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“One person, one nth !”:
The incentive effects of egalitarianism in cooperative

environments1

Florian Navarro2

Laboratoire GRANEM, Angers, France

Abstract

This article introduces a new axiom of intersecting population monotonicity for

TU-games as well as a new model. The axiom, alongside efficiency, characterizes

the egalitarian value. The new model addresses situations where a number of

roles have to be performed by players. Each player have a specific role and

coalitions are feasible only if it contains at most one player for each role. We

use the new characterization of the egalitarian value for TU-games to obtain

the following result in our class of problem: the egalitarian value is the only

sharing rule that ensures that each player of the most productive group is better

off joining this most productive group. Thus, we characterize the egalitarian

value without fairness requirement and show that, for this new class of problem,

egalitarianism can provide incentives towards optimal cooperation.

Keywords: Cooperative game theory, shapley value, equal division, egalitarian

value, role structure, incentives

1. Introduction

In the present article we develop a model of cooperative games in which a number

of roles have to be filled by players. Each role can be perform by a precise set of
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merits in the original draft, which gave me the confidence to pursue this idea.
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players, and players can only perform one role. The role structure restricts the

feasibility of coalitions: a coalition is feasible if it contains at most one player

performing each role. This means we have situations in which the grand coalition

cannot form. Such a situation can arise when members of an organization have

to form a subgroup to tackle a specific project (see application 2). Several

groups having to choose a representative to participate in a committee can also

be a situation covered by our model. A central planer having to manage the

use of a public resource between different actors can be a third (see application

3). The problem raised by our model is thus different than the usual problem

of cooperative games (sharing the worth of the grand coalition).

A solution ϕ to this model consists of two mechanisms: a function µ that

selects a group of players specifying, for each role, a single player being able

to perform the role, and a sharing rule ψ that shares the worth produced by

the group amongst its members. We are interested in solution that fosters the

emergence of the most productive group that fills all role. To this end, we

propose an axiom of optimality (the solution selects the best group) and an

axiom of no outside options (no member of the selected group can be better

off in another group) that apply to the solution ϕ. Together, these axioms

on ϕ will impose requirements on ψ applied to the allocation problem for the

chosen group. We introduce an axiom of intersecting population monotonicity

for the sharing rule ψ. This axiom asks that no member of a population can

be worse off by choosing to associate with a group of a given size with which it

has the best synergy. We show that if µ satisfies optimality, then requiring the

axiom of no outside option on ϕ is equivalent to requiring intersecting population

monotonicity on ψ. As an intermediary result, we offer a characterization of the

egalitarian value (which shares the total worth equally between all players) that

relies on the intersecting population monotonicity axiom alongside the standard

axiom of efficiency. As such we characterize the egalitarian principle without

any fairness criteria.

Formally, our model is related to the Aumann-Drèze model (Aumann and

Dreze, 1974) as it also involves coalition structure. In a coalition structure,
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players are part of pre-existing groups that can not communicate with each

others. This structure has an effect on the worth of coalitions and alter the

characteristic function of the underlying transferable utility game (TU-game).

Owen (1977) also relies on coalition structures (called a-priori unions) although

they directly impact the payoff of the players. In the present article we take

yet another direction: this structure restricts the formation of coalitions and

therefore their feasibility.

More generally, this paper joins a line of works which enrich the standard

model of cooperative game theory by considering new structures of cooperation.

A large part of this research focuses on structures that restrict cooperation by

modelling either asymmetries in communication, or hierarchical constraints. In

two papers, Myerson modelled communication by respectively a graph (1977)

and an hyper-graph (1980). Both represent a restriction of communication

between players. Various solution concepts have been proposed for such games.

We can cite for instance the Position-value (Meessen, 1988), the Average-Tree

Value (Herings et al., 2008), the Mean value (Hamiache, 2004), the F-value

(Hamiache, 1999), the Hamiache-Navarro value (Hamiache and Navarro, 2019)

and numerous variations of the Myerson value3. Additionally, different forms of

hierarchical constraints have been explored by Gilles et al. (1992), Faigle and

Kern (1992) and more recently by Béal et al. (2021). The distinction between

the framework of Aumann and Dreze (1974), Owen (1977) and ours can similarly

be made for, respectively, the framework of Gilles et al. (1992), Béal et al. (2021)

and Faigle and Kern (1992). Béal et al. (2021) offer a deeper discussion on how

the same mathematical model (in this case, of hierarchical constraint) can affect

the overall game in different ways. In this sense, our work is in line with this

trend of research.

However, to the best of our knowledge few models have been proposed to

enrich the individual characteristics of the players. Another approach to roles,

3For instances two efficient extensions of the Myerson value were proposed by Hamiache
(2012) and Béal et al. (2015). Examples of variations on the theme can be found by Gómez
et al. (2003) and González-Arangüena et al. (2003).
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or more precisely differently skilled players, has been proposed by Bachrach et

al. (2013) with coalitional skill games (CSG). However, in a CSG framework,

certain players can perform certain tasks and the worth of a coalition depends on

the nature or number of tasks that can be performed by the coalition. The model

is thus similar to the standard model of cooperative game theory but restricts

itself to a certain type of characteristic functions defined by the players’ “skills”.

Thus, our model tackles issues not addressed by existing research and con-

tributes to the economic theory literature on several levels. For the standard

model of TU-games, we provide a new characterization of the egalitarian value.

In addition, we use a formal framework of coalition structure to develop a novel

class of unexplored problems as of yet. Within this class, we investigate the

effect of sharing rules on the spontaneous emergence of coalitions, making it

somewhat endogenous to the model. We give a solution for these problems

and show that, for this class of problem, egalitarianism can provide incentives

whereas approaches based on the evaluation of marginal contributions can be

detrimental for cooperation.

In section 2 of this paper we introduce the canonical model of cooperative

games with transferable utility and present the axiom of intersecting population

monotonicity with which we build a new characterization of the egalitarian

value. In Section 3 we present our new model of games with roles. In section 4

we propose axioms for a desirable solution to this new type of problems as well

as present our main results, which make use of the axiom and result presented

in section 2. We study the robustness of our results in section 5. We offer

applications of the new model and the results in section 6 before adding some

concluding remarks in section 7.

2. Egalitarian value and Intersecting Population
Monotonicity

Let U be a non-empty and infinite set of players. A coalition is a non-empty

and finite subset of U. A coalitional game with transferable utility (also called a
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cooperative TU-game) is a pair (N, v) where N is a coalition and v is a function

satisfying v : 2N → R and v(∅) = 0. We note Γ the set of these games. Given a

coalition S ⊆ N we write s = |S| its cardinality. For any S ⊊ N we will write

(S, v|S) the sub-game restricted to coalition S with v|S(T ) = v(T ), ∀T ⊆ S.

A player i ∈ N is a null player in the game (N, v) if v(S ∪ {i}) = v(S) for all

S ⊆ N \{i}. A player i ∈ N is a nullifying player in the game (N, v) if v(S) = 0,

for all S ⊆ N such that i ∈ S. Two players i, j ∈ N are equals in the game

(N, v) if v(S ∪ {i}) = v(S ∪ {j}) for all S ⊆ N \ {i, j}.

A TU-game v is said to be a convex game if it satisfies v(S ∪ {i})− v(S) ≤

v(T ∪ {i}) − v(T ) for all i ∈ N and all S ⊆ T ⊆ N \ {i}. Convex game have

been shown by Shapley (1971) to have a non-empty core4 .

A sharing rule on Γ is a function ψ which associates with each game (N, v) ∈

Γ a vector ψ(N, v) ∈ RN . The Shapley value, first presented by Shapley (1953),

rewards players based on their marginal contributions, weighted by all the pos-

sible orders of entry of players in coalitions. It is noted Sh and defined as

Shi(N, v) =
∑
S

S⊆N
i∈S

(s− 1)!(n− s)!

n!
[v(S)− v(S \ {i})], ∀i ∈ N.

The Egalitarian value divides equally the worth of coalition N between all

players. It is noted EG and defined as

EGi(N, v) =
v(N)

n
, ∀i ∈ N.

We introduce the following classical axioms for sharing rules over TU-games.

Efficiency. For each game (N, v) ∈ Γ it holds that
∑

i∈N ψi(N, v) = v(N).

Linearity. For each couple games (N, v), (N,w) ∈ Γ and each real number

α ∈ R, it holds that ψ(N, v + αw) = ψ(N, v) + αψ(N,w).

Null player. For each game (N, v) ∈ Γ and each null player i ∈ N , it holds

that ψi(N, v) = 0.

4Quoting this perfect definition from Shapley (1971), “the core of [a TU-game] is the set
of feasible outcomes that cannot be improved upon by any coalition of players”.
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Nullifying player. For each game (N, v) ∈ Γ and each nullifying player i ∈ N ,

it holds that ψi(N, v) = 0.

Equal treatment of equals. For each game (N, v) ∈ Γ and each couple of

players i, j ∈ N who are equals in (N, v), it holds that ψi(N, v) = ψj(N, v).

As shown by Shubik (1962), the Shapley value is the unique sharing rule

satisfying efficiency, linearity, null player and equal treatment of equals. The

egalitarian value has been shown by van den Brink (2007) to be the unique shar-

ing rule satisfying efficiency, linearity, nullifying player and the equal treatment

of equals.

In 1983, Thomson introduced the axiom of population monotonicity in the

context of fair division. This axiom stated that when facing a given problem

of fair division, no player should be better off by having to share with more

players than less. Chun (1986) and later Chun and Park (2012) expanded on

this idea and proposed a similar axiom for, respectively, fair division problem

and allocation problems in cooperative games. This weakened version stated

that when a population was joined by newcomers, all members of the original

population are all either better off or worse off.

We introduce a new axiom of intersecting population monotonicity

that relate to the ones introduced by Thomson (1983), Chun (1986) and Chun

and Park (2012). Let us consider a given population P offered with the choice

of cooperating with two different groups of the same size. Our axiom states

that no member of population P can be worse off if the population chooses the

group with whom it has the best synergy. In the context of cooperative games,

given two coalition of players whose intersection is non-empty, we ask that no

member of the intersection is rewarded less when considering the coalition with

the better worth. Formally,

Intersecting population monotonicity. For each game (N, v) with n ≥ 3

and each couple of coalitions S, T ⊆ N with s = t, S ∩ T ̸= ∅ if v(S) ≥ v(T ) it

holds that ψi(S, v|S ) ≥ ψi(T, v|T ), ∀i ∈ S ∩ T .
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We also give an alternative interpretation for this axiom. If a subgroup P of S

decides to replace the other members of S by an identical number of outsiders,

then the members of P should not be worse off if the newly formed coalition

T is at least as productive as the original coalition S. Note that this axiom

puts no requirement on any payoffs in the game (N, v). Moreover, for the two

sub-games considered, it says nothing about the payoffs of players outside the

intersection of coalitions S and T . As a result, this axiom is not as strong as it

can first appear.

The axiom of intersecting population monotonicity is also quite different from

the axiom of grand coalition monotonicity used by Casajus and Huettner (2014)

to characterize the egalitarian value. Grand coalition monotonicity compares

the same population involved in two different games, whereas we compare two

different populations. Nonetheless some proximity can be seen in the sense that

our axiom also provides a monotonic approach to the egalitarian principle, as

we will see with our first results.

Lemma1 For every game (N, v) ∈ Γ such that all players i ∈ N are equal in

(N, v), if the sharing rule ψ(N, v) satisfies efficiency and intersecting popu-

lation monotonicity then ψi(N, v) = ψj(N, v), ∀i, j ∈ N .

Proof . We consider a game (N, v) such that all players are equal in v. Let

p ∈ U \N . Let us also consider a larger game (N+, w) such that N+ = N ∪{p}.

We take w such that w|N (S) = v(S) for all S ⊆ N and with all players of N+

equal in w. This means that w(S) = cs, ∀S ⊆ N+, with (cs)s=1,...,n+1 a vector

of real numbers. Since U is infinite, such a construction is always possible5.

We consider coalition N and we will prove that ψi(N,w|N ) = ψj(N,w|N )

for all i, j ∈ N . For any two i, j ∈ N , let us consider two additional coalitions

S, T ⊊ N+ of size n in which, respectively, players j and i are replaced with

player p. We have

5If we consider a finite universe of players U , this construction is possible for any N ⊆ U
such that n ≤ u+1

2
.
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� S = N \ {j} ∪ {p},

� T = N \ {i} ∪ {p},

� s = t = n,

� S ∩ T = N \ {i, j} ∪ {p},

� S ∩N = N \ {j},

� T ∩N = N \ {i}.

By definition of w, we have w(S) = w(T ) = v(N). Such a construction of S

and T is always feasible if n ≥ 3. Since the worths of coalitions S, T and N

are equal, we use intersecting population monotonicity in both directions and

obtain the following useful conditions on ψ:

ψk(S,w|S) = ψk(T,w|T ), ∀k ∈ S ∩ T,

ψi(S,w|S) = ψi(N,w|N ),

ψj(T,w|T ) = ψj(N,w|N ).

By efficiency we have the following condition on ψ:∑
k∈S

ψk(S,w|S) = w(S) = w(T ) =
∑
k∈T

ψk(T,w|T ).

Therefore we obtain that∑
k∈S∩T

ψk(T,w|T ) =
∑

k∈S∩T

ψk(S,w|S)

⇔
∑

k∈S∩T

ψk(T,w|T ) + ψi(S,w|S) =
∑

k∈S∩T

ψk(S,w|S) + ψi(S,w|S)

⇔
∑

k∈S∩T

ψk(T,w|T ) + ψi(S,w|S) = w(S)

⇔
∑

k∈S∩T

ψk(T,w|T ) + ψi(S,w|S) =
∑

k∈S∩T

ψk(T,w|T ) + ψj(T,w|T )

⇔ ψi(S,w|S) = ψj(T,w|T )

⇔ ψi(N,w|N ) = ψj(N,w|N ).
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This proves that for any two players i, j ∈ N we have ψi(N,w|N ) = ψj(N,w|N )

which, by definition of w, is equivalent to ψi(N, v) = ψj(N, v).

□

Theorem 1 6

For every game (N, v) ∈ Γ, the sharing rule ψ(N, v) satisfies efficiency and

intersecting population monotonicity if and only if ψ = EG.

Proof . We know that EG satisfies efficiency. It is trivial that it satisfies inter-

secting population monotonicity. Let us prove that, for games (N, v) ∈ Γ if a

sharing rule ψ satisfies efficiency and intersecting population monotonicity then

it is the egalitarian value.

Let us consider a game (N, v) and a player i ∈ N . We can build a game

(Ni, wi) with Ni such that

N ⊊ Ni,

∃T ⊊ Ni with N ∩ T = {i} and n = t.

We also put the following conditions on wi:

wi(P ) = v(P ), ∀P ⊆ N

wi(T ) = v(N),

wi(P ) = v({i}), ∀P ⊊ T, P ̸= {i}.

Such a construction is always possible since U is infinite.7 By definition we

have (wi)|N (S) = v(S) for all S ⊆ N hence ψi(N, (wi)|N ) = ψi(N, v). Using

6If we consider a finite universe of players U , this result holds for any N ⊆ U such that
n ≤ u+1

2
.

7If we consider a finite universe of players U , this construction is possible for any N ⊆ U
such that n ≤ u+1

2
.
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efficiency and lemma 1 we have

ψi(T, (wi)|T ) =
(wi)|T (T )

t
=
v(N)

n

since all players j ∈ T are equals in (wi)|T . As we have N,T ⊆ Ni, n = t and

wi(T ) = wi(N) using intersecting population monotonicity we obtain that

ψi(T, (wi)|T ) ≥ ψi(N, (wi)|N )

and ψi(N, (wi)|N ) ≥ ψi(T, (wi)|T )

which means

ψi(N, (wi)|N ) = ψi(T, (wi)|T ) =
v(N)

n
= ψi(N, v).

Since U is an infinite set it is possible to build a game (Ni, wi) that satisfies our

above conditions for every i ∈ N . Hence we have that ψi(N, v) =
v(N)
n , ∀i ∈ N ,

which concludes our proof.

□

We now prove that our axioms are logically independent.

Efficiency

Consider the sharing rule f1(N, v) = αEG(N, v) with α ̸= 1. It obviously sat-

isfies all axioms but efficiency.

Intersecting population monotonicity

Consider the Shapley value. It satisfies efficiency. Application 2 in section 6

shows it does not satisfy intersecting population monotonicity.

3. Games with roles

We develop here a new model of cooperative games in which players have a

specific role they can play in the coalitions.

Consider an entity (a firm for instance) is setting up a project that asks for

specific roles to be performed. It has several players (candidates, employees,
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other firms) that can fill these roles. Each player can only assume a specific

role but several players are able to play the same role. Once the team is put

together, the player that are parts of the team will work on the project which

implies working all together as well as in subgroups and alone.

Formally, we consider k roles with 1 < k < n. Each player i ∈ N can perform

only one specific role and we note Kα ⊊ N the set of players able to perform

the role α ∈ {1, . . . , k}. We write K = {K1,K2, ...,Kk} the set of those sets.

We write Ki the set of players able to perform the same role as player i. Noting

P(N) the partitions of the player set N , the set K ∈ P(N) can be understood

as a coalition structure as introduced by Aumann and Dreze (1974). We have⋃
1≤α≤k

Kα = N and Kα1

⋂
Kα2

= ∅ for any α1, α2 ∈ {1, . . . , k} and α1 ̸= α2.

We name full coalition a coalition where each role is filled. We note F =

Π
1≤α≤k

Kα the set of full coalitions, defined by the cartesian products of the sets

that partition players into roles. Therefore, the size of each full coalition is k.

We also note F i = {Fl ∈ F | i ∈ Fl} the set of full coalitions to which player i

belongs. We assume that sub-coalitions of a full coalitions are still feasible but

that coalitions with excess players are not. Hence the set of feasible coalitions

FN,K is the union of the subsets of full coalitions.

We consider that a value is generated from the cooperation of players. This

production is modelled by a characteristic function v defined over 2N . Hence,

we define a game with roles as a triplet (N, v,K) with N ⊆ U , (N, v) ∈ Γ and

K ∈ P(N). We note Γrole the set of those games.

This model naturally raises three issues: the formation of one of the full

coalitions, the allocation of its worth, and the influence of this allocation on the

stability of the formation process of the selected full coalition. To address these

issues, a solution on Γrole is a pair ϕ = (µ, ψ). The function µ is a mechanism

that selects for each (N, v,K) ∈ Γrole one of its full coalitions µ(N, v,K) and ψ

is a sharing rule on Γ.
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4. Optimality and outside options

A solution ϕ = (µ, ψ) on Γrole consists of a coalition selector µ and a sharing

rule ψ on Γ and is therefore two-dimensional. As such we will put requirements

on both dimensions separately as well as a requirement on their interaction.

One desirable and reasonable requirement for a mechanism µ would be that

it selects an optimal full coalition. A full coalition Fl ∈ F is optimal if and only

if v(Fl) = max
Fp∈F

v(Fp). We note Fopt = {Fl ∈ F | v(Fl) = max
Fp∈F

v(Fp)} the set of

optimal full coalitions. Hence, we ask that the mechanism µ selects a coalition

that is optimal8. This gives us a first axiom:

Optimality. For every games with roles (N, v,K) ∈ Γrole it holds that µ(N, v,K) ∈

Fopt.

Next we put a requirement on the sharing rule ψ on Γ. We require that ψ

satisfies the standard axiom of efficiency (as defined in section 2).

Finally, we introduce an axiom that concerns the interaction between µ and

ψ. Given a solution ϕ = (µ, ψ), can we make sure that µ(N, v,K) is stable ?

That is to say, given ψ, can we make sure that no players in µ(N, v,K) would be

better off associating with other players ? We consider the payoff a player can

obtain with another coalition as a player’s outside options. Hence the following

question : does the solution ϕ = (µ, ψ) is such that no player that belongs to

µ(N, v,K) has better outside options ?9 Formally:

No outside options. For every game with roles (N, v,K) ∈ Γrole it holds

that ϕ = (µ, ψ) is such that ψi(µ(N, v,K), v|µ(N,v,K)) ≥ ψi(Fp, v|Fp
), ∀Fp ∈ F i,

∀i ∈ µ(N, v,K).

The axiom of no outside options is defined for a solution ϕ defined on Γrole

8Note that there can be multiple optimal full coalitions. We only ask that µ selects one of
these. Hence it is possible that µ is not anonymous.

9The concept of outside options considered here is in line with the one used by Casajus
(2009) in the context of communication graph games.
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which itself is entirely composed of a solution ψ defined on Γ and of a coalition

selector µ. Hence the requirement that is put on ϕ by the axiom of no outside

options necessarily interacts with the requirement put on µ by optimality and

the requirement put on ψ by efficiency. The next two results explore how these

three axioms interact. In particular, the next theorem explore how, in the

presence of optimality, the no outside options axiom can be “translated” to a

specific requirements on ψ.

Theorem 2

Let us have a game with role (N, v,K) ∈ Γrole and a solution ϕ(µ, ψ). If µ satis-

fies optimality then requiring that ϕ satisfies no outside options is equivalent

to requiring that ψ satisfies intersecting population monotonicity.

Proof . We first prove that if µ satisfies optimality and ψ satisfies intersect-

ing population monotonicity then ϕ satisfies no outside options.

Let us consider a solution ϕ = (µ, ψ). If µ satisfies optimality then µ(N, v,K) ∈

Fopt which implies that v(µ(N, v,K)) ≥ v(Fp) for all Fp ∈ F . By definition we

have that |µ(N, v,K)| = |Fp|, for all Fp ∈ F . Using intersecting population

monotonicity we know then that ψi(µ(N, v,K), v|µ(N,v,K)) ≥ ψi(Fp, v|Fp
) for all

Fp such that µ(N, v,K) ∩ Fp ̸= ∅, ∀i ∈ µ(N, v,K) ∩ Fp. By definition, if i ∈

µ(N, v,K) ∩ Fp then Fp ∈ F i. Hence ψi(µ(N, v,K), v|µ(N,v,K)) ≥ ψi(Fp, v|Fp
)

for all Fp ∈ F i, for all i ∈ µ(N, v,K). This coincides with the requirement for

no outside options.

We now prove that if µ satisfies optimality and ϕ satisfies no outside

options then ψ satisfies intersecting population monotonicity.

Let us consider a solution ϕ = (µ, ψ). If µ satisfies optimality then µ(N, v,K) ∈

Fopt which implies that v(µ(N, v,K)) ≥ v(Fp) for all Fp ∈ F . Using no out-

side options we know that ψi(µ(N, v,K), v|µ(N,v,K)) ≥ ψi(Fp, v|Fp
), ∀Fp ∈ F i,

∀i ∈ µ(N, v,K). All Fp ∈ F i for a given i ∈ µ(N, v,K) are all Fp ∈ F such
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that i ∈ µ(N, v,K) ∩ Fp. Hence the requirement for no outside options be-

comes ψi(µ(N, v,K), v|µ(N,v,K)) ≥ ψi(Fp, v|Fp
), ∀Fp ∈ F , Fp ∩ µ(N, v,K) ̸= ∅,

∀i ∈ Fp ∩ µ(N, v,K). This requirement must be true ∀K ∈ P(N). What-

ever K ∈ P(N) is considered we always have Fp ⊆ N , µ(N, v,K) ⊆ N ,

|Fp| = |µ(N, v,K)| for all Fp ∈ F , Fp ∩ µ(N, v,K) ̸= ∅. This being true for

all K means that, given a certain TU-game (N, v) ∈ Γ, for every two coalitions

S, T ⊆ N with S ∩ T ̸= ∅, s = t we have the following requirement on ψ:

ψi(S, v|S ) ≥ ψi(T, v|T ), ∀i ∈ S ∩ T, whenever v(S) ≥ v(T ).

This coincides with intersection population monotonicity for ψ.

□

Theorem 3

For every game with role (N, v,K) ∈ Γrole such that k ≤ n+1
2 . Consider the

solution ϕ(µ, ψ) with µ satisfying optimality and ψ satisfying efficiency. The

solution ϕ satisfies no outside options if and only if ψ = EG.

Proof . We first prove the existence part. We consider a solution ϕ(µ,EG) with

µ satisfying optimality. We know that EG satisfies efficiency and intersecting

population monotonicity. From theorem 2 we conclude that ϕ(µ,EG) satisfies

no outside options.

Now the unicity part. We consider a solution ϕ(µ, ψ) with µ satisfying

optimality and ψ satisfying efficiency. Since ϕ satisfies no outside options, from

theorem 2 we know that ψ satisfies intersecting population monotonicity. Given

the game (N, v,K), every full coalition is of size k. Since k ≤ n+1
2 we can use

theorem 1 to conclude that ψ = EG.

□
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5. Robustness

In this section we study the robustness of our results by looking at different

variations of the no outside options axiom.

The definition of the axiom of no outside option can appear quite restric-

tive. We previously defined the no outside option axiom on the following idea

of coalitional stability: a coalition can only form if each player consents to its

formation. This conception is in line with the model 1 of stability presented in

Hart and Kurz (1983). Additionally, this conception can also be interpreted as

a requirement for a deviation. Therefore, in this sense, coalitional stability can

be thought as the inability for players to form another coalition than the one

they are currently in. This second approach would give us the following axiom:

No outside options (weak). For every game with roles (N, v,K) ∈ Γrole,
it holds that the solution ϕ(N, v,K) = (µ, ψ) is such that ∃i ∈ µ(N, v,K) ∩ Fp

such that
ψi(µ(N, v,K), v|µ(N,v,K)) ≥ ψi(Fp, v|Fp

), ∀Fp ∈ F.

An alternative coalition Fp can form only if no member of µ(N, v,K) ∩ Fp

object to its formation.

Now, let us consider the following axiom defined for sharing rule over TU-

games:

Intersecting population monotonicity (weak). For each game (N, v) ∈ Γ

with n ≥ 3 and each couple of coalitions S, T ⊆ N with s = t, S ∩ T ̸= ∅ if

v(S) ≥ v(T ) it holds that ∃i ∈ S ∩ T such that ψi(S, v|S ) ≥ ψi(T, v|T ).

This axiom is sufficient to replace the intersecting population monotonicity

in the proof of theorem 1. Theorem 2 establishes a link between the axiom

of intersection population monotonicity for sharing rule on TU-games and no
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outside options for solutions on games with role, when µ satisfies optimality.

Similarly we can write the following theorem:

Theorem 4

Let us have a game with role (N, v,K) ∈ Γrole and a solution ϕ(µ, ψ). If µ sat-

isfies optimality then ϕ satisfying no outside options (weak) is equivalent

to ψ satisfying intersecting population monotonicity (weak).

This result draws the same link between no outside options (weak) and inter-

secting population monotonicity (weak). The proofs for this theorem is omitted

as it is quite similar to its counterpart. This implies that theorem 3 still holds

when we replace no outside options by this weaker version.

Going in another direction, we can build a more restrictive version of the

no outside option axiom. We require that the payoff obtained by each player

with the chosen full coalition µ(N, v,K) should be at least as large as the payoff

that any other player able to perform the same role can obtain in any other

full coalition. Application 1 in section 6 illustrate a situation in which this

requirement is relevant.

Therefore, we introduce the following axiom:

No outside options (strong). For every game with roles (N, v,K) ∈ Γrole

it holds that ϕ = (µ, ψ) is such that ψi(µ(N, v,K), v|µ(N,v,K)) ≥ ψj(Fp, v|Fp
),

∀Fp ∈ F j, ∀j ∈ Ki, ∀i ∈ µ(N, v,K).

In this stronger version we compare the payoff of a player i of the selected

full coalition µ(N, v,K) with every payoff of every other players able to perform

the same role as i in every full coalitions. It is clear that this axiom is a stronger

version of no outside options and that no outside options (strong) implies no
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outside options. We now prove the following result.

Theorem 5

For every game with role (N, v,K) ∈ Γrole such that k ≤ n+1
2 . Consider the

solution ϕ(µ, ψ) with µ satisfying optimality and ψ satisfying efficiency. The

solution ϕ satisfies no outside options (strong) if and only if ψ = EG.

Proof . We first prove the existence part. Consider a solution ϕ(µ,EG) with

µ satisfying optimality. We know that EG satisfies efficiency. We have

ψi(µ(N, v,K), v|µ(N,v,K)) =
v|µ(N,v,K)(µ(N, v,K))

k
, ∀i ∈ µ(N, v,K),

as well as

ψj(Fp, v|Fp
) =

v|Fp
(Fp)

k
, ∀Fp ∈ F j , ∀j ∈ N.

Since µ satisfies optimality we have v|µ(N,v,K)(µ(N, v,K)) ≥ v|Fp
(Fp) ∀Fp ∈ F .

Hence, ϕ(µ,ED) satisfies no outside options (strong).

Now the unicity part. We consider a solution ϕ(µ, ψ) with µ satisfying opti-

mality and ψ satisfying efficiency. Since ϕ satisfies no outside options (strong),

it satisfies no outside options. From theorem 2 we know that ψ satisfies inter-

secting population monotonicity. Given the game (N, v,K), every full coalition

is of size k. Since k ≤ n+1
2 we can use theorem 1 to conclude that ψ = EG.

□

6. Applications

In this section we illustrate our results by applying our model to rating systems

in online gaming (application 1), to organizational settings (application 2) and

to resource management (application 3). We intend to show by these applica-

tions that our model can tackle widely different issues. Application 1 illustrate
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both the model and our results in an already implemented mechanism. Appli-

cation 2 provide another context where the model can be used, and show how

the Shapley value would behave in this context. Application 3 only describe

how the model could be used to describe a water sharing problem.

Application 1 (Team Matchmaking Rating (MMR))

In modern team-based competitive video games, players from over the world

team up with strangers to compete against other strangers.

Outside of tournaments and organized competitions where professional teams

oppose each other, players that want to play a game join a queue of waiting

players. These players are then matched by a match-making algorithm. These

algorithms match players based on various informations, one of which is a skill

rating. These ratings are updated after each games. Usually, a win leads to an

increase in rating and a loss to a decrease in rating.

The design of skill ratings is the subject of an active literature (see for

instance Chen et al. (2017), Minka et al. (2018)) especially in the context of

games opposing teams of players. According to Minka et al. (2018), incentives

for cooperative behaviours are a concern of developers when designing their

rating system, mainly because the rating is an evaluation of a player’s level of

competency and, as such, often becomes a long term objective for players.

One popular genre of team-based competitive video games are the multi-

player online battle arena games (or MOBA games, for short). The MOBA

game Dota 2, developped by Valve Corporation, is currently the biggest video

game in terms of competitive earnings10. In this game, two teams of five players

must defend their own base while destroying the base of the other team. The

game is played on a symmetrical map. Every player independently controls a

character. Every character has specific abilities and a different play style. There

are currently 124 different characters to pick from. One of the key strategic el-

10Dota 2 cumulated a total prize pool of 32,954,188.52$ in 2022, across
125 competitive events according to the website esportsearnings.com. Source:
https://www.esportsearnings.com/history/2022/games, consulted on the 11/7/2023.

18



ement is therefore the synergy between the different characters and their style

of play.

In the context of our model, each player in the video-game can be represented

by a role Kα. Each player can pick a different character, represented in our

model by a player j ∈ Kα. We are interested in a rating system that shares

the value of the outcome of a match between team members in such a way that

players are encouraged to form the best team of characters.

Dota 2 rating system used to be a modified ELO system until april 2023

where it was replaced by a modified Glicko system (a bayesian variation of the

ELO system). These two systems were initially developed for chess rankings.

Compared to other rating system used in competitive video games such as the

TrueSkill algorithm (Minka et al., 2018), they do not measure the individual

performance of a player. When a team wins (or loses), every member of a team

is given the same bonus (or malus) to its rating.

The way these two systems used for Dota 2 allocate the value of a match’s

outcome between team members is egalitarian since every member gets the

same change in rating. This system is not always well received by players11.

Players can have a tendency to overestimate their skills, and blame a loss on

their teammates. However, theorem 5 shows that this egalitarian approach is

the only one where players always have an incentive to form the most efficient

team (or what they think would be the most efficient team). In particular, a

system relying on a measure of individual performance would lead players to

try and maximize their performance according to this measure, possibly to the

detriment of the one obvious common goal: a win for the team.

Hence, while the system that Valve Corporation adopted for Dota 2 is al-

ready easier to design and compute than a complex system that would try to

capture a individual performance within a team effort, our results show that it

11According to Valve Corporation, “Players’ appraisals of matchmak-
ing quality are highly correlated with their recent win rate”. Source:
https://web.archive.org/web/20131224214430/http://blog.dota2.com/2013/12/matchmaking/,
consulted on 11/7/2023.
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also has the benefit of a strong incentive to behave in line with the common goal.

Application 2 (Team project)

Consider the following situation: a business trusts one of its managers to take

on a new project that needs two other specialists. She is given freedom to

choose other employees to fill these roles. The other employees are free to

reject the proposition. Once the project is done, the team will get a bonus

proportional to the estimated value of the work produced. This raises the

problem of finding a sharing rule for this bonus that gives the manager the

incentives to put together the team that produce the most valuable work, and

for the potential team mates to accept. Formally we have N = {1, 2, 3, 4, 5}

and the role structure K = {{1}, {2, 3}, {4, 5}}. The full coalitions are F =

{{1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}}. The set of feasible coalition is given by

FN,K = {{1}, {2}, {3}, {4}, {5}, {1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 4}, {2, 5}, {3, 4},

{3, 5}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}}.

Imagine that 2 has poor synergy with both 4 and 5 while 3 has a really good

synergy with 5 (only amplified under 1 management) but can’t stand working

with 4. However, as a manager, 1 is able to be at its best when bridging the

divide between 4 and 3. The following worths for the feasible coalitions express

this situation12. The worths express the value of intermediary works as well as

the end product. We have v({i}) = 0 for all i ∈ N and

S 12 13 14 15 24 25 34 35 124 125 134 135

v(S) 0.5 0 1 1 0.5 0.75 0 2 2 2 3 4

Let us first consider a sharing rule based on marginal contribution: the

12Note that in this example, for any Fp ∈ F the sub-game v|Fp
is convex.
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Shapley value. It gives the following results for each full coalitions

Full coalition Fp ∈ F 124 125 134 135

Sh1(Fp, v|Fp
) 0.75 ∼ 0.666 ∼ 1.166 ∼ 0.833

Sh2(Fp, v|Fp
) 0.5 ∼ 0.541 - -

Sh3(Fp, v|Fp
) - - ∼ 0.666 ∼ 1.333

Sh4(Fp, v|Fp
) 0.75 - ∼ 0.666 -

Sh5(Fp, v|Fp
) - ∼ 0.791 - ∼ 1.833

We can see that the Shapley value does not satisfy intersecting population mono-

tonicity. The solution ϕ(µ, Sh) with µ satisfying optimality does not satisfy no

outside options. The full coalition giving the highest worth is {1, 3, 5} but 1

would prefer that 3 and 4 accept to work on her team. Similarly, 4 would rather

work with 2 than with 3. In each full coalitions, at least one player has an

outside options when the solution ϕ uses the Shapley value.

Across the organization, using a solution ϕ(µ,EG) with µ satisfying opti-

mality ensures that the most effective team will be formed willingly.

Application 3 (Water sharing)

Finally we propose an application of the model to a public economy problem.

Let us consider a water source with N potential consumers. The consumption

time is broken into k time periods 1, ..., k. Each consumer only need water in

one period. We note Kα the set of agents wanting to consume water at period

α for α ∈ {1, 2, . . . , k}. K = {K1,K2, . . . ,Kk} is the induced partition on N .

Every potential consumer i ∈ N has a need bi > 0 and each period k has a

maximum capacity of CKk
. We want to choose the set of consumers such that

there is no overconsumption of the resource while the least amount of water

goes unused. Hence the worth of a coalition S ⊆ N is given by

v(S) =
∑

α∈{1,...,k}

max
i∈S∩Kα

{min(bi;CKα
)},

and is the feasible total consumption of coalition S that leaves the least amount

of water unused.
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7. Concluding remarks

In this paper we developed a model of cooperative environments in which mul-

tiple roles have to be performed. This model is built on the canonical model of

cooperative TU-games. We showed that, if the number of players is sufficiently

larger than the number of roles, an egalitarian approach to the allocation of

the outcome of cooperation is the only efficient approach that always provide

incentive for the best coalition to form. We showed that this result is still true

when a weaker or stronger definition of stability is considered.

In our approach, the full domain of cooperative games in considered. Appli-

cation 2 shows that the solution ϕ = (µ, Sh) does not satisfy no outside options

even for convex games. On specific classes of games, it would be interesting to

determine whether other sharing rule than the egalitarian value are compatible

with the axiom of intersecting population monotonicity.

In addition, it is well known that the payoff vector given by the egalitarian

value often lies outside the core, even for convex games. Consequently the

selected full coalition can offer no outside options in the sense that all players

involved prefer working together than within another full coalition but not be

stable in the sense that this cooperation might fail. As such our result could

also be framed as an impossibility result: there are no solution ϕ = (µ, ψ) with

µ satisfying optimality and ϕ satisfying no outside options such that ψ(µ, v|µ)

lies in the core of (µ, v|µ). However, the fact that ψ might not be in the core can

possibly be irrelevant if we consider situations where the cooperation is based

on free association but, once established, is subject to binding agreements. The

applications we have presented show that these situations can exist in different

contexts, on which our result can provide insights.

Furthermore, our result can help understand the pervasiveness of fixed re-

munerations in organizations, which is still a challenge for incentives theory to

this day (Ménard, 2012). The capitalist firm where employees are on a fixed

wage determined by their position corresponds in our model to a solution where

the payoff ψi of a player i is determined by its role, independently of the total
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worth produced. Such a solution would satisfy intersection population mono-

tonicity but not be efficient. The difference between the sum of the wages and

the value produced is the residual surplus that goes to the owner of the firm’s

capital. The capitalist firm therefore trades efficiency for (hierarchical) wage

scales and thus still satisfies intersection population monotonicity.

Finally, on the basis of the main result of this paper, we argue that egali-

tarianism is the only approach that provides incentives towards optimality for

every cooperative situations that satisfies the following conditions:

� cooperation is based on free association;

� the numbers of players needed is sufficiently smaller than the numbers of

candidates.
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