood as

a coalition structure as introduced by Aumann and Dreze (1974). We have
⋃

1≤α≤k

Kα = N and Kα1

⋂
Kα2

= ∅ for any α1, α2 ∈ {1, . . . , k} and α1 ̸= α2.

A full coalition is a coalition where each type is present. We denote by

F = Π
1≤α≤k

Kα the set of full coalitions, defined by the cartesian products of the

sets that partition players into types. Therefore, the size of each full coalition

is k. We also denote F i = {F ′ ∈ F | i ∈ F ′} the set of full coalitions to which

player i belongs. We assume that sub-coalitions of full coalitions are still fea-

sible7 but that coalitions with excess players are not. Hence the set of feasible

coalitions FN,K is the union of the subsets of full coalitions.

We consider that a value is produced from the cooperation of players. This

production is modelled by a characteristic function v defined over 2N . Hence,

7A feasible coalition is a coalition that can be formed by players. The solutions we propose
only consider feasible coalitions.
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and K ∈ P(N). We denote the set of those games by Γtype. Note that if K

partitions players into singletons, (N, v,K) coincides with (N, v).

We provide here an example of a game with types.

Example 3 (Team project)

Consider the following situation: a business trusts one of its managers to take

on a new project that needs two other specialists. She is given freedom to choose

other employees of the necessary types. The other employees are free to reject

the proposition. Once the project is done, the team will get a bonus proportional

to the estimated value of the work produced. This raises the problem of finding a

sharing rule for this bonus that gives the manager the incentives to put together

the team that produce the most valuable work, and for the potential teammates

to accept. Formally we have N = {1, 2, 3, 4, 5} and K = {{1}, {2, 3}, {4, 5}}.
The full coalitions are F = {{1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}}. The set of

feasible coalition is given by

FN,K = {{1}, {2}, {3}, {4}, {5}, {1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 4}, {2, 5}, {3, 4},

{3, 5}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}}.

Imagine that 2 has poor synergy with both 4 and 5 while 3 has a really good

synergy with 5 (only amplified under 1 management) but can’t stand working

with 4. However, as a manager, 1 is able to be at its best when bridging the

divide between 4 and 3. The following worths for the feasible coalitions express

this situation. The worths express the value of intermediary works as well as

the end product. We have v({i}) = 0 for all i ∈ N and 8

S 12 13 14 15 24 25 34 35 124 125 134 135

v(S) 0.5 0 1 1 0.5 0.75 0 2 2 2 3 4

8Note that v is defined for any S ⊆ N . We only focus here on the feasible coalitions so as
not to take up too much space.
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This example illustrate three issues that naturally arise in this model: the

formation of one of the full coalitions, the allocation of its worth, and the in-

fluence of this allocation on the stability of the formation process of the se-

lected full coalition. To address these issues, we define a solution on Γtype

as a pair ϕ = (µ, ψ). The function µ is a mechanism that selects for each

(N, v,K) ∈ Γtype one of its full coalitions µ(N, v,K). The function ψ is a

sharing rule on Γ. For a given game with types (N, v,K) ∈ Γtype a solu-

tion is ϕ(N, v,K) =
(
µ(N, v,K), ψ

(
µ(N, v,K), v|µ(N,v,K)

))
. Such a solution is

therefore two-dimensional. We shall then put requirements on both dimensions

separately as well as a requirement on their interaction.

One desirable and reasonable requirement for a mechanism µ would be that

it selects an optimal full coalition. A full coalition F ′ ∈ F is optimal if and only

if v(F ′) = max
F ′′∈F

v(F ′′). We let Fopt = {F ′ ∈ F | v(F ′) = max
F ′′∈F

v(F ′′)} be the

set of optimal full coalitions. Hence, we require that the mechanism µ selects a

coalition that is optimal.9 This gives us a first axiom:

Optimality. For every games with types (N, v,K) ∈ Γtype it holds that µ(N, v,K) ∈
Fopt.

Next we put a requirement on the sharing rule ψ on Γ. We require that ψ

satisfies the standard axiom of efficiency (as defined in section 2). Observe that

even though we consider a model of games with types, ψ is a sharing rule for

TU-games. Hence it is sufficient to require that ψ is efficient in order to ensure

that the worth of the full coalition is completely allocated amongst its players.

Finally, we introduce an axiom which concerns the interaction between µ

and ψ. When choosing a solution ϕ = (µ, ψ), can we make sure that the coali-

tion µ(N, v,K) is stable ? That is to say, can we make sure that no players in

9Note that there can be multiple optimal full coalitions. We only ask that µ selects one of
these. Hence it is possible that µ is not anonymous with respect to full coalitions.
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a player can obtain with another coalition as a player’s outside options. Hence

the following question : does the solution ϕ = (µ, ψ) is such that no player that

belongs to µ(N, v,K) has better outside options ?10 Formally:

No outside options. For every game with types (N, v,K) ∈ Γtype it holds

that ϕ = (µ, ψ) is such that ψi(µ(N, v,K), v|µ(N,v,K)) ≥ ψi(F
′, v|F ′), ∀F ′ ∈ F i,

∀i ∈ µ(N, v,K).

Remark. From Example 1 and 3 it is easy to see that if ψ is chosen to be the

Shapley value then ϕ does not satisfy no outside options.

The axiom of no outside options is defined for a solution ϕ defined on Γtype

which itself is entirely composed of a solution ψ defined on Γ and of a coalition

selector µ. Hence the requirement that is put on ϕ by the axiom of no outside

options necessarily interacts with the requirement put on µ by optimality and

the requirement put on ψ by efficiency. The next two results explore how these

three axioms interact. In particular, the next proposition explores how, when

requiring optimality, the no outside options axiom can be “translated" to a

specific requirement on ψ.

Proposition 1
Let ψ be a sharing rule on Γ. The following are equivalent:

• for any optimal µ, the solution ϕ = (µ, ψ) on Γtype satisfies no outside
options;

• ψ satisfies sub-game order preservation.

Proof . We first prove that if µ satisfies optimality and ψ satisfies sub-game

order preservation then ϕ satisfies no outside options.

10The concept of outside options considered here is in line with the one used by Casajus
(2009) in the context of communication graph games.
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Fopt which implies that v(µ(N, v,K)) ≥ v(F ′) for all F ′ ∈ F . By definition we

have that |µ(N, v,K)| = |F ′|, for all F ′ ∈ F . Using sub-game order preservation

we know then that ψi(µ(N, v,K), v|µ(N,v,K)) ≥ ψi(F
′, v|F ′) for all F ′ such that

µ(N, v,K) ∩ F ′ ̸= ∅, ∀i ∈ µ(N, v,K) ∩ F ′. By definition, if i ∈ µ(N, v,K) ∩ F ′

then F ′ ∈ F i. Hence ψi(µ(N, v,K), v|µ(N,v,K)) ≥ ψi(F
′, v|F ′) for all F ′ ∈ F i,

for all i ∈ µ(N, v,K). This coincides with the requirement for no outside op-

tions.

We now prove that if ϕ satisfies no outside options for any µ that satisfies

optimality then ψ satisfies sub-game order preservation.

Let (N, v) be a TU-game. Our goal is to prove that, for any S, T ⊆ N

with s = t, S ∩ T ̸= ∅ and v(S) ≥ v(T ), it holds that ψi(S, v|S) ≥ ψi(T, v|T ),

∀i ∈ S ∩ T . To this end we show that there exists a game with types (N,w,K)

such that µ(N,w,K) = S and T ∈ F . Let (N,w,K) be a game with types. We

build w such that

• w(R) = v(R), ∀R ⊆ S and ∀R ⊆ T ;

• w(R) < v(S), ∀R ⊆ N , r = s, R ̸= S, R ̸= T .

Additionally we consider a partition K of N such that k = s. Assume that

every i ∈ S is in a different element of K and that every j ∈ T is also in a

different element of K. This ensures that S and T are full coalitions. The no

outside options axiom imposes the following conditions:


ψi(µ(N,w,K), w|µ(N,w,K)) ≥ ψi(F

′, w|F ′),
∀F ′ ∈ F, F ′ ∩ µ(N,w,K) ̸= ∅,
∀i ∈ F ′ ∩ µ(N,w,K).

We first assume that v(S) > v(T ). Using optimality on µ we obtain

⇔



ψi(S,w|S) ≥ ψi(F

′, w|F ′),
∀F ′ ∈ F, F ′ ∩ S ̸= ∅,
∀i ∈ F ′ ∩ S.

⇒
{
ψi(S, v|S) ≥ ψi(T, v|T ), ∀i ∈ T ∩ S.
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This last condition coincides with the one for sub-game order preservation.

We now assume that v(S) = v(T ). We want the solution ϕ to satisfies no

outside options for any possible µ that is optimal. If v(S) = v(T ) then, in the

game (N,w,K) we have Fopt = {S, T}. Since an optimal coalition selector µ

can choose either of these two coalitions, the conditions under which ϕ satisfies

no outside option, for any µ that is optimal become :

⇔





ψi(S,w|S) ≥ ψi(F
′, w|F ′),

∀F ′ ∈ F, F ′ ∩ S ̸= ∅,
∀i ∈ F ′ ∩ S;

ψi(S,w|S) ≤ ψi(F
′, w|F ′),

∀F ′ ∈ F, F ′ ∩ S ̸= ∅,
∀i ∈ F ′ ∩ S.

⇒
{
ψi(S, v|S) = ψi(T, v|T ), ∀i ∈ T ∩ S.

This condition coincides with the condition of sub-game order preservation.

□

Theorem 3
Let ψ be an efficient sharing rule on Γ. The following are equivalent:

• for any optimal µ, the solution ϕ = (µ, ψ) on Γtype satisfies no outside
options;

• ψ = EG.

Proof . We first prove the “if part". We consider a solution ϕ = (µ,EG) with µ

satisfying optimality. We know that EG satisfies efficiency and sub-game order

preservation. From Proposition 1 we conclude that ϕ = (µ,EG) satisfies no

outside options.

Now the “only-if part". We consider a solution ϕ = (µ, ψ) with ψ satisfying

efficiency. Since ϕ satisfies no outside options for any µ satisfying optimality,

from Proposition 1 we know that ψ satisfies sub-game order preservation. We

then use Theorem 1 to conclude that ψ = EG.

□
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weaker variant of the no outside options axiom. This variant relies on the same

conception of deviation and coalitional stability that we presented in section 2.

No outside options (weak). For every game with types (N, v,K) ∈ Γtype,
it holds that the solution ϕ(N, v,K) = (µ, ψ) is such that ∃i ∈ µ(N, v,K) ∩ F ′

such that
ψi(µ(N, v,K), v|µ(N,v,K)) ≥ ψi(F

′, v|F ′), ∀F ′ ∈ F.

An alternative coalition F ′ can form only if no member of µ(N, v,K) ∩ F ′

object to its formation. We obtain a parallel result to Proposition 1.

Proposition 2
Let ψ be a sharing rule on Γ. The following are equivalent:

• for any optimal µ, the solution ϕ = (µ, ψ) on Γtype satisfies no outside
options (weak);

• ψ satisfies weak sub-game order preservation.

Proof . We first prove that if µ satisfies optimality and ψ satisfies weak sub-

game order preservation then ϕ satisfies no outside options (weak).

Let ϕ = (µ, ψ) be a solution for games with types. Let (N, v,K) ∈ Γtype be

such a game. Since µ satisfies optimality then v(µ(N, v,K)) ≥ v(F ′) for all

F ′ ∈ F . In particular we have v(µ(N, v,K)) ≥ v(F ′) for all F ′ ∈ F such that

F ′ ∩ µ(N, v,K) ̸= ∅. Since ψ satisfies weak sub-game order preservation we

obtain that, ∀F ′ ∈ F with µ(N, v,K) ∩ F ′ ̸= ∅, ∃i ∈ µ(N, v,K) ∩ F ′ such that

ψi(µ(N, v,K), v|µ(N,v,K)) ≥ ψi(Fp, v|Fp
).

Which coincides with the no outside options (weak) axiom.

We now prove that if ϕ satisfies no outside options (weak) for any µ that satisfies

optimality then ψ satisfies weak sub-game order preservation. Let (N, v) be a

TU-game. It is sufficient to show that for any S, T ⊆ N with s = t, S∩T ̸= ∅ and

v(S) ≥ v(T ) there exists a game with types (N,w,K) such that µ(N,w,K) = S
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Let (N,w,K) be a game with types. We build w such that

• w(R) = v(R), ∀R ⊆ S and ∀R ⊆ T ;

• w(R) < v(S), ∀R ⊆ N , r = s, R ̸= S, R ̸= T .

Additionally we consider a partition K of N such that k = s. Assume that

every i ∈ S is in a different element of K and that every j ∈ T is also in a

different element of K. This ensures that S and T are full coalitions. The no

outside options (weak) axiom imposes the following condition:




∀F ′ ∈ F, F ′ ∩ µ(N,w,K) ̸= ∅, ∃i ∈ F ′ ∩ µ(N,w,K) such that :

ψi(µ(N,w,K), w|µ(N,w,K)) ≥ ψi(F
′, w|F ′).

We first assume that v(S) > v(T ). Using optimality on µ we obtain

⇔





∀F ′ ∈ F, F ′ ∩ S ̸= ∅, ∃i ∈ F ′ ∩ S such that :

ψi(S,w|S) ≥ ψi(F
′, w|F ′),

⇒
{

∃i ∈ S ∩ T such that ψi(S, v|S) ≥ ψi(T, v|T ).

The last implication comes from the facts that T ∈ F , w|S = v|S and w|T = v|T .

This last condition coincides with the one for weak sub-game order preservation.

We now assume that v(S) = v(T ). We want the solution ϕ to satisfies weak

no outside options for any possible µ that is optimal. If v(S) = v(T ) then, in

the game (N,w,K) we have Fopt = {S, T}. Since an optimal coalition selector

µ can choose either of these two coalitions, the condition under which ϕ satisfies

no outside option (weak), for any µ that is optimal becomes :

⇔





∀F ′ ∈ F, F ′ ∩ S ̸= ∅, ∃i ∈ F ′ ∩ S such that :

ψi(S,w|S) ≥ ψi(F
′, w|F ′),

∀F ′ ∈ F, F ′ ∩ S ̸= ∅, ∃i ∈ F ′ ∩ S such that :

ψi(S,w|S) ≤ ψi(F
′, w|F ′).

⇒





∃i ∈ S ∩ T such that ψi(S,w|S) ≥ ψi(T,w|T ),

∃j ∈ S ∩ T such that ψj(S,w|S) ≤ ψj(T,w|T ).
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when v(S) = v(T ).

□

Theorem 4
Let ψ be an efficient sharing rule on Γ. The following are equivalent:

• for any optimal µ, the solution ϕ = (µ, ψ) on Γtype satisfies no outside
options (weak);

• ψ = EG.

Proof . We first prove the “if part". We consider a solution ϕ = (µ,EG) with µ

satisfying optimality. We know that EG satisfies efficiency and weak sub-game

order preservation. From Proposition 2 we conclude that ϕ = (µ,EG) satisfies

no outside options (weak).

Now the “only-if part". We consider a solution ϕ = (µ, ψ) with ψ satisfying

efficiency. Since ϕ satisfies no outside options (weak) for every µ satisfying

optimality, from Proposition 2 we know that ψ satisfies weak sub-game order

preservation. We then use Theorem 2 to conclude that ψ = EG.

□

4. Concluding remarks

In this paper we developed a model of cooperative environments in which dif-

ferent types of players are needed. This model is built on the canonical model

of cooperative TU-games. We showed that, assuming the universe of player is

sufficiently large, an egalitarian approach when sharing the outcome of coop-

eration is the only efficient approach that always provides an incentive for the

best coalition to form.

In our approach, the full domain of cooperative games is considered. Ex-

ample 1 and 2 show that the solution ϕ = (µ, Sh) does not satisfy no outside
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esting to determine whether other sharing rules than the egalitarian value are

compatible with both the axioms of sub-game order preservation and efficiency.

In addition, it is well known that the payoff vector given by the egalitarian

value often lies outside the core, even for convex games. Consequently, the

selected full coalition can offer no outside options but not be stable in the sense

of the core. As such our result could also be framed as an impossibility result:

there is no solution ϕ = (µ, ψ) with ϕ satisfying no outside options for every

µ satisfying optimality such that ψ(µ(N, v,K), v|µ(N,v,K)) lies in the core of

(µ(N, v,K), v|µ(N,v,K)). However, the fact that ψ might not be in the core can

possibly be irrelevant if we consider situations where the cooperation is based

on free association but, once established, is subject to binding agreements.

Furthermore, the result of Proposition 1 can help understand the perva-

siveness of fixed remunerations in organizations, which is still a challenge for

incentives theory to this day (Ménard, 2012). We can consider a firm as a game

with types. The types are the position, the players are the employees and the

characteristic function is the result of the production. A firm would want a

solution ϕ that satisfies no outside option for every optimal µ. Proposition 1

shows that it is equivalent to having a sharing rule of the worth of production

that satisfies sub-game order preservation. Consider a firm where employees are

on a fixed wage determined by their position. For instance, accountants earn x,

designers earn y and so on. This corresponds in our model to a solution where

the payoff ψi of a player i is determined by its type, independently of the total

worth produced. Such a solution would satisfy sub-game order preservation.

Indeed, since every payoff is a fixed amount determined exogenously there are

no differences depending on the sub-coalition considered. A player’s payoff is

always the same regardless of the worth produced. However it is not efficient.

In a capitalist firm, the difference between the sum of the wages and the value

produced is the residual surplus that goes to the owner of the firm’s capital,

as losses or profit. The capitalist firm, by virtue of not being efficient, can

therefore satisfy sub-game order preservation while having differentiated wages.
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preservation.
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