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Cooperative games with types, outside options and the
egalitarian value1

Florian Navarro2

Laboratoire GRANEM, Angers, France

Abstract

This article introduces a new axiom of sub-games monotonicity for TU-games

as well as a model of cooperative games with types. The axiom, alongside

efficiency, characterizes the egalitarian value. The model addresses situations

where players of different types are needed. Each player has a specific type and

coalitions are feasible only if it contains at most one player of each type. We

use the new characterization of the egalitarian value for TU-games to obtain

the following result in our class of problems: the egalitarian value is the only

sharing rule that ensures that each player of the most productive group is better

off joining this most productive group. We characterize the egalitarian value

without fairness requirement and show that, for this new class of problems,

egalitarianism can provide some form of incentives towards optimal cooperation.

Keywords: Cooperative game theory, shapley value, equal division, egalitarian

value, type structure, incentives

1. Introduction

In the present article we develop a model of cooperative games in which we

need players of different types. Several players are of the same type, but a

player can only be of a single type. The type structure restricts the feasibility

1I would like to thank Sylvain Béal who was always available to provide insightful feedbacks
and comments at various stages of this paper. I also thank Stéphane Gonzalez for seeing some
merits in the original draft, which gave me the confidence to pursue this idea.

2Email address: floriannavarro.unipro@gmail.com
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of coalitions: a coalition is feasible if it contains at most one player of each type.

This means we have situations in which the grand coalition cannot form. Such

a situation can arise when members of an organization have to form a subgroup

to tackle a specific project (see example 3). Several groups having to choose a

representative to participate in a committee can also be a situation covered by

our model. The problem raised by our model is thus different than the usual

problem of cooperative games (sharing the worth of the grand coalition).

A solution ϕ to this model consists of two mechanisms: a function µ that

selects a group of players specifying, for each type, a single player of this type,

and a sharing rule ψ that shares the worth produced by the group amongst its

members. We are interested in a solution that fosters the emergence of the most

productive group with all types. To this end, we propose an axiom of optimality

(the solution selects the best group) on µ and an axiom of no outside options (no

member of the selected group can be better off in another group) that apply to

the solution ϕ. Together, these axioms will impose requirements on the solution

ψ that is applied to the allocation problem for the chosen group. We introduce

an axiom of sub-games monotonicity for the sharing rule ψ. This axiom asks

that no member of a population can be worse off by choosing to associate with

a group of a given size with which it has the best synergy. We show that

requiring the axiom of no outside option on ϕ for all µ that satisfy optimality

is equivalent to requiring sub-games monotonicity on ψ. As an intermediary

result, we offer a characterization of the egalitarian value (which shares the total

worth equally between all players) that relies on the sub-games monotonicity

axiom alongside the standard axiom of efficiency. As such we characterize the

egalitarian principle without any fairness criteria.

Formally, our model is related to the Aumann-Drèze model (Aumann and

Dreze, 1974) as it also involves coalition structures. In a coalition structure,

players are part of pre-existing groups that can not communicate with each

others. This structure has an effect on the worth of coalitions and alter the

characteristic function of the underlying transferable utility game (TU-game).

Owen (1977) also relies on coalition structures (called a-priori unions) although
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they directly affect the payoff of the players. In the present article we take

yet another direction: this structure restricts the formation of coalitions and

therefore their feasibility.

More generally, this paper joins a line of works which enrich the standard

model of cooperative game theory by considering new structures of cooperation.

A large part of this research focuses on structures that restrict cooperation by

modelling either asymmetries in communication, or hierarchical constraints. In

two papers, Myerson modelled communication by respectively a graph (1977)

and an hyper-graph (1980). Both represent a restriction of communication

between players. Various solution concepts have been proposed for such games.

We can cite for instance the Position-value (Meessen, 1988), the Average-Tree

Value (Herings et al., 2008), the Mean value (Hamiache, 2004), the F-value

(Hamiache, 1999), the Hamiache-Navarro value (Hamiache and Navarro, 2019)

and numerous variations of the Myerson value3. Additionally, different forms of

hierarchical constraints have been explored by Gilles et al. (1992), Faigle and

Kern (1992) and more recently by Béal et al. (2021). The distinction between the

framework of Aumann and Dreze (1974), Owen (1977) and ours can similarly be

made for, respectively, the framework of Gilles et al. (1992), Béal et al. (2021)

and Faigle and Kern (1992). Béal et al. (2021) offer a deeper discussion on

how the same mathematical model (in their case, of hierarchical constraint) can

affect the underlying game in different ways. In this sense, our work is in line

with this trend of research.

Another approach to types, or more precisely differently skilled players, has

been proposed by Bachrach et al. (2013) with coalitional skill games (CSG).

However, in a CSG framework, certain players can perform certain tasks and

the worth of a coalition depends on the nature or number of tasks that can be

performed by the coalition. The model is thus similar to the standard model of

cooperative game theory but restricts itself to a certain type of characteristic

3For instances two efficient extensions of the Myerson value were proposed by Hamiache
(2012) and Béal et al. (2015). Examples of variations on the theme can be found by Gómez
et al. (2003) and González-Arangüena et al. (2003).
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functions defined by the players’ “skills”. Therefore, to the best of our knowledge

few models have been proposed to enrich the individual characteristics of the

players.

Our model tackles issues not addressed by existing research and contributes

to the economic theory literature on several levels. For the standard model

of TU-games, we provide a new characterization of the egalitarian value. In

addition, we use a formal framework of coalition structure to develop a novel

class of unexplored problems as of yet. Within this class, we investigate the

effect of sharing rules on the spontaneous emergence of coalitions, making it

somewhat endogenous to the model. We give a solution for these problems

and show that, for this class of problems, egalitarianism can provide incentives

whereas approaches based on the evaluation of marginal contributions can be

detrimental for cooperation.

In section 2 of this paper we introduce the canonical model of cooperative

games with transferable utility and present the axiom of sub-games monotonic-

ity with two variations (a stronger one and a weaker one). We build a new

characterization of the egalitarian value and study how this characterization

holds when weakening or strengthening the sub-games monotonicity axiom. In

section 3 we present our new model of games with types and we propose axioms

for a desirable solution to this new type of problems as well as present our main

results. We conclude in section 4.

2. TU-games, egalitarian value and sub-games mo-
notonicity

Let U be a non-empty and infinite set of players. A coalition is a non-empty

and finite subset of U. A coalitional game with transferable utility (also called a

cooperative TU-game) is a pair (N, v) where N is a coalition and v is a function

satisfying v : 2N → R and v(∅) = 0. We denote by Γ the set of these games.

Given a coalition S ⊆ N we write s = |S| its cardinality. For any S ⊊ N we

will write (S, v|S) the sub-game restricted to coalition S with v|S(T ) = v(T ),
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∀T ⊆ S. A player i ∈ N is a null player in the game (N, v) if v(S ∪ {i}) = v(S)

for all S ⊆ N \ {i}. A player i ∈ N is a nullifying player in the game (N, v) if

v(S) = 0, for all S ⊆ N such that i ∈ S. Two players i, j ∈ N are equals in the

game (N, v) if v(S ∪ {i}) = v(S ∪ {j}) for all S ⊆ N \ {i, j}.

A TU-game v is said to be a convex game if it satisfies v(S ∪ {i})− v(S) ≤

v(T ∪ {i}) − v(T ) for all i ∈ N and all S ⊆ T ⊆ N \ {i}. Convex game have

been shown by Shapley (1971) to have a non-empty core4 .

A sharing rule on Γ is a function ψ which associates with each game (N, v) ∈

Γ a vector ψ(N, v) ∈ RN . The Shapley value, first presented by Shapley (1953),

rewards players based on their marginal contributions, weighted by all the pos-

sible orders of entry of players in coalitions. We write it Sh and define it as

Shi(N, v) =
∑
S⊆N
i∈S

(s− 1)!(n− s)!

n!
[v(S)− v(S \ {i})], ∀i ∈ N.

The Egalitarian value divides equally the worth of coalition N between all

players. We write this sharing rule EG and define it as

EGi(N, v) =
v(N)

n
, ∀i ∈ N.

We introduce the following classical axioms for sharing rules over TU-games.

Efficiency. For each game (N, v) ∈ Γ it holds that
∑

i∈N ψi(N, v) = v(N).

Linearity. For each pair of games (N, v), (N,w) ∈ Γ and each real number

α ∈ R, it holds that ψ(N, v + αw) = ψ(N, v) + αψ(N,w).

Null player. For each game (N, v) ∈ Γ and each null player i ∈ N , it holds

that ψi(N, v) = 0.

Nullifying player. For each game (N, v) ∈ Γ and each nullifying player i ∈ N ,

it holds that ψi(N, v) = 0.

Equal treatment of equals. For each game (N, v) ∈ Γ and each couple of

players i, j ∈ N who are equals in (N, v), it holds that ψi(N, v) = ψj(N, v).

4Quoting this clear and concise definition from Shapley (1971), “the core of [a TU-game]
is the set of feasible outcomes that cannot be improved upon by any coalition of players”.
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As shown by Shapley (1953), the Shapley value is the unique sharing rule

satisfying efficiency, linearity, null player and equal treatment of equals. The

egalitarian value has been shown by van den Brink (2007) to be the unique shar-

ing rule satisfying efficiency, linearity, nullifying player and the equal treatment

of equals.

In 1983, Thomson introduced the axiom of population monotonicity in the

context of fair division. This axiom stated that when facing a given problem

of fair division, no player should be better off by having to share with more

players than less. Chun (1986) and later Chun and Park (2012) expanded on this

idea and proposed a similar axiom for, respectively, fair division problem and

allocation problems in cooperative games. This weaker variant states that when

a population is joined by newcomers, all members of the original population are

either all better off or all worse off.

We introduce a new axiom of sub-games monotonicity that have some

conceptual relation to the axioms of population monotonicity introduced by

Thomson (1983), Chun (1986) and Chun and Park (2012). Let us consider a

given population P offered with the choice of cooperating with two different

groups of the same size. Our axiom states that no member of population P

can be worse off if the population chooses the group with whom it has the best

synergy. In the context of cooperative games, given two coalition of players

whose intersection is non-empty, we ask that no member of the intersection is

rewarded less when considering the coalition with the better worth. Formally5,

Sub-games monotonicity. For each game (N, v) with n ≥ 3 and each couple

of coalitions S, T ⊆ N with s = t, S ∩ T ̸= ∅ if v(S) ≥ v(T ) it holds that

ψi(S, v|S ) ≥ ψi(T, v|T ), ∀i ∈ S ∩ T .

We also give an alternative interpretation for this axiom. If a subgroup P of S

decides to replace the other members of S by an identical number of outsiders,

5P corresponds to S ∩ T in the definition of sub-game monotonicity
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then the members of P should not be worse off if the newly formed coalition

T is at least as productive as the original coalition S. Note that this axiom

puts no requirement on any payoffs in the game (N, v). Moreover, for the two

sub-games considered, it says nothing about the payoffs of players not belonging

to the intersection of S and T . As a result, this axiom is not as strong as it can

first appear.

The axiom of sub-games monotonicity is also quite different from the axiom

of grand coalition monotonicity used by Casajus and Huettner (2014) to char-

acterize the egalitarian value. Grand coalition monotonicity compares the same

population involved in two different games, whereas we compare two different

populations. Nonetheless some proximity can be seen in the sense that our ax-

iom also provides a monotonic approach to the egalitarian principle.

Before diving into the results we provide two motivating examples.

Example 1. We consider the game (N, v) with N = {1, 2, 3, 4} and v such that

v(S) = 0 for all singletons and

S 12 13 14 23 24 34 123 124 134 234 1234

v(S) 1 2 1 1 1.5 1 4 3 4 3 6

Observe that (N, v) is convex. We focus on the two coalitions S = {{1, 2, 3}

and T = {1, 2, 4}}. We might want to provide incentives for players 1 and 2

to join with player 3 instead of player 4. However, the Shapley value of the

corresponding sub-games are

Shi v|{1,2,3} v|{1,2,4}

1 1.5 10
12

2 1 13
12

3 1.5 -

4 - 13
12∑

4 3

Player 1 would prefer to join with 3 and player 2 would prefer to join with 4.

The Shapley value is therefore not sub-games monotonic, even for convex game.
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■

This second example show that the Shapley value can even be “anti-monotonic”

in the sub-games.

Example 2. We consider the game (N, v) with N = {1, 2, 3, 4}, v such that

S 1 2 3 4 12 13 14 23 24 34 123 124 134 234 1234

v(S) 0.5 0 0.5 0 1 1.2 0.5 1 0 0.5 2 1 1.2 1 2

Observe that this game is also convex. We focus on the four coalitions of size

2. The Shapley value of the corresponding sub-games are

Shi v|{1,2} v|{1,3} v|{2,4} v|{3,4}

1 0.75 0.6 - -

2 0.25 - 0 -

3 - 0.6 - 0.5

4 - - 0 0∑
1 1.2 0 0.5

In this example, player 1 and player 2 both have incentives to form {1, 2} which

has a worth lower than {1, 3}.

■

Lemma1 For every game (N, v) ∈ Γ if the sharing rule ψ(N, v) satisfies

efficiency and sub-games monotonicity then it satisfies equal treatment

of equals.

Proof . We consider a game (N, v) such that two players i, j ∈ N are equal in

v. Let P ⊂ U \N with p = n − 1. We build a larger game (N+, w) such that

N+ = N ∪P . We denote Ni = P ∪{i} and Nj = P ∪{j}. We take w such that

� w(S) = v(S) for all S ⊆ N ,

� w(Ni) = w(Nj) = w(N) = v(N),
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Since U is infinite, such a construction is always possible.6

We consider coalition N and we will prove that ψi(N,w|N ) = ψj(N,w|N ).

Since the worths of coalitions Ni, Nj and N are equal, we use sub-games mono-

tonicity in both directions and obtain the following useful conditions on ψ:

ψp(Ni, w|Ni
) = ψp(Nj , w|Nj

), ∀p ∈ P = Ni ∩Nj ,

ψi(Ni, w|Ni
) = ψi(N,w|N ),

ψj(Nj , w|Nj
) = ψj(N,w|N ).

By efficiency we have the following condition on ψ:∑
k∈Ni

ψk(Ni, w|Ni
) = w(Ni) = w(Nj) =

∑
k∈Nj

ψk(Nj , w|Nj
).

Therefore we obtain that∑
p∈P

ψp(Nj , w|Nj
) =

∑
p∈P

ψp(Ni, w|Ni
)

⇔
∑
p∈P

ψp(Nj , w|Nj
) + ψi(Ni, w|Ni

) =
∑
p∈P

ψp(Ni, w|Ni
) + ψi(Ni, w|Ni

)

⇔
∑
p∈P

ψp(Nj , w|Nj
) + ψi(Ni, w|Ni

) = w(Ni)

⇔
∑
p∈P

ψp(Nj , w|Nj
) + ψi(Ni, w|Ni

) = w(Nj)

⇔
∑
p∈P

ψp(Nj , w|Nj
) + ψi(Ni, w|Ni

) =
∑
p∈P

ψp(Nj , w|Nj
) + ψj(Nj , w|Nj

)

⇔ ψi(Ni, w|Ni
) = ψj(Nj , w|Nj

)

⇔ ψi(N,w|N ) = ψj(N,w|N ).

The second and fourth equivalences come from efficiency. The third comes from

the definition of w. The fifth and sixth come from sub-games monotonicity.

We therefore obtain that ψi(N,w|N ) = ψj(N,w|N ) which, by definition of w, is

equivalent to ψi(N, v) = ψj(N, v).

□

6If we consider a finite universe of players U , this construction is possible for any N ⊆ U
such that n ≤ u+1

2
.
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Theorem 1

For every game (N, v) ∈ Γ, the sharing rule ψ(N, v) satisfies efficiency and

sub-games monotonicity if and only if ψ = EG.7

Proof . We know that EG satisfies efficiency. It is trivial that it satisfies sub-

games monotonicity. Let us prove that, for any game (N, v) ∈ Γ, if a sharing

rule ψ satisfies efficiency and sub-games monotonicity then it is the egalitarian

value.

Let us consider a game (N, v) and a player i ∈ N . We can build a game

(Ni, wi) with Ni such that

N ⊊ Ni,

∃T ⊊ Ni with N ∩ T = {i} and n = t.

We also put the following conditions on wi:

wi(P ) = v(P ), ∀P ⊆ N

wi(T ) = v(N),

wi(P ) = v({i}), ∀P ⊊ T, P ̸= {i}.

Such a construction is always possible since U is infinite.8 By definition we

have (wi)|N (S) = v(S) for all S ⊆ N hence ψi(N, (wi)|N ) = ψi(N, v). Using

efficiency and lemma 1 we have

ψi(T, (wi)|T ) =
(wi)|T (T )

t
=
v(N)

n

since all players j ∈ T are equals in (wi)|T . As we have N,T ⊆ Ni, n = t and

wi(T ) = wi(N) using sub-games monotonicity we obtain that

ψi(T, (wi)|T ) ≥ ψi(N, (wi)|N ) and ψi(N, (wi)|N ) ≥ ψi(T, (wi)|T ),

7If we consider a finite universe of players U , this result holds for any N ⊆ U such that
n ≤ u+1

2
.

8If we consider a finite universe of players U , this construction is possible for any N ⊆ U
such that n ≤ u+1

2
.
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which means that

ψi(N, (wi)|N ) = ψi(T, (wi)|T ) =
v(N)

n
= ψi(N, v).

Since U is an infinite set it is possible to build a game (Ni, wi) that satisfies our

above conditions for every i ∈ N . Hence we have that ψi(N, v) =
v(N)
n , ∀i ∈ N ,

which concludes our proof.

□

We now prove that our axioms are logically independent.

Dropping efficiency

Consider the sharing rule f1(N, v) = αEG(N, v) with α ̸= 1. It obviously sat-

isfies sub-games monotonicity but not efficiency.

Dropping sub-games monotonicity

Consider the Shapley value. It satisfies efficiency. Example 1 shows it does not

satisfy sub-games monotonicity.

We build the axiom of sub-games monotonicity on the following idea of

coalitional stability: a coalition can only form if each player consents to its for-

mation. This conception is in line with the model 1 of stability presented in

Hart and Kurz (1983). Additionally, this conception can also be interpreted as

a requirement for a deviation. Therefore, in this sense, coalitional stability can

be thought as the inability for players to form another coalition than the one

they are currently in. This gives us ground on which we define a weaker version

of sub-games monotonicity :

Weak sub-games monotonicity. For each game (N, v) ∈ Γ with n ≥ 3 and

each couple of coalitions S, T ⊆ N with s = t, S∩T ̸= ∅, if v(S) ≥ v(T ) it holds

that ∃i ∈ S ∩ T such that ψi(S, v|S ) ≥ ψi(T, v|T ).

However, lemma 1 does not hold with this weaker version of sub-games
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monotonicity as we see with the following counter-example.

Counter-example. Let us consider the sharing rule f2 such that

f2i (N, v) =

 v(N) if i = min(N),

0 else,

where min(N) denotes the first player in the lexicographical order of the set N .

This sharing rules obviously satisfies efficiency and violates equal treatment of

equals. We show it satisfies the weak sub-games monotonicity axiom.

Consider a game (N, v) and two subcoalitions S, T ⊆ N with s = t, S∩T ̸= ∅.

Let us denote i = min(S). We first consider the case where v(S) > v(T ). We

have

f2i (S, v|S) = v(S) > f2i (T, v|T ) =

 v(T ) if i = min(T ),

0 else.

Hence there exists a player k ∈ S ∩ T such that f2k (S, v|S) ≥ f2k (T, v|T ).

We now consider the case where v(S) = v(T ). We have

f2i (S, v|S) = v(S) ≥ f2i (T, v|T ) =

 v(T ) = v(S) if i = min(T ),

0 else.

Hence there exists a player k ∈ S∩T such that f2k (S, v|S) ≥ f2k (T, v|T ). Similarly

if a we consider a player j ∈ S ∩ T such that j ̸= i we have

f2j (S, v|S) = 0 ≤ f2j (T, v|T ) =

 v(T ) if j = min(T ),

0 else.

Therefore there also exists a player k ∈ S ∩ T such that f2k (S, v|S) ≤ f2k (T, v|T ).

□

We can infer from this counter-example that lemma 1 and theorem 1 do not

hold when we replace sub-games monotonicity with its weaker variant. However
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we can obtain the following result.

Theorem 2

For every game (N, v) ∈ Γ, the sharing rule ψ(N, v) satisfies efficiency, equal

treatment of equals and weak sub-games monotonicity if and only if

ψ = EG.9

Proof . In the proof of theorem 1 we used a construction where S ∩ T is a

singleton. Therefore the proof for this theorem is identical except we use the

equal treatment of equals axiom where lemma 1 was previously used.

□

Note that the three axioms are independent : Sh satisfies equal treatment

of equals, efficiency but not weak sub-games monotonicity as shown in exam-

ple 2; f1 satisfies equal treatment of equals and weak sub-games monotonicity

but not efficiency ; finally, as shown with the above counter-example, f2 satisfies

efficiency and weak sub-games monotonicity but not equal treatment of equals.10

We now look at a stronger variant of sub-games monotonicity. On top of

the requirement of sub-games monotonicity we consider that each player i from

a coalition S can be swapped for any player p in N \S. We then ask that every

players in S earn a payoff at least as high as any player p can earn in any other

coalition T of the same size, provided that the worth of T is lower than the

worth of S. Formally,

9If we consider a finite universe of players U , this result holds for any N ⊆ U such that
n ≤ u+1

2
.

10It is to be noted that theorem 2 still holds when weak sub-games monotonicity is defined
with strict inequality. The proof is quite similar to the proof of theorem 1. For every game
(N, v) and every player i ∈ N , build two games (Ni, w1) and (Ni, w2) with Ni being defined
as in the proof of theorem 1. Build w1 and w2 as we did wi in the aforementioned proof with
the difference that w1(T ) = v(N) − ϵ and w2(T ) = v(N) + ϵ, ϵ ∈ R. Using efficiency and

equal treatment of equals we obtain an upper bound (
v(N)+ϵ

n
) and a lower bound (

v(N)−ϵ
n

)
for ψi(N, v). Since ϵ can be arbitrarily small we conclude the proof. The axioms are also
independent as f2 still satisfies weak sub-games monotonicity with strict inequalities.
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Strong sub-games monotonicity. For each game (N, v) ∈ Γ with n ≥ 3 and

each couple of coalitions S, T ⊆ N with s = t and v(S) ≥ v(T ) it holds that

ψi(S, v|S) ≥ ψp(T, v|T ), ∀i ∈ S, ∀p ∈ (N \ S) ∪ i, |T ∩ {p, i}| = 1.

Theorem 3

For every game (N, v) ∈ Γ, the sharing rule ψ(N, v) satisfies efficiency and

strong sub-games monotonicity if and only if ψ = EG.11

Proof . We first prove that EG satisfies strong sub-games monotonicity. Let

(N, v) be a TU-game with n ≥ 3. Take a coalition S ⊆ N , we have EGi(S, v|S) =

v(S)
s , ∀i ∈ S. Consider now any coalition T ⊆ N such that s = t, v(S) ≥ v(T ).

We have EGj(T, v|T ) =
v(T )
t = v(T )

s ≤ v(S)
s , ∀j ∈ T .

Now for the uniqueness part. It is enough to show that strong sub-games

monotonicity implies sub-games monotonicity. Let (N, v) be a TU-game with

n ≥ 3 and consider any couple of coalition S, T ⊆ N , with s = t, and v(S) ≥

v(T ). By strong sub-games monotonicity we must have that

ψi(S, v|S) ≥ ψp(T, v|T ),∀i ∈ S, ∀p ∈ (N \ S) ∪ i, |T ∩ {p, i}| = 1.

We necessarily have S∩T ̸= ∅. In the particular cases where p = i then we have

ψi(S, v|S) ≥ ψi(T, v|T ),∀i ∈ S ∩ T.

□

11If we consider a finite universe of players U , this result holds for any N ⊆ U such that
n ≤ u+1

2
.
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3. Games with types

We introduce a new model of cooperative games in which players are of a given

type.

Consider an entity (a firm for instance) is setting up a project that asks for

specific types of players. It potentially has several players (candidates, employ-

ees, other firms) of each type. Each player is of a given type but several players

are of the same type. Once the team is put together, the player that are parts

of the team will work on the project which implies working all together as well

as in subgroups and alone.

Formally, we consider k types with 1 < k < n. Each player i ∈ N is of only

one type and we denote by Kα ⊊ N the set of players of type α ∈ {1, . . . , k}. We

write K = {K1,K2, ...,Kk} the set of those sets. We write Ki the set of players

of the same type as player i. Noting P(N) the partitions of the player set N ,

the set K ∈ P(N) can be understood as a coalition structure as introduced by

Aumann and Dreze (1974). We have
⋃

1≤α≤k

Kα = N and Kα1

⋂
Kα2 = ∅ for any

α1, α2 ∈ {1, . . . , k} and α1 ̸= α2.

We name full coalition a coalition where each type is present. We denote

by F = Π
1≤α≤k

Kα the set of full coalitions, defined by the cartesian products

of the sets that partition players into types. Therefore, the size of each full

coalition is k. We also note F i = {F ′ ∈ F | i ∈ F ′} the set of full coalitions to

which player i belongs. We assume that sub-coalitions of a full coalitions are

still feasible12 but that coalitions with excess players are not. Hence the set of

feasible coalitions FN,K is the union of the subsets of full coalitions.

We consider that a value is generated from the cooperation of players. This

production is modelled by a characteristic function v defined over 2N . Hence,

we define a game with types as a triplet (N, v,K) with N ⊆ U , (N, v) ∈ Γ and

12A feasible coalition is a coalition that can be formed by players.
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K ∈ P(N). We denote the set of those games by Γtype.

We provide an example based on example 1 from section 2.

Example 3 (Team project)

Consider the following situation: a business trusts one of its managers to take

on a new project that needs two other specialists. She is given freedom to choose

other employees of the necessary types. The other employees are free to reject

the proposition. Once the project is done, the team will get a bonus proportional

to the estimated value of the work produced. This raises the problem of finding a

sharing rule for this bonus that gives the manager the incentives to put together

the team that produce the most valuable work, and for the potential teammates

to accept. Formally we have N = {1, 2, 3, 4, 5} and K = {{1}, {2, 3}, {4, 5}}.

The full coalitions are F = {{1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}}. The set of

feasible coalition is given by

FN,K = {{1}, {2}, {3}, {4}, {5}, {1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 4}, {2, 5}, {3, 4},

{3, 5}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}}.

Imagine that 2 has poor synergy with both 4 and 5 while 3 has a really good

synergy with 5 (only amplified under 1 management) but can’t stand working

with 4. However, as a manager, 1 is able to be at its best when bridging the

divide between 4 and 3. The following worths for the feasible coalitions express

this situation. The worths express the value of intermediary works as well as

the end product. We have v({i}) = 0 for all i ∈ N and 13

S 12 13 14 15 24 25 34 35 124 125 134 135

v(S) 0.5 0 1 1 0.5 0.75 0 2 2 2 3 4

■

13Note that v is defined for any S ⊆ N . We only focus here on the feasible coalitions so as
not to take up too much space.
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This example illustrate the three issues that naturally arise in this model:

the formation of one of the full coalitions, the allocation of its worth, and the

influence of this allocation on the stability of the formation process of the se-

lected full coalition. To address these issues, we define a solution on Γtype

as a pair ϕ = (µ, ψ). The function µ is a mechanism that selects for each

(N, v,K) ∈ Γtype one of its full coalitions µ(N, v,K). The function ψ is a shar-

ing rule on Γ. For a given game with types (N, v,K) ∈ Γtype a solution is

ϕ(N, v,K) = (µ(N, v,K), ψ(µ(N, v,K), v|µ(N,v,K)). Such a solution is therefore

two-dimensional. We shall then put requirements on both dimensions separately

as well as a requirement on their interaction.

One desirable and reasonable requirement for a mechanism µ would be that

it selects an optimal full coalition. A full coalition F ′ ∈ F is optimal if and

only if v(F ′) = max
F ′′∈F

v(F ′′). We let Fopt = {F ′ ∈ F | v(F ′) = max
F ′′∈F

v(F ′′)} be

the set of optimal full coalitions. Hence, we ask that the mechanism µ selects a

coalition that is optimal.14 This gives us a first axiom:

Optimality. For every games with types (N, v,K) ∈ Γtype it holds that

µ(N, v,K) ∈ Fopt.

Next we put a requirement on the sharing rule ψ on Γ. We require that ψ

satisfies the standard axiom of efficiency (as defined in section 2). Observe

that even though we consider a model of games with types, ψ is a sharing rule

for TU-games. Hence it is sufficient to require that ψ is efficient in order to

ensure that the worth of the full coalition is completely allocated amongst its

players.

Finally, we introduce an axiom that concerns the interaction between µ and

ψ. Given a solution ϕ = (µ, ψ), can we make sure that the coalition µ(N, v,K) is

stable ? That is to say, given ψ, can we make sure that no players in µ(N, v,K)

would be better off associating with other players ? We consider the payoff a

14Note that there can be multiple optimal full coalitions. We only ask that µ selects one of
these. Hence it is possible that µ is not anonymous.
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player can obtain with another coalition as a player’s outside options. Hence

the following question : does the solution ϕ = (µ, ψ) is such that no player that

belongs to µ(N, v,K) has better outside options ?15 Formally:

No outside options. For every game with types (N, v,K) ∈ Γtype it holds

that ϕ = (µ, ψ) is such that ψi(µ(N, v,K), v|µ(N,v,K)) ≥ ψi(F
′, v|F ′), ∀F ′ ∈ F i,

∀i ∈ µ(N, v,K).

Remark. From example 1 and 3 it is easy to see that if ψ is chosen to be the

Shapley value then ϕ does not satisfy no outside options.

The axiom of no outside options is defined for a solution ϕ defined on Γtype

which itself is entirely composed of a solution ψ defined on Γ and of a coalition

selector µ. Hence the requirement that is put on ϕ by the axiom of no outside

options necessarily interacts with the requirement put on µ by optimality and

the requirement put on ψ by efficiency. The next two results explore how these

three axioms interact. In particular, the next proposition explore how, when

requiring optimality, the no outside options axiom can be “translated” to a

specific requirements on ψ.

Proposition 1

Let (N, v,K) ∈ Γtype be a game with type and let ϕ = (µ, ψ) be solution

for such games. Requiring that ϕ satisfies no outside options for every µ

that satisfies optimality is equivalent to requiring that ψ satisfies sub-games

monotonicity.

Proof . We first prove that if µ satisfies optimality and ψ satisfies sub-games

monotonicity then ϕ satisfies no outside options.

15The concept of outside options considered here is in line with the one used by Casajus
(2009) in the context of communication graph games.
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Let us consider a solution ϕ = (µ, ψ). If µ satisfies optimality then µ(N, v,K) ∈

Fopt which implies that v(µ(N, v,K)) ≥ v(F ′) for all F ′ ∈ F . By definition we

have that |µ(N, v,K)| = |F ′|, for all F ′ ∈ F . Using sub-games monotonicity

we know then that ψi(µ(N, v,K), v|µ(N,v,K)) ≥ ψi(F
′, v|F ′) for all F ′ such that

µ(N, v,K) ∩ F ′ ̸= ∅, ∀i ∈ µ(N, v,K) ∩ F ′. By definition, if i ∈ µ(N, v,K) ∩ F ′

then F ′ ∈ F i. Hence ψi(µ(N, v,K), v|µ(N,v,K)) ≥ ψi(F
′, v|F ′) for all F ′ ∈ F i,

for all i ∈ µ(N, v,K). This coincides with the requirement for no outside op-

tions.

We now prove that if ϕ satisfies no outside options for any µ that satisfies

optimality then ψ satisfies sub-games monotonicity.

Let (N, v) be a TU-game. It is sufficient to show that for any S, T ⊆ N with

s = t, S∩T ̸= ∅ and v(S) ≥ v(T ) there exists a game with types (N,w,K) such

that µ(N,w,K) = S and T ∈ F .

Let (N,w,K) be a game with types. We build w such that

� w(R) = v(R), ∀R ⊆ S and ∀R ⊆ T ;

� w(R) < v(S), ∀R ⊆ N , r = s, R ̸= S, R ̸= T .

Additionally we consider a partition K of N such that k = s. Assume that

every i ∈ S is in a different element of K and that every j ∈ T is also in a

different element of K. This ensures that S and T are full coalitions. The no

outside options axiom impose the following conditions:ψi(µ(N,w,K), w|µ(N,w,K)) ≥ ψi(F
′, w|F ′),

∀F ′ ∈ F, F ′ ∩ µ(N,w,K) ̸= ∅,

∀i ∈ F ′ ∩ µ(N,w,K).

We first assume that v(S) > v(T ). Using optimality on µ we obtain

⇔

ψi(S,w|S) ≥ ψi(F
′, w|F ′),

∀F ′ ∈ F, F ′ ∩ S ̸= ∅,

∀i ∈ F ′ ∩ S.

⇒
{
ψi(S, v|S) ≥ ψi(T, v|T ), ∀i ∈ T ∩ S.
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The last implication comes from the facts that T ∈ F , w|S = v|S and w|T = v|T .

This last condition coincides with the one for sub-games monotonicity.

We now assume that v(S) = v(T ). We want the solution ϕ to satisfies no

outside options for any possible µ that is optimal. If v(S) = v(T ) then, in the

game (N,w,K) we have Fopt = {S, T}. Since an optimal coalition selector µ

can choose either of these two coalitions, the conditions under which ϕ satisfies

no outside option, for any µ that is optimal become :

⇔


ψi(S,w|S) ≥ ψi(F

′, w|F ′),
∀F ′ ∈ F, F ′ ∩ S ̸= ∅,

∀i ∈ F ′ ∩ S;

ψi(S,w|S) ≤ ψi(F
′, w|F ′),

∀F ′ ∈ F, F ′ ∩ S ̸= ∅,

∀i ∈ F ′ ∩ S.

⇒
{
ψi(S, v|S) = ψi(T, v|T ), ∀i ∈ T ∩ S.

This condition coincides with the condition of sub-games monotonicity.

□

Theorem 4

For every game with type (N, v,K) ∈ Γtype such that k ≤ n+1
2 . Consider the

solution ϕ = (µ, ψ) with ψ satisfying efficiency. The solution ϕ satisfies no

outside options for every µ that satisfies optimality if and only if ψ = EG.

Proof . We first prove the existence part. We consider a solution ϕ = (µ,EG)

with µ satisfying optimality. We know that EG satisfies efficiency and sub-

games monotonicity. From proposition 1 we conclude that ϕ = (µ,EG) satisfies

no outside options.

Now the uniqueness part. We consider a solution ϕ = (µ, ψ) with ψ satisfying

efficiency. Since ϕ satisfies no outside options for any µ satisfying optimality,

from proposition 1 we know that ψ satisfies sub-games monotonicity. Given

the game (N, v,K), every full coalition is of size k. Since k ≤ n+1
2 we can use

theorem 1 to conclude that ψ = EG.
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□

As we did in section 2 for sub-games monotonicity, we can design weaker or

stronger variants of the no outside options axiom. The weaker variant relies on

the same conception of deviation and coalitional stability that we presented in

section 2.

No outside options (weak). For every game with types (N, v,K) ∈ Γtype,
it holds that the solution ϕ(N, v,K) = (µ, ψ) is such that ∃i ∈ µ(N, v,K) ∩ F ′

such that
ψi(µ(N, v,K), v|µ(N,v,K)) ≥ ψi(F

′, v|F ′), ∀F ′ ∈ F.

An alternative coalition F ′ can form only if no member of µ(N, v,K) ∩ F ′

object to its formation. We obtain a parallel result to proposition 1.

Proposition 2

Let (N, v,K) ∈ Γtype be a game with type and let ϕ = (µ, ψ) be solution for such

games. Requiring that ϕ satisfies no outside options (weak) for every µ that

satisfies optimality is equivalent to requiring that ψ satisfies weak sub-games

monotonicity.

Proof . We first prove that if µ satisfies optimality and ψ satisfies weak sub-

games monotonicity then ϕ satisfies no outside options (weak).

Let ϕ = (µ, ψ) be a solution for games with types. Let (N, v,K) ∈ Γtype be

such a game. Since µ satisfies optimality then v(µ(N, v,K)) ≥ v(F ′) for all

F ′ ∈ F . In particular we have v(µ(N, v,K)) ≥ v(F ′) for all F ′ ∈ F such that

F ′ ∩ µ(N, v,K) ̸= ∅. Since ψ satisfies weak sub-games monotonicity we obtain

that, ∀F ′ ∈ F with µ(N, v,K) ∩ F ′ ̸= ∅, ∃i ∈ µ(N, v,K) ∩ F ′ such that

ψi(µ(N, v,K), v|µ(N,v,K)) ≥ ψi(Fp, v|Fp
).

Which coincides with the no outside options (weak) axiom.

We now prove that if ϕ satisfies no outside options (weak) for any µ that satisfies
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optimality then ψ satisfies weak sub-games monotonicity. Let (N, v) be a TU-

game. It is sufficient to show that for any S, T ⊆ N with s = t, S ∩ T ̸= ∅ and

v(S) ≥ v(T ) there exists a game with types (N,w,K) such that µ(N,w,K) = S

and T ∈ F .

Let (N,w,K) be a game with types. We build w such that

� w(R) = v(R), ∀R ⊆ S and ∀R ⊆ T ;

� w(R) < v(S), ∀R ⊆ N , r = s, R ̸= S, R ̸= T .

Additionally we consider a partition K of N such that k = s. Assume that

every i ∈ S is in a different element of K and that every j ∈ T is also in a

different element of K. This ensures that S and T are full coalitions. The no

outside options (weak) axiom impose the following condition: ∀F ′ ∈ F, F ′ ∩ µ(N,w,K) ̸= ∅, ∃i ∈ F ′ ∩ µ(N,w,K) such that :

ψi(µ(N,w,K), w|µ(N,w,K)) ≥ ψi(F
′, w|F ′).

We first assume that v(S) > v(T ). Using optimality on µ we obtain

⇔

 ∀F ′ ∈ F, F ′ ∩ S ̸= ∅, ∃i ∈ F ′ ∩ S such that :

ψi(S,w|S) ≥ ψi(F
′, w|F ′),

⇒
{

∃i ∈ S ∩ T such that ψi(S, v|S) ≥ ψi(T, v|T ).

The last implication comes from the facts that T ∈ F , w|S = v|S and w|T = v|T .

This last condition coincides with the one for weak sub-games monotonicity.

We now assume that v(S) = v(T ). We want the solution ϕ to satisfies weak

no outside options for any possible µ that is optimal. If v(S) = v(T ) then, in

the game (N,w,K) we have Fopt = {S, T}. Since an optimal coalition selector

µ can choose either of these two coalitions, the condition under which ϕ satisfies
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no outside option (weak), for any µ that is optimal becomes :

⇔



∀F ′ ∈ F, F ′ ∩ S ̸= ∅, ∃i ∈ F ′ ∩ S such that :

ψi(S,w|S) ≥ ψi(F
′, w|F ′),

∀F ′ ∈ F, F ′ ∩ S ̸= ∅, ∃i ∈ F ′ ∩ S such that :

ψi(S,w|S) ≤ ψi(F
′, w|F ′).

⇒

 ∃i ∈ S ∩ T such that ψi(S,w|S) ≥ ψi(T,w|T ),

∃j ∈ S ∩ T such that ψj(S,w|S) ≤ ψj(T,w|T ).

This condition coincides with the condition of weak sub-games monotonicity

when v(S) = v(T ).

□

Theorem 5

For every game with types (N, v,K) ∈ Γtype such that k ≤ n+1
2 . Consider

the solution ϕ = (µ, ψ) with ψ satisfying efficiency and equal treatment of

equals. The solution ϕ satisfies no outside options (weak) for every µ that

satisfies optimality if and only if ψ = EG.

Proof . We first prove the existence part. We consider a solution ϕ = (µ,EG)

with µ satisfying optimality. We know that EG satisfies efficiency, equal treat-

ment of equals and weak sub-games monotonicity. From proposition 2 we con-

clude that ϕ = (µ,EG) satisfies no outside options (weak).

Now the uniqueness part. We consider a solution ϕ = (µ, ψ) with ψ satisfying

efficiency and equal treatment of equals. Since ϕ satisfies no outside options

(weak) for every µ satisfying optimality, from proposition 2 we know that ψ

satisfies weak sub-games monotonicity. Given the game (N, v,K), every full

coalition is of size k. Since k ≤ n+1
2 we can use theorem 2 to conclude that

ψ = EG.

□

We now consider a more restrictive version of the no outside options axiom.

We require that the payoff obtained by each player within the chosen full coali-
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tion µ(N, v,K) should be at least as large as the payoff that any other player

of the same type can obtain in any other full coalition. Formally:

No outside options (strong). For every game with types (N, v,K) ∈ Γtype

it holds that ϕ = (µ, ψ) is such that ψi(µ(N, v,K), v|µ(N,v,K)) ≥ ψj(F
′, v|F ′),

∀i ∈ µ(N, v,K), ∀j ∈ Ki, ∀F ′ ∈ F j.

In this stronger version we compare the payoff of a player i of the selected

full coalition µ(N, v,K) with every payoff of every other players being of the

same type as i in every full coalitions. It is clear that this axiom is a stronger

version of no outside options and that no outside options (strong) implies no

outside options. We now prove the following result.

Proposition 3

Let (N, v,K) ∈ Γtype be a game with types and let ϕ = (µ, ψ) be solution for

such games. Requiring that ϕ satisfies no outside options (strong) for every

µ that satisfies optimality is equivalent to requiring that ψ satisfies strong

sub-games monotonicity.

Proof . We first prove that if µ satisfies optimality and ψ satisfies strong sub-

games monotonicity then ϕ satisfies no outside options (strong).

Let ϕ = (µ, ψ) be a solution for games with types. Let (N, v,K) ∈ Γtype be such

a game. Since µ satisfies optimality then v(µ(N, v,K)) ≥ v(F ′) for all F ′ ∈ F .

Since ψ satisfies strong sub-games monotonicity we haveψi(µ(N, v,K), v|µ(N,v,K)) ≥ ψp(F
′, v|F ′),

∀i ∈ µ(N, v,K),

∀p ∈ (N \ µ(N, v,K)) ∪ {i},

∀F ′ ∈ F, |F ′ ∩ {p, i}| = 1.

As i ∈ µ(N, v,K), any j ∈ Ki also belongs to (N \µ(N, v,K))∪{i}. In addition,
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if j ∈ F ′ then F ′ ∈ F j . Hence the above conditions implies thatψi(µ(N, v,K), v|µ(N,v,K)) ≥ ψj(F
′, v|F ′),

∀i ∈ µ(N, v,K),

∀j ∈ Ki,

∀F ′ ∈ F j .

Which coincides with no outside options (strong).

We now prove that if ϕ satisfies no outside options (strong) for any µ that

satisfies optimality then ψ satisfies strong sub-games monotonicity. Let (N, v)

be a TU-game. We consider a coalition S ⊆ N and a player i ∈ S. We also

consider a player p ∈ (N \ S) ∪ {i} and a coalition T ⊆ N such that s = t,

v(S) ≥ v(T ) and |T ∩ {i, p}| = 1. Observe that if p = i we have the same setup

than in the proof of theorem 4. Therefore we assume in the following that p ̸= i.

Thus p ∈ T .

We build a game with types (N,w,K) with w(R) = v(R), ∀R ⊆ S, ∀R ⊆ T

and w(R) < v(R), ∀R ̸= S, ∀R ̸= T with r = s. We build the partition K

such that k = s and every j ∈ S is of a different type. We assume that every

j ∈ T is of a different type as well. In particular, we build K such that p ∈ Ki.

Therefore p ∈ (N \ S) ∪ {i}, S, T ∈ F and T ∈ F p. Since ϕ satisfies no outside

options (strong) we have that

ψj(µ(N,w,K), v|µ(N,w,K)) ≥ ψl(F
′, w|F ′), ∀j ∈ µ(N,w,K), ∀l ∈ Kj , ∀F ′ ∈ F l.

We first assume that v(S) > v(T ). The above conditions then become

ψj(S,w|S) ≥ ψl(F
′, w|F ′), ∀j ∈ S, ∀l ∈ Ki, ∀F ′ ∈ F l.

In particular we have

ψi(S,w|S) ≥ ψp(T,w|T )

⇔ψi(S, v|S) ≥ ψp(T, v|T ).

We showed we can build a game with types (N,w,K) giving us this condition for

any i ∈ S, any p ∈ (N \ S) ∪ {i} and any T ⊆ N such that s = t, v(S) ≥ v(T )
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and |T ∩ {i, p}| = 1. This condition therefore coincide with strong sub-game

monotonicity.

We now assume that v(S) = v(T ). We want the solution ϕ to satisfies no

outside options (strong) for any possible µ that is optimal. If v(S) = v(T ) then,

in the game (N,w,K) we have Fopt = {S, T}. Note that, if we have a coalition

T with s = t such that, for a given i ∈ S and p ∈ (N \ S) ∪ {i} we have

|T ∩ {i, p}| = 1 we can “reverse” this construction. Take T as given, we have

p ∈ T and i ∈ (N \ T ) ∪ {p}. We have necessarily that |S ∩ {i, p}| = 1.

Therefore, since an optimal coalition selector µ can choose either S or T ,

the condition under which ϕ satisfies no outside option (strong), for any µ that

is optimal becomes :

ψi(S, v|S) ≥ ψp(T, v|T ) and ψi(S, v|S) ≤ ψp(T, v|T ).

This condition coincides with the condition of strong sub-games monotonicity

when v(S) = v(T ).

□

Theorem 6

For every game with type (N, v,K) ∈ Γtype such that k ≤ n+1
2 . Consider the

solution ϕ = (µ, ψ) with ψ satisfying efficiency. The solution ϕ satisfies no

outside options (strong) for every µ that satisfies optimality if and only if

ψ = EG.

Proof . We first prove the existence part. Consider a solution ϕ = (µ,EG)

with µ satisfying optimality. We know that EG satisfies efficiency. We have

ψi(µ(N, v,K), v|µ(N,v,K)) =
v|µ(N,v,K)(µ(N, v,K))

k
, ∀i ∈ µ(N, v,K),

as well as

ψj(F
′, v|F ′) =

v|F ′(F ′)

k
, ∀F ′ ∈ F j , ∀j ∈ N.
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Since µ satisfies optimality we have v|µ(N,v,K)(µ(N, v,K)) ≥ v|F ′(F ′) ∀F ′ ∈ F .

Hence, ϕ = (µ,ED) satisfies no outside options (strong).

Now the uniqueness part. We consider a solution ϕ = (µ, ψ) with µ satisfy-

ing optimality and ψ satisfying efficiency. Since ϕ satisfies no outside options

(strong), it satisfies no outside options. From proposition 1 we know that ψ

satisfies sub-games monotonicity. Given the game (N, v,K), every full coalition

is of size k. Since k ≤ n+1
2 we can use theorem 1 to conclude that ψ = EG.

□

4. Concluding remarks

In this paper we developed a model of cooperative environments in which differ-

ent types of players are needed. This model is built on the canonical model of

cooperative TU-games. We showed that, if the number of players is sufficiently

larger than the number of types, an egalitarian approach when sharing the out-

come of cooperation is the only efficient approach that always provide incentive

for the best coalition to form. We showed that this result is still true when a

stronger definition of stability is considered but require the additional axiom of

equal treatment of equals when a weaker variant is considered.

In our approach, the full domain of cooperative games is considered. Ex-

ample 1 and 2 show that the solution ϕ = (µ, Sh) does not satisfy no outside

options even for convex games. On specific classes of games, it would be inter-

esting to determine whether other sharing rules than the egalitarian value are

compatible with both the axioms of sub-games monotonicity and efficiency.

In addition, it is well known that the payoff vector given by the egalitarian

value often lies outside the core, even for convex games. Consequently the

selected full coalition can offer no outside options but not be stable in the sense

of the core. As such our result could also be framed as an impossibility result:

there are no solution ϕ = (µ, ψ) with ϕ satisfying no outside options for every

µ satisfying optimality such that ψ(µ(N, v,K), v|µ(N,v,K)) lies in the core of

27



(µ(N, v,K), v|µ(N,v,K)). However, the fact that ψ might not be in the core can

possibly be irrelevant if we consider situations where the cooperation is based

on free association but, once established, is subject to binding agreements.

Furthermore, our result can help understand the pervasiveness of fixed re-

munerations in organizations, which is still a challenge for incentives theory to

this day (Ménard, 2012). Consider a firm where employees are on a fixed wage

determined by their position. For instance, accountants earn x, designers earn

y and so on. This corresponds in our model to a solution where the payoff ψi

of a player i is determined by its type, independently of the total worth pro-

duced. Such a solution would satisfy sub-games monotonicity. Indeed, since

every payoffs is a fixed amount determined exogenously there are no differences

depending on the sub-coalition considered. A player payoff is always the same

regardless of the worth produced. However it is not efficient. In a capitalist

firm, the difference between the sum of the wages and the value produced is

the residual surplus that goes to the owner of the firm’s capital, as losses or

profit. The capitalist firm, since it is not efficient, can therefore be sub-games

monotonic while having differentiated wages.

Finally, on the basis of the main result of this paper, we argue that egalitar-

ianism as a solution can provide some form of incentives towards optimality in

cooperative situations that satisfies the following conditions:

� cooperation is based on free association;

� the numbers of players needed is sufficiently smaller than the numbers of

candidates.
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[3] S. Béal, A. Casajus, F. Huettner. Efficient extensions of the Myerson value.

Social Choice and Welfare, 45, (2015), 819–827.
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