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Cooperative games with types, outside options, and the

egalitarian value1

Florian Navarro2

Laboratoire GRANEM, Angers, France

Abstract

This article introduces a new axiom of sub-game order preservation for TU-

games as well as a model of cooperative games with types. The axiom, alongside

e�ciency, characterizes the egalitarian value. The model addresses situations

where players of di�erent types are needed. Each player has a speci�c type and

coalitions are feasible only if it contains at most one player of each type. We

use the new characterization of the egalitarian value for TU-games to obtain

the following result in our class of problems: the egalitarian value is the only

sharing rule that ensures that each player of the most productive group is better

o� joining this most productive group. We characterize the egalitarian value

without fairness requirement and show that, for this new class of problems,

egalitarianism can provide some form of incentives towards optimal cooperation.

Keywords: Cooperative game theory, Shapley value, equal division,

egalitarian value, type structure, incentives

1. Introduction

In the present article we develop a model of cooperative games in which we

need players of di�erent types. Several players are of the same type, but a

player can only be of a single type. The type structure restricts the feasibility

1I would like to thank Sylvain Béal who was always available to provide insightful feedbacks
and comments at various stages of this paper. I also thank Stéphane Gonzalez for seeing some
merits in the original draft, which gave me the con�dence to pursue this idea.
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of coalitions: a coalition is feasible if it contains at most one player of each type.

This means we have situations in which the grand coalition cannot form. Such

a situation can arise when members of an organization have to form a subgroup

to tackle a speci�c project (see Example 3). Several groups having to choose a

representative to participate in a committee can also be a situation covered by

our model. The problem raised by our model is thus di�erent than the usual

problem of cooperative games (sharing the worth of the grand coalition).

A solution ϕ to this model consists of two mechanisms: a function µ that

selects a group of players specifying, for each type, a single player of this type,

and a sharing rule ψ that shares the worth produced by the group amongst

its members. We are interested in a solution that fosters the emergence of the

most productive group with all types. To this end, we propose an axiom of

optimality (the solution selects the best group) on µ and an axiom of no outside

options (no member of the selected group can be better o� in another group)

that apply to the solution ϕ. Together, these axioms will impose requirements

on the solution ψ that is applied to the allocation problem for the chosen group.

We introduce an axiom of sub-game order preservation for the sharing rule ψ.

This axiom asks that no member of a population can be worse o� by choosing

to associate with a group of a given size with which it has the best synergy. We

show that requiring the axiom of no outside option on ϕ for all µ that satisfy

optimality is equivalent to requiring sub-game order preservation on ψ. As an

intermediary result, we o�er a characterization of the egalitarian value (which

shares the total worth equally between all players) that relies on the sub-game

order preservation axiom alongside the standard axiom of e�ciency. As such

we characterize the egalitarian principle without any fairness criteria.

Formally, our model is related to the Aumann-Drèze model (Aumann and

Dreze, 1974) as it also involves coalition structures. In a coalition structure,

players are part of pre-existing groups that can not communicate with each

others. This structure has an e�ect on the worth of coalitions and alter the

characteristic function of the underlying transferable utility game (TU-game).

Owen (1977) also relies on coalition structures (called a-priori unions) although
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they directly a�ect the payo� of the players. In the present article we take

yet another direction: this structure restricts the formation of coalitions and

therefore their feasibility.

More generally, this paper joins a line of works which enrich the standard

model of cooperative game theory by considering new structures of cooperation.

A large part of this research focuses on structures that restrict cooperation by

modelling either asymmetries in communication, or hierarchical constraints. In

two papers, Myerson modelled communication by respectively a graph (1977)

and an hyper-graph (1980). Both represent a restriction of communication

between players. Various solution concepts have been proposed for such games.

We can cite for instance the Position-value (Meessen, 1988), the Average-Tree

Value (Herings et al., 2008), the Mean value (Hamiache, 2004), the F-value

(Hamiache, 1999), the Hamiache-Navarro value (Hamiache and Navarro, 2019)

and numerous variations of the Myerson value3. Additionally, di�erent forms of

hierarchical constraints have been explored by Gilles et al. (1992), Faigle and

Kern (1992) and more recently by Béal et al. (2021). The distinction between the

framework of Aumann and Dreze (1974), Owen (1977) and ours can similarly be

made for, respectively, the framework of Gilles et al. (1992), Béal et al. (2021)

and Faigle and Kern (1992). Béal et al. (2021) o�er a deeper discussion on

how the same mathematical model (in their case, of hierarchical constraint) can

a�ect the underlying game in di�erent ways. In this sense, our work is in line

with this trend of research.

Another approach to types, or more precisely di�erently skilled players, has

been proposed by Bachrach et al. (2013) with coalitional skill games (CSG).

However, in a CSG framework, certain players can perform certain tasks and

the worth of a coalition depends on the nature or number of tasks that can be

performed by the coalition. The model is thus similar to the standard model of

cooperative game theory but restricts itself to a certain type of characteristic

3For instance two e�cient extensions of the Myerson value were proposed by Hamiache
(2012) and Béal et al. (2015). Examples of variations on the theme can be found by Gómez
et al. (2003) and González-Arangüena et al. (2003).
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functions de�ned by the players' �skills". Therefore, to the best of our knowledge

few models have been proposed to enrich the individual characteristics of the

players.

Our model tackles issues not addressed by existing research and contributes

to the economic theory literature on several levels. For the standard model

of TU-games, we provide a new characterization of the egalitarian value. In

addition, we use a formal framework of coalition structure to develop a novel

class of unexplored problems as of yet. Within this class, we investigate the

e�ect of sharing rules on the spontaneous emergence of coalitions, making it

somewhat endogenous to the model. We give a solution for these problems and

show that, for this class of problems, egalitarianism can provide an incentive

whereas approaches based on the evaluation of marginal contributions can be

detrimental for cooperation.

In section 2 of this paper we introduce the canonical model of cooperative

games with transferable utility and present the axiom of sub-game order preser-

vation as well as a weaker variant. We build a new characterization of the

egalitarian value and study how this characterization holds when weakening the

sub-game order preservation axiom. In section 3 we present our new model of

games with types and we propose axioms for a desirable solution to this new

type of problems as well as present our main results. We conclude in section 4.

2. TU-games, egalitarian value and sub-game or-

der preservation

Let U be a non-empty and in�nite set of players. A coalition is a non-empty

and �nite subset of U. A coalitional game with transferable utility (also called a

cooperative TU-game) is a pair (N, v) where N is a coalition and v is a function

satisfying v : 2N → R and v(∅) = 0. We denote by Γ the set of these games.

Given a coalition S ⊆ N we write s = |S| its cardinality. For any S ⊊ N we

will write (S, v|S) the sub-game restricted to coalition S with v|S(T ) = v(T ),

∀T ⊆ S. A player i ∈ N is a null player in the game (N, v) if v(S ∪ {i}) = v(S)
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for all S ⊆ N \ {i}. A player i ∈ N is a nullifying player in the game (N, v) if

v(S) = 0, for all S ⊆ N such that i ∈ S. Two players i, j ∈ N are equals in the

game (N, v) if v(S ∪ {i}) = v(S ∪ {j}) for all S ⊆ N \ {i, j}. A permutation π

on N assigns a position π(i) ∈ {1, . . . , n} to each player i ∈ N .

A TU-game v is said to be a convex game if it satis�es v(S ∪ {i})− v(S) ≤

v(T ∪ {i}) − v(T ) for all i ∈ N and all S ⊆ T ⊆ N \ {i}. Convex games have

been shown by Shapley (1971) to have a non-empty core4 .

A sharing rule on Γ is a function ψ which associates with each game (N, v) ∈

Γ a vector ψ(N, v) ∈ RN . The Shapley value, �rst presented by Shapley (1953),

rewards players based on their marginal contributions, weighted by all the pos-

sible orders of entry of players in coalitions. We write it Sh and de�ne it as

Shi(N, v) =
∑
S⊆N
i∈S

(s− 1)!(n− s)!

n!
[v(S)− v(S \ {i})], ∀i ∈ N.

The Egalitarian value divides equally the worth of coalition N between all

players. We write this sharing rule EG and de�ne it as

EGi(N, v) =
v(N)

n
, ∀i ∈ N.

We introduce the following classical axioms for sharing rules over TU-games.

E�ciency. For each game (N, v) ∈ Γ it holds that
∑

i∈N ψi(N, v) = v(N).

Linearity. For each pair of games (N, v), (N,w) ∈ Γ and each real number

α ∈ R, it holds that ψ(N, v + αw) = ψ(N, v) + αψ(N,w).

Null player. For each game (N, v) ∈ Γ and each null player i ∈ N , it holds

that ψi(N, v) = 0.

Nullifying player. For each game (N, v) ∈ Γ and each nullifying player i ∈ N ,

it holds that ψi(N, v) = 0.

Equal treatment of equals. For each game (N, v) ∈ Γ and each pair of play-

ers i, j ∈ N who are equals in (N, v), it holds that ψi(N, v) = ψj(N, v).

4Quoting Shapley (1971), �the core of [a TU-game] is the set of feasible outcomes that
cannot be improved upon by any coalition of players".
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Anonymity. For each game (N, v) and each permutation π on N we have

ψi(N, v) = ψπ(i)(N, πv) with πv(S) = v(∪i∈Sπ(i)), for all S ⊆ N .

As shown by Shapley (1953), the Shapley value is the unique sharing rule

satisfying e�ciency, linearity, null player and equal treatment of equals. The

egalitarian value has been shown by van den Brink (2007) to be the unique shar-

ing rule satisfying e�ciency, linearity, nullifying player and the equal treatment

of equals.

In 1983, Thomson introduced the axiom of population monotonicity in the

context of fair division. This axiom states that when facing a given problem

of fair division, no player should be better o� by having to share with more

players. Chun (1986) and later Chun and Park (2012) expanded on this idea

and proposed a similar axiom for, respectively, fair division problem and allo-

cation problems in cooperative games. This weaker variant states that when a

population is joined by newcomers, all members of the original population are

either all better o� or all worse o�.

We introduce a new axiom of sub-game order preservation that have some

conceptual relation to the axioms of population monotonicity introduced by

Thomson (1983), Chun (1986) and Chun and Park (2012). Let us consider a

given population P o�ered with the choice of cooperating with two di�erent

groups of the same size. Our axiom states that no member of population P

can be worse o� if the population chooses the group with whom it has the best

synergy. In the context of cooperative games, given two coalition of players

whose intersection is non-empty, we ask that no member of the intersection is

rewarded less when considering the coalition with the better worth. Formally5,

Sub-game order preservation. For each game (N, v) with n ≥ 3 and each

pair of coalitions S, T ⊆ N with s = t, S ∩ T ̸= ∅ if v(S) ≥ v(T ) it holds that

ψi(S, v|S ) ≥ ψi(T, v|T ), ∀i ∈ S ∩ T .

5P corresponds to S ∩ T in the de�nition of sub-game order preservation
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We also give an alternative interpretation for this axiom. If a subgroup P of S

decides to replace the other members of S by an identical number of outsiders,

then the members of P should not be worse o� if the newly formed coalition

T is at least as productive as the original coalition S. Note that this axiom

puts no requirement on any payo�s in the game (N, v). Moreover, for the two

sub-games considered, it says nothing about the payo�s of players not belonging

to the intersection of S and T . As a result, this axiom does not appear that

strong.

The axiom of sub-game order preservation is also quite di�erent from the

axiom of grand coalition monotonicity used by Casajus and Huettner (2014)

to characterize the egalitarian value. Grand coalition monotonicity compares

the same population involved in two di�erent games, whereas we compare two

di�erent populations.

Before diving into the results we provide two examples to illustrate that the

Shapley value violates sub-game order preservation.

Example 1. We consider the game (N, v) with N = {1, 2, 3, 4} and v such that

v(S) = 0 for all singletons and

S 12 13 14 23 24 34 123 124 134 234 1234

v(S) 1 2 1 1 1.5 1 4 3 4 3 6

Observe that (N, v) is convex. We focus on the two coalitions S = {{1, 2, 3}

and T = {1, 2, 4}}. We might want to provide an incentive for players 1 and

2 to join with player 3 instead of player 4. However, the Shapley value of the
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corresponding sub-games are

Shi v|{1,2,3} v|{1,2,4}

1 1.5 10
12

2 1 13
12

3 1.5 -

4 - 13
12∑

4 3

Player 1 would prefer to join with 3 and player 2 would prefer to join with 4.

The Shapley value therefore does not satisfy sub-game order preservation, even

for convex games.

■

This second example shows that the Shapley value can even �reverse the

order" in the sub-games.

Example 2. We consider the game (N, v) with N = {1, 2, 3, 4}, v such that

S 1 2 3 4 12 13 14 23 24 34 123 124 134 234 1234

v(S) 0.5 0 0.5 0 1 1.2 0.5 1 0 0.5 2 1 1.2 1 2

Observe that this game is also convex. We focus on the four coalitions of size

2. The Shapley value of the corresponding sub-games are

Shi v|{1,2} v|{1,3} v|{2,4} v|{3,4}

1 0.75 0.6 - -

2 0.25 - 0 -

3 - 0.6 - 0.5

4 - - 0 0∑
1 1.2 0 0.5

In this example, player 1 and player 2 both have incentives to form {1, 2} which

has a worth lower than {1, 3}.
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■

We �rst introduce a lemma used to prove our main theorem.

Lemma1 For every game (N, v) ∈ Γ if the sharing rule ψ(N, v) satis�es e�-

ciency and sub-game order preservation then it satis�es equal treatment

of equals.

Proof . We consider a game (N, v) such that two players i, j ∈ N are equal in

v. Let P ⊂ U \N with p = n − 1. We build a larger game (N+, w) such that

N+ = N ∪P . We denote Ni = P ∪{i} and Nj = P ∪{j}. We take w such that

� w(S) = v(S) for all S ⊆ N ,

� w(Ni) = w(Nj) = w(N) = v(N),

Since U is in�nite, such a construction is always possible.

We consider coalition N and we will prove that ψi(N,w|N ) = ψj(N,w|N ).

Since the worths of coalitions Ni, Nj and N are equal, we use sub-game order

preservation in both directions and obtain the following useful conditions on ψ:

ψp(Ni, w|Ni
) = ψp(Nj , w|Nj

), ∀p ∈ P = Ni ∩Nj ,

ψi(Ni, w|Ni
) = ψi(N,w|N ), (1)

ψj(Nj , w|Nj
) = ψj(N,w|N ).

By e�ciency we have the following condition on ψ:∑
k∈Ni

ψk(Ni, w|Ni
) = w(Ni) = w(Nj) =

∑
k∈Nj

ψk(Nj , w|Nj
).

Therefore we obtain that

w(Ni) = w(Nj)

⇔
∑
k∈Ni

ψk(Ni, w|Ni
) =

∑
k∈Nj

ψk(Nj , w|Nj
)

⇔
∑
p∈P

ψp(Nj , w|Nj
) + ψi(Ni, w|Ni

) =
∑
p∈P

ψp(Nj , w|Nj
) + ψj(Nj , w|Nj

)

⇔ ψi(Ni, w|Ni
) = ψj(Nj , w|Nj

)

⇔ ψi(N,w|N ) = ψj(N,w|N ).
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The �rst equivalence comes from e�ciency, and the third and last equivalence

come from conditions in (1). We therefore obtain that ψi(N,w|N ) = ψj(N,w|N )

which, by de�nition of w, is equivalent to ψi(N, v) = ψj(N, v).

□

Theorem 1

For every game (N, v) ∈ Γ, the sharing rule ψ(N, v) satis�es e�ciency and

sub-game order preservation if and only if ψ = EG.

Proof . We know that EG satis�es e�ciency. It is trivial that it satis�es

sub-game order preservation. Let us prove that, for any game (N, v) ∈ Γ, if a

sharing rule ψ satis�es e�ciency and sub-game order preservation then it is the

egalitarian value.

Let us consider a game (N, v) and a player i ∈ N . We can build a game

(Ni, wi) with Ni such that

N ⊊ Ni,

∃T ⊊ Ni with N ∩ T = {i} and n = t.

We also put the following conditions on wi:

wi(P ) = v(P ), ∀P ⊆ N

wi(T ) = v(N),

wi(P ) = v({i}), ∀P ⊊ T, P ̸= {i}.

Such a construction is always possible since U is in�nite. By de�nition we

have (wi)|N (S) = v(S) for all S ⊆ N hence ψi(N, (wi)|N ) = ψi(N, v). Using

e�ciency and Lemma 1 we have

ψi(T, (wi)|T ) =
(wi)|T (T )

t
=
v(N)

n

since all players j ∈ T are equals in (wi)|T . As we have N,T ⊆ Ni, n = t and
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wi(T ) = wi(N) using sub-game order preservation we obtain that

ψi(T, (wi)|T ) ≥ ψi(N, (wi)|N ) and ψi(N, (wi)|N ) ≥ ψi(T, (wi)|T ),

which means that

ψi(N, (wi)|N ) = ψi(T, (wi)|T ) =
v(N)

n
= ψi(N, v).

Since U is an in�nite set it is possible to build a game (Ni, wi) that satis�es our

above conditions for every i ∈ N . Hence we have that ψi(N, v) =
v(N)
n , ∀i ∈ N ,

which concludes our proof.

□

We now prove that our axioms are logically independent.

Dropping e�ciency

Consider the sharing rule f1(N, v) = αEG(N, v) with α ̸= 1. It obviously sat-

is�es sub-game order preservation but not e�ciency.

Dropping sub-game order preservation

Consider the Shapley value. It satis�es e�ciency. Example 1 shows it does not

satisfy sub-game order preservation.

Next, we consider a weaker variant of sub-game order preservation. The ax-

iom of sub-game order preservation is build on the following idea of coalitional

stability: a coalition can only form if each player consents to its formation. This

conception is in line with the model 1 of stability presented in Hart and Kurz

(1983). Additionally, this conception can also be interpreted as a requirement

for a deviation. Therefore, coalitional stability can be thought as the inability

for players to form another coalition than the one they are currently in. This

gives us ground on which we de�ne a weaker version of sub-game order preser-

vation :

Weak sub-game order preservation. For each game (N, v) ∈ Γ with n ≥ 3

and each pair of coalitions S, T ⊆ N with s = t, S ∩ T ̸= ∅, if v(S) ≥ v(T ) it
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holds that ∃i ∈ S ∩ T such that ψi(S, v|S ) ≥ ψi(T, v|T ).

The reasoning behind this axiom is the following: assume that coalition S

is formed. Players in P could choose to break o� from S and form T . However

for this to be possible it would require that all players in P agree to do so.

Hence, if we want the coalition with the highest worth to be maintained, we

need only one player to oppose the deviation. To sum up, whereas sub-game

order preservation asks all players in P to be better o� when joining a group

with which they have a higher synergy, weak sub-game order preservation only

requires that some players in P are better o�.

Below we show that Lemma 1 does hold with this weaker version of sub-

game order preservation.

Lemma2 For every game (N, v) ∈ Γ if the sharing rule ψ(N, v) satis�es

e�ciency and weak sub-game order preservation then it satis�es equal

treatment of equals.

Proof . In order to prove that e�ciency and weak sub-game order preservation

implies equal treatment of equals we will show that if a sharing rule ψ violates

equal treatment of equals then it does not satisfy e�ciency and weak sub-game

order preservation together.

Let us consider a sharing rule ψ and let us assume that it violates equal

treatment of equals but satis�es both e�ciency and weak sub-game order preser-

vation. We will show this leads to a contradiction. If ψ does not satisfy equal

treatment of equals, then there exists a game (N, v) such that, for some equal

players i, j in (N, v), ψi(N, v) ̸= ψj(N, v). Let us consider such a game. We

will note g(N) the set of players in N which are equals to i and j (including

themselves). By e�ciency, if ψ was to satisfy equal treatment of equals we would
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have

ψi(N, v) =

v(N)−
∑

j∈N\g(N)

ψj(N, v)

|g(N)|
, ∀i ∈ g(N).

Since we assume equal treatment of equals is not satis�ed this implies that there

exists some i ∈ g(N) such that

ψi(N, v) =

v(N)−
∑

j∈N\g(N)

ψj(N, v)

|g(N)|
+ ϵNi .

We denote the set of these players by g+(N). Similarly there must exists some

i ∈ g(N) such that

ψi(N, v) =

v(N)−
∑

j∈N\g(N)

ψj(N, v)

|g(N)|
− ϵNi .

We denote the set of these players by g−(N). By e�ciency we must have∑
i∈g+(N)∪g−(N)

ϵNi = 0. In order for ψ to violates equal treatment of equals we

must also have that g+(N) ̸= ∅ and g−(N) ̸= ∅ as well as ϵNi > 0 for all

i ∈ g+(N) ∪ g−(N). Note that these two sets g+(N) and g−(N) must be arbi-

trary (i.e. not rely on informations provided by v).

Let us now consider a larger game (N+, w) with N ⊊ N+ and such that

there exists a T ⊊ N+ with N ∩ T = {i}, i ∈ g−(N). Therefore there exists a

bijection π : N → T with π(i) = i. We build w such that

� w(P ) = v(P ) for all P ⊆ N ,

� w(∪j∈Pπ(j)) = v(P ), for all P ⊆ N .

We can deduce the following from these conditions. First we know that w(T ) =

w(N). Second, we know that there are as many players equal to i in T than

there is in N , i.e. |g(N)| = |g(T )|. Finally, since ψ does not satisfy equal

treatment of equals, it also violates anonymity. In turn this means it violates
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the following requirement: for each game (N, v) and each bijection π : N → T ,

ψi(N, v) = ψπ(i)(T, πv)
6. Hence we can write that

ψπ(j)(T,w|T ) = ψj(N,w|N ) + λj , ∀j ∈ N,

with λj ∈ R,
∑

j∈N λj = 0. We necessarily have that there exists some j ∈ N

for which λj ̸= 0. In addition, note that the determination of the λj is by

de�nition arbitrary, since ψ violates anonymity.

Since N ∩ T = {i} and w(N) = w(T ), weak sub-game order preservation

requires that

ψi(N,w|N ) = ψi(T,w|T ).

Now, since g+(T ) is also arbitrary, even though i ∈ g−(N), it is possible that

i ∈ g−(T ) or i ∈ g+(T ). We focus on the latter. The previous equation becomes

w(N)−
∑

j∈N\g(N)

ψj(N,w|N )

|g(N)|
− ϵNi =

w(T )−
∑

j∈T\g(T )

ψj(T,w|T )

|g(T )|
+ ϵTi .

Since w(N) = w(T ) and |g(N)| = |g(T )| we obtain

−

∑
j∈N\g(N)

ψj(N,w|N )

|g(N)|
− ϵNi = −

∑
j∈T\g(T )

ψj(T,w|T )

|g(N)|
+ ϵTi .

Rearranging,∑
j∈T\g(T )

ψj(T,w|T )−
∑

j∈N\g(N)

ψj(N,w|N ) = (ϵTi + ϵNi )|g(N)|.

Since (ϵTi + ϵNi )|g(N)| > 0 we obtain that∑
j∈T\g(T )

ψj(T,w|T ) >
∑

j∈N\g(N)

ψj(N,w|N ).

6Observe that if π is a bijection of N on itself this requirement coincides anonymity. It
follows that if anonymity is not satis�ed, this requirement can't be either.
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From e�ciency we have

w(T )−
∑

j∈g(T )

ψj(T,w|T ) > w(N)−
∑

j∈g(N)

ψj(N,w|N )

⇔−
∑

j∈g(T )\{i}

ψj(T,w|T )− ψi(T,w|T ) > −
∑

j∈g(N)\{i}

ψj(N,w|N )− ψi(N,w|N ),

⇔ψi(N,w|N )− ψi(T,w|T ) >
∑

j∈g(T )\{i}

ψj(T,w|T )−
∑

j∈g(N)\{i}

ψj(N,w|N )

Since ψπ(j)(T,w|T ) = ψj(N,w|N ) + λj , ∀j ∈ N, and j ∈ g(N) if and only if

π(j) ∈ g(T ) we have

ψi(N,w|N )− ψi(T,w|T ) >
∑

j∈g(N)\{i}

λj .

Since U is an in�nite set, we can choose the k ∈ N+ \ N and π such that, for

all
∑

j∈g(N)\{i} λj ≥ 0, and obtain

ψi(N,w|N )− ψi(T,w|T ) > 0

which contradicts weak sub-game order preservation.

□

Theorem 2

For every game (N, v) ∈ Γ, the sharing rule ψ(N, v) satis�es e�ciency and

weak sub-game order preservation if and only if ψ = EG.

Proof . In the proof of Theorem 1 we used a construction where S ∩ T is a

singleton. Therefore the proof for this theorem is identical except we use the

Lemma 2 where Lemma 1 was previously used.

□

Note that the two axioms are independent : Sh satis�es e�ciency but not

weak sub-game order preservation as shown in Example 2 and f1 satis�es weak

sub-game order preservation but not e�ciency.
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3. Games with types

Now, we introduce a new model of cooperative games in which players are of a

given type.

Consider an entity (a �rm for instance) is setting up a project that asks for

speci�c types of players. It potentially has several players (candidates, employ-

ees, other �rms) of each type. Each player is of a given type but several players

are of the same type. Once the team is put together, the player who are part

of the team will work on the project which implies working all together as well

as in subgroups and alone.

Formally, we consider k types with 1 < k < n. Each player i ∈ N is

of only one type and we denote by Kα ⊊ N the set of players of type α ∈

{1, . . . , k}. We write K = {K1,K2, ...,Kk} to denote the set of those sets. We

write Ki the set of players of the same type as player i. Letting P(N) denote

the partitions of the player set N , the set K ∈ P(N) can be understood as

a coalition structure as introduced by Aumann and Dreze (1974). We have⋃
1≤α≤k

Kα = N and Kα1

⋂
Kα2

= ∅ for any α1, α2 ∈ {1, . . . , k} and α1 ̸= α2.

A full coalition is a coalition where each type is present. We denote by

F = Π
1≤α≤k

Kα the set of full coalitions, de�ned by the cartesian products of the

sets that partition players into types. Therefore, the size of each full coalition

is k. We also denote F i = {F ′ ∈ F | i ∈ F ′} the set of full coalitions to which

player i belongs. We assume that sub-coalitions of a full coalitions are still fea-

sible7 but that coalitions with excess players are not. Hence the set of feasible

coalitions FN,K is the union of the subsets of full coalitions. Note that if K

partitions players into singletons, (N, v,K) coincides with (N, v).

We consider that a value is produced from the cooperation of players. This

7A feasible coalition is a coalition that can be formed by players. The solutions we propose
only consider feasible coalitions.
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production is modelled by a characteristic function v de�ned over 2N . Hence,

we de�ne a game with types as a triplet (N, v,K) with N ⊆ U , (N, v) ∈ Γ and

K ∈ P(N). We denote the set of those games by Γtype.

We provide here an example of a game with types.

Example 3 (Team project)

Consider the following situation: a business trusts one of its managers to take

on a new project that needs two other specialists. She is given freedom to choose

other employees of the necessary types. The other employees are free to reject

the proposition. Once the project is done, the team will get a bonus proportional

to the estimated value of the work produced. This raises the problem of �nding a

sharing rule for this bonus that gives the manager the incentives to put together

the team that produce the most valuable work, and for the potential teammates

to accept. Formally we have N = {1, 2, 3, 4, 5} and K = {{1}, {2, 3}, {4, 5}}.

The full coalitions are F = {{1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}}. The set of

feasible coalition is given by

FN,K = {{1}, {2}, {3}, {4}, {5}, {1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 4}, {2, 5}, {3, 4},

{3, 5}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}}.

Imagine that 2 has poor synergy with both 4 and 5 while 3 has a really good

synergy with 5 (only ampli�ed under 1 management) but can't stand working

with 4. However, as a manager, 1 is able to be at its best when bridging the

divide between 4 and 3. The following worths for the feasible coalitions express

this situation. The worths express the value of intermediary works as well as

the end product. We have v({i}) = 0 for all i ∈ N and 8

S 12 13 14 15 24 25 34 35 124 125 134 135

v(S) 0.5 0 1 1 0.5 0.75 0 2 2 2 3 4

8Note that v is de�ned for any S ⊆ N . We only focus here on the feasible coalitions so as
not to take up too much space.
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■

This example illustrate the three issues that naturally arise in this model:

the formation of one of the full coalitions, the allocation of its worth, and the

in�uence of this allocation on the stability of the formation process of the se-

lected full coalition. To address these issues, we de�ne a solution on Γtype

as a pair ϕ = (µ, ψ). The function µ is a mechanism that selects for each

(N, v,K) ∈ Γtype one of its full coalitions µ(N, v,K). The function ψ is a

sharing rule on Γ. For a given game with types (N, v,K) ∈ Γtype a solu-

tion is ϕ(N, v,K) =
(
µ(N, v,K), ψ

(
µ(N, v,K), v|µ(N,v,K)

))
. Such a solution is

therefore two-dimensional. We shall then put requirements on both dimensions

separately as well as a requirement on their interaction.

One desirable and reasonable requirement for a mechanism µ would be that

it selects an optimal full coalition. A full coalition F ′ ∈ F is optimal if and

only if v(F ′) = max
F ′′∈F

v(F ′′). We let Fopt = {F ′ ∈ F | v(F ′) = max
F ′′∈F

v(F ′′)} be

the set of optimal full coalitions. Hence, we ask that the mechanism µ selects a

coalition that is optimal.9 This gives us a �rst axiom:

Optimality. For every games with types (N, v,K) ∈ Γtype it holds that µ(N, v,K) ∈

Fopt.

Next we put a requirement on the sharing rule ψ on Γ. We require that ψ

satis�es the standard axiom of e�ciency (as de�ned in section 2). Observe that

even though we consider a model of games with types, ψ is a sharing rule for

TU-games. Hence it is su�cient to require that ψ is e�cient in order to ensure

that the worth of the full coalition is completely allocated amongst its players.

Finally, we introduce an axiom that concerns the interaction between µ and

ψ. Given a solution ϕ = (µ, ψ), can we make sure that the coalition µ(N, v,K) is

stable ? That is to say, given ψ, can we make sure that no players in µ(N, v,K)

9Note that there can be multiple optimal full coalitions. We only ask that µ selects one of
these. Hence it is possible that µ is not anonymous with respect to full coalitions.
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would be better o� joining other players ? We consider the payo� a player can

obtain with another coalition as a player's outside options. Hence the following

question : does the solution ϕ = (µ, ψ) is such that no player that belongs to

µ(N, v,K) has better outside options ?10 Formally:

No outside options. For every game with types (N, v,K) ∈ Γtype it holds

that ϕ = (µ, ψ) is such that ψi(µ(N, v,K), v|µ(N,v,K)) ≥ ψi(F
′, v|F ′), ∀F ′ ∈ F i,

∀i ∈ µ(N, v,K).

Remark. From Example 1 and 3 it is easy to see that if ψ is chosen to be the

Shapley value then ϕ does not satisfy no outside options.

The axiom of no outside options is de�ned for a solution ϕ de�ned on Γtype

which itself is entirely composed of a solution ψ de�ned on Γ and of a coalition

selector µ. Hence the requirement that is put on ϕ by the axiom of no outside

options necessarily interacts with the requirement put on µ by optimality and

the requirement put on ψ by e�ciency. The next two results explore how these

three axioms interact. In particular, the next proposition explores how, when

requiring optimality, the no outside options axiom can be �translated" to a

speci�c requirement on ψ.

Proposition 1

Let ϕ = (µ, ψ) be solution on Γtype. Requiring that ϕ satis�es no outside

options for every µ that satis�es optimality is equivalent to requiring that ψ

satis�es sub-game order preservation.

Proof . We �rst prove that if µ satis�es optimality and ψ satis�es sub-game

order preservation then ϕ satis�es no outside options.

10The concept of outside options considered here is in line with the one used by Casajus
(2009) in the context of communication graph games.
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Let us consider a solution ϕ = (µ, ψ). If µ satis�es optimality then µ(N, v,K) ∈

Fopt which implies that v(µ(N, v,K)) ≥ v(F ′) for all F ′ ∈ F . By de�nition we

have that |µ(N, v,K)| = |F ′|, for all F ′ ∈ F . Using sub-game order preservation

we know then that ψi(µ(N, v,K), v|µ(N,v,K)) ≥ ψi(F
′, v|F ′) for all F ′ such that

µ(N, v,K) ∩ F ′ ̸= ∅, ∀i ∈ µ(N, v,K) ∩ F ′. By de�nition, if i ∈ µ(N, v,K) ∩ F ′

then F ′ ∈ F i. Hence ψi(µ(N, v,K), v|µ(N,v,K)) ≥ ψi(F
′, v|F ′) for all F ′ ∈ F i,

for all i ∈ µ(N, v,K). This coincides with the requirement for no outside op-

tions.

We now prove that if ϕ satis�es no outside options for any µ that satis�es

optimality then ψ satis�es sub-game order preservation.

Let (N, v) be a TU-game. Our goal is to prove that, for any S, T ⊆ N

with s = t, S ∩ T ̸= ∅ and v(S) ≥ v(T ), it holds that ψi(S, v|S) ≥ ψi(T, v|T ),

∀i ∈ S ∩ T . To this end we show that there exists a game with types (N,w,K)

such that µ(N,w,K) = S and T ∈ F . Let (N,w,K) be a game with types. We

build w such that

� w(R) = v(R), ∀R ⊆ S and ∀R ⊆ T ;

� w(R) < v(S), ∀R ⊆ N , r = s, R ̸= S, R ̸= T .

Additionally we consider a partition K of N such that k = s. Assume that

every i ∈ S is in a di�erent element of K and that every j ∈ T is also in a

di�erent element of K. This ensures that S and T are full coalitions. The no

outside options axiom imposes the following conditions:ψi(µ(N,w,K), w|µ(N,w,K)) ≥ ψi(F
′, w|F ′),

∀F ′ ∈ F, F ′ ∩ µ(N,w,K) ̸= ∅,

∀i ∈ F ′ ∩ µ(N,w,K).

We �rst assume that v(S) > v(T ). Using optimality on µ we obtain

⇔

ψi(S,w|S) ≥ ψi(F
′, w|F ′),

∀F ′ ∈ F, F ′ ∩ S ̸= ∅,

∀i ∈ F ′ ∩ S.

⇒
{
ψi(S, v|S) ≥ ψi(T, v|T ), ∀i ∈ T ∩ S.
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The last implication comes from the facts that T ∈ F , w|S = v|S and w|T = v|T .

This last condition coincides with the one for sub-game order preservation.

We now assume that v(S) = v(T ). We want the solution ϕ to satis�es no

outside options for any possible µ that is optimal. If v(S) = v(T ) then, in the

game (N,w,K) we have Fopt = {S, T}. Since an optimal coalition selector µ

can choose either of these two coalitions, the conditions under which ϕ satis�es

no outside option, for any µ that is optimal become :

⇔


ψi(S,w|S) ≥ ψi(F

′, w|F ′),
∀F ′ ∈ F, F ′ ∩ S ̸= ∅,

∀i ∈ F ′ ∩ S;

ψi(S,w|S) ≤ ψi(F
′, w|F ′),

∀F ′ ∈ F, F ′ ∩ S ̸= ∅,

∀i ∈ F ′ ∩ S.

⇒
{
ψi(S, v|S) = ψi(T, v|T ), ∀i ∈ T ∩ S.

This condition coincides with the condition of sub-game order preservation.

□

Theorem 3

We consider the solution ϕ = (µ, ψ) on Γtype with ψ satisfying e�ciency. The

solution ϕ satis�es no outside options for every µ that satis�es optimality

if and only if ψ = EG.

Proof . We �rst prove the existence part. We consider a solution ϕ = (µ,EG)

with µ satisfying optimality. We know that EG satis�es e�ciency and sub-game

order preservation. From Proposition 1 we conclude that ϕ = (µ,EG) satis�es

no outside options.

Now the uniqueness part. We consider a solution ϕ = (µ, ψ) with ψ satisfying

e�ciency. Since ϕ satis�es no outside options for any µ satisfying optimality,

from Proposition 1 we know that ψ satis�es sub-game order preservation. We

then use Theorem 1 to conclude that ψ = EG.

□
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As we did in section 2 for sub-game order preservation, we can design a

weaker variant of the no outside options axiom. This variant relies on the same

conception of deviation and coalitional stability that we presented in section 2.

No outside options (weak). For every game with types (N, v,K) ∈ Γtype,
it holds that the solution ϕ(N, v,K) = (µ, ψ) is such that ∃i ∈ µ(N, v,K) ∩ F ′

such that
ψi(µ(N, v,K), v|µ(N,v,K)) ≥ ψi(F

′, v|F ′), ∀F ′ ∈ F.

An alternative coalition F ′ can form only if no member of µ(N, v,K) ∩ F ′

object to its formation. We obtain a parallel result to Proposition 1.

Proposition 2

Let ϕ = (µ, ψ) be solution on Γtype. Requiring that ϕ satis�es no outside

options (weak) for every µ that satis�es optimality is equivalent to requiring

that ψ satis�es weak sub-game order preservation.

Proof . We �rst prove that if µ satis�es optimality and ψ satis�es weak sub-

game order preservation then ϕ satis�es no outside options (weak).

Let ϕ = (µ, ψ) be a solution for games with types. Let (N, v,K) ∈ Γtype be

such a game. Since µ satis�es optimality then v(µ(N, v,K)) ≥ v(F ′) for all

F ′ ∈ F . In particular we have v(µ(N, v,K)) ≥ v(F ′) for all F ′ ∈ F such that

F ′ ∩ µ(N, v,K) ̸= ∅. Since ψ satis�es weak sub-game order preservation we

obtain that, ∀F ′ ∈ F with µ(N, v,K) ∩ F ′ ̸= ∅, ∃i ∈ µ(N, v,K) ∩ F ′ such that

ψi(µ(N, v,K), v|µ(N,v,K)) ≥ ψi(Fp, v|Fp
).

Which coincides with the no outside options (weak) axiom.

We now prove that if ϕ satis�es no outside options (weak) for any µ that satis�es

optimality then ψ satis�es weak sub-game order preservation. Let (N, v) be a

TU-game. It is su�cient to show that for any S, T ⊆ N with s = t, S∩T ̸= ∅ and

v(S) ≥ v(T ) there exists a game with types (N,w,K) such that µ(N,w,K) = S
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and T ∈ F .

Let (N,w,K) be a game with types. We build w such that

� w(R) = v(R), ∀R ⊆ S and ∀R ⊆ T ;

� w(R) < v(S), ∀R ⊆ N , r = s, R ̸= S, R ̸= T .

Additionally we consider a partition K of N such that k = s. Assume that

every i ∈ S is in a di�erent element of K and that every j ∈ T is also in a

di�erent element of K. This ensures that S and T are full coalitions. The no

outside options (weak) axiom imposes the following condition: ∀F ′ ∈ F, F ′ ∩ µ(N,w,K) ̸= ∅, ∃i ∈ F ′ ∩ µ(N,w,K) such that :

ψi(µ(N,w,K), w|µ(N,w,K)) ≥ ψi(F
′, w|F ′).

We �rst assume that v(S) > v(T ). Using optimality on µ we obtain

⇔

 ∀F ′ ∈ F, F ′ ∩ S ̸= ∅, ∃i ∈ F ′ ∩ S such that :

ψi(S,w|S) ≥ ψi(F
′, w|F ′),

⇒
{

∃i ∈ S ∩ T such that ψi(S, v|S) ≥ ψi(T, v|T ).

The last implication comes from the facts that T ∈ F , w|S = v|S and w|T = v|T .

This last condition coincides with the one for weak sub-game order preservation.

We now assume that v(S) = v(T ). We want the solution ϕ to satis�es weak

no outside options for any possible µ that is optimal. If v(S) = v(T ) then, in

the game (N,w,K) we have Fopt = {S, T}. Since an optimal coalition selector

µ can choose either of these two coalitions, the condition under which ϕ satis�es

no outside option (weak), for any µ that is optimal becomes :

⇔



∀F ′ ∈ F, F ′ ∩ S ̸= ∅, ∃i ∈ F ′ ∩ S such that :

ψi(S,w|S) ≥ ψi(F
′, w|F ′),

∀F ′ ∈ F, F ′ ∩ S ̸= ∅, ∃i ∈ F ′ ∩ S such that :

ψi(S,w|S) ≤ ψi(F
′, w|F ′).

⇒

 ∃i ∈ S ∩ T such that ψi(S,w|S) ≥ ψi(T,w|T ),

∃j ∈ S ∩ T such that ψj(S,w|S) ≤ ψj(T,w|T ).
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This condition coincides with the condition of weak sub-game order preservation

when v(S) = v(T ).

□

Theorem 4

Consider the solution ϕ = (µ, ψ) on Γtype with ψ satisfying e�ciency. The

solution ϕ satis�es no outside options (weak) for every µ that satis�es op-

timality if and only if ψ = EG.

Proof . We �rst prove the existence part. We consider a solution ϕ = (µ,EG)

with µ satisfying optimality. We know that EG satis�es e�ciency and weak

sub-game order preservation. From Proposition 2 we conclude that ϕ = (µ,EG)

satis�es no outside options (weak).

Now the uniqueness part. We consider a solution ϕ = (µ, ψ) with ψ satisfying

e�ciency. Since ϕ satis�es no outside options (weak) for every µ satisfying

optimality, from Proposition 2 we know that ψ satis�es weak sub-game order

preservation. We then use Theorem 2 to conclude that ψ = EG.

□

4. Concluding remarks

In this paper we developed a model of cooperative environments in which dif-

ferent types of players are needed. This model is built on the canonical model

of cooperative TU-games. We showed that, assuming the universe of player is

su�ciently large, an egalitarian approach when sharing the outcome of coop-

eration is the only e�cient approach that always provides an incentive for the

best coalition to form. We showed that this result holds when a weaker variant

is considered.

In our approach, the full domain of cooperative games is considered. Ex-

ample 1 and 2 show that the solution ϕ = (µ, Sh) does not satisfy no outside

options even for convex games. On speci�c classes of games, it would be inter-
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esting to determine whether other sharing rules than the egalitarian value are

compatible with both the axioms of sub-game order preservation and e�ciency.

In addition, it is well known that the payo� vector given by the egalitarian

value often lies outside the core, even for convex games. Consequently the

selected full coalition can o�er no outside options but not be stable in the sense

of the core. As such our result could also be framed as an impossibility result:

there are no solution ϕ = (µ, ψ) with ϕ satisfying no outside options for every

µ satisfying optimality such that ψ(µ(N, v,K), v|µ(N,v,K)) lies in the core of

(µ(N, v,K), v|µ(N,v,K)). However, the fact that ψ might not be in the core can

possibly be irrelevant if we consider situations where the cooperation is based

on free association but, once established, is subject to binding agreements.

Furthermore, the result of Proposition 1 can help understand the perva-

siveness of �xed remunerations in organizations, which is still a challenge for

incentives theory to this day (Ménard, 2012). We can consider a �rm as a game

with types. The types are the position and the players are the employees and

the characteristic function is the result of the production. A �rm would want

a solution ϕ that satis�es no outside option for every optimal µ. Proposition 1

show that it is equivalent to having a sharing rule of the worth of production

that satis�es sub-game order preservation. Consider a �rm where employees are

on a �xed wage determined by their position. For instance, accountants earn x,

designers earn y and so on. This corresponds in our model to a solution where

the payo� ψi of a player i is determined by its type, independently of the total

worth produced. Such a solution would satisfy sub-game order preservation. In-

deed, since every payo�s is a �xed amount determined exogenously there are no

di�erences depending on the sub-coalition considered. A player payo� is always

the same regardless of the worth produced. However it is not e�cient. In a cap-

italist �rm, the di�erence between the sum of the wages and the value produced

is the residual surplus that goes to the owner of the �rm's capital, as losses or

pro�t. The capitalist �rm, by virtue of not being e�cient, can therefore satisfy

sub-game order preservation while having di�erentiated wages. We argue that

one of the bene�t of �xed remuneration could be sub-game order preservation.
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