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Background and Objective: Bidimensional entropy algorithms provide meaningful quantitative information on 
image textures. These algorithms have the advantage of relying on well-known one-dimensional entropy 
measures dedicated to the analysis of time series. However, uni- and bidimensional algorithms require the 
adjustment of some parameters that influence the obtained results or even findings. To address this, ensemble 
entropy techniques have recently emerged as a solution for signal analysis, offering greater stability and reduced 
bias in data patterns during entropy estimation. However, such algorithms have not yet been extended to their 
two-dimensional forms.

Methods: We therefore propose six bidimensional algorithms, namely ensemble sample entropy, ensemble 
permutation entropy, ensemble dispersion entropy, ensemble distribution entropy, and two versions of ensemble 
fuzzy entropy based on different models or parameters initialization of an entropy algorithm. These new 
measures are first tested on synthetic images and further applied to a biomedical dataset.

Results: The results suggest that ensemble techniques are able to detect different levels of image dynamics and 
their degrees of randomness. These methods lead to more stable entropy values (lower coefficients of variations) 
for the synthetic data. The results also show that these new measures can obtain up to 92.7% accuracy and 88.4% 
sensitivity when classifying patients with pulmonary emphysema through a k-nearest neighbors algorithm.

Conclusions: This is a further step towards the potential clinical deployment of bidimensional ensemble 
approaches to detect different levels of image dynamics and their successful performance on emphysema lung 
computerized tomography scans. These bidimensional ensemble entropy algorithms have potential to be used 
in various imaging applications thanks to their ability to distinguish more stable and less biased image patterns 
compared to their original counterparts.
1. Introduction

Several bidimensional entropy algorithms have been proposed to 
study two-dimensional data which are of great interest for medical 
imaging [1–13]. Entropy is linked to irregularity or uncertainty in the 
data’s structure. When an image is more irregular, its entropy is higher 
[1,2].
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Two-dimensional approximate entropy (ApEn2𝐷) [3], derived from 
univariate approximate entropy [14], was proposed to differentiate 
cancer cells from healthy ones. Nonetheless, approximate entropy is 
a biased method (because it takes into account self-match patterns 
in its algorithm) with possible unreliable results for small-sized im-

ages [15]. To alleviate the limitation of self-match patterns in ApEn2𝐷, 
two-dimensional sample entropy (SampEn2𝐷) [1] was developed, but 
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its values may still be undefined or unreliable for small-sized images 
[1].

To overcome the limitation of undefined SampEn2𝐷 values, two-

dimensional fuzzy entropy (FuzEn2𝐷) was developed [9]. FuzEn2𝐷
has already been used to assist in the diagnosis of pseudoxanthoma 
elasticum, a skin condition disorder [10], and to assess skin lesions, 
like melanoma, using colored dermoscopic images [8,12]. To address 
the limitation of undefined SampEn2𝐷 values, two-dimensional per-

mutation entropy (PerEn2𝐷) [6] was also developed based on two-

dimensional permutation patterns and Shannon entropy. PerEn2𝐷 is 
relatively simple algorithmically though sensitive to noise [2]. Never-

theless, it has been used to study mammary tissue density [6], synthetic 
textures [11], breast histopathologic images [11], and chest X-rays im-

ages [13].

To overcome the limitation of PerEn2𝐷 in estimating entropy of 
noisy data and the shortcoming of undefined SampEn2𝐷 values, Azami 
et al. [4] proposed a new method called bidimensional distribution en-

tropy (DistEn2𝐷) based on the distance between patterns and their dis-

tribution through a histogram. DistEn2𝐷 was found to be less sensitive 
to noise and less dependent on the setting parameters, demonstrating 
good performance even for small-sized images [4]. However, based on 
the DistEn algorithm, new data created simply by random permutations 
of an original image (shuffling image) have DistEn2𝐷 values close to 
that for the original image. For instance, if the elements of an image 
are sorted, its DistEn2𝐷 value is not changed considerably. However, as 
expected theoretically and intuitively, sorting leads to a lower entropy 
value (less irregularity). To alleviate this shortcoming, two-dimensional 
dispersion entropy (DispEn2𝐷) [7] was proposed based on mapping pix-

els within an image into different 𝑐 classes, leading to a reliable, fast, 
and stable method [7]. DispEn2𝐷 was applied to synthetic and real 
medical datasets and was found to be more stable, faster, and with-

out undefined values compared to SampEn2𝐷 [7].

Recently, to address the sensitivity of one-dimensional entropy to 
their parameters, the concept of ensemble entropy was introduced 
based on generating stable and low bias data patterns for entropy 
estimation [16]. Information theory-based entropy and its ensemble 
form have the potential to bridge various disciplines, including biology, 
biomedicine, chemistry, and quantum mechanics [17–20]. For instance, 
the concept of information entropy was employed to describe the struc-

tural (topological) complexity of chemical compounds and reactions 
[19,20]. While the conventional approach involves summing individual 
entropies, often leading to counterintuitive outcomes, a novel method 
has emerged for cases where multiple molecules form an ensemble. 
This method treats molecular ensembles as holistic entities, thereby 
enhancing accuracy in estimating complexity changes during reactions 
[19,20].

Ensemble entropy is based on using a range of parameter settings, in 
opposition to other methods that use a single set of parameters. As an 
extension of the one-dimensional ensemble entropy algorithms already 
developed, we propose, for the first time, two-dimensional ensemble 
sample entropy (EnsSampEn2𝐷), two-dimensional ensemble permuta-

tion entropy (EnsPerEn2𝐷), and two-dimensional ensemble dispersion 
entropy (EnsDispEn2𝐷). Furthermore, we propose the use of the en-

semble concept for entropy algorithms that were never tested in an 
ensemble fashion, namely the two-dimensional ensemble fuzzy entropy, 
with multiple embedding dimensions 𝑚 (EnsFuzEn𝑀

2𝐷) and with multi-

ple tolerance 𝑟 (EnsFuzEn𝑅
2𝐷), and two-dimensional ensemble distribu-

tion entropy (EnsDistEn2𝐷).

Herein, we apply these ensemble entropy techniques to differenti-

ate pulmonary emphysema. Pulmonary emphysema occurs when the 
destruction of the lung parenchyma is verified [21,22]. This condition 
is derived from chronic obstructive pulmonary disease (COPD) where 
the patient’s airflow is limited and is not fully reversible. Based on the 
lobular anatomy, pulmonary emphysema can be classified as centrilob-

ular emphysema (CLE), panlobular emphysema (PLE), and paraseptal 
2

emphysema (PSE) [21]. In this study, three types of pulmonary tissue 
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were analyzed: normal, CLE, and PSE. Computed tomography (CT) is 
established as an in-vivo method for emphysema analysis as it can be 
useful for both diagnosing and quantifying pulmonary emphysema, pro-

viding morphological information [22,23]. When using high-resolution 
CT, emphysema is identified by the presence of low attenuation areas 
contrasting with the surrounding parenchyma of normal attenuation 
values [22].

The remaining paper is divided as follows: section 2 describes the 
original and ensemble entropy methods, and details the synthetic data 
and biomedical dataset used; section 3 shows and discusses the results 
obtained for the ensemble and original entropy techniques. Finally, sec-

tion 4 recapitulates the main results, and proposes future works.

2. Methods and materials

Based on the ensemble approaches recently published [16], we pro-

pose the two-dimensional extensions of ensemble dispersion entropy, 
ensemble permutation entropy, and ensemble sample entropy for two-

dimensional data (respectively named EnsDispEn2𝐷, EnsPerEn2𝐷, and 
EnsSampEn2𝐷). Moreover, we also introduce the use of two-dimensional 
ensemble distribution entropy (EnsDistEn2𝐷), and two forms of two-

dimensional ensemble fuzzy entropy (EnsFuzEn2𝐷).

First, we describe the ensemble techniques and summarize the cor-

responding original entropy metrics. Later, we describe the synthetic 
data for validation tests and the biomedical dataset used herein. Fi-

nally, we present the parameter settings used for both the synthetic and 
biomedical datasets. The MATLAB® code used in this paper is available 
at https://github .com /HamedAzami.

2.1. Two-dimensional ensemble dispersion entropy

Two-dimensional dispersion entropy (DispEn2𝐷) [7] is based on 
mapping pixel values into different classes. The simplest mapping pro-

cedure is the linear mapping but other techniques can be used like 
normal cumulative distribution function (NCDF), tansig, logsig, and 
sorting mappings. Therefore, DispEn2𝐷 has three main parameters to be 
set: the mapping procedure, the embedding size, 𝑚-value, of the tem-

plates, and the number of classes 𝐶 for pixel mapping. For more details 
regarding DispEn2𝐷 please see Ref. [7].

Herein, we describe the methods behind EnsDispEn2𝐷. This low bias 
technique is based on the simultaneous use of the five different map-

pings mentioned above: linear, NCDF, tansig, logsig, and sorting. For 
an image {X𝑖,𝑗}, the elements – with 1 ≤ 𝑖 ≤𝐻 and 1 ≤ 𝑗 ≤𝑊 (𝐻 -height, 
𝑊 -width) – are mapped into integers from 1 to 𝐶 classes according to 
the mapping procedure. This results in five mapped image versions: lin-

ear (𝜼𝑐), NCDF (𝝃𝑐 ), tansig (𝜿𝑐 ), logsig (𝝀𝑐 ), and sorting (𝝎𝑐 ), with the 
same size as the original image.

Then, based on the mapped versions, templates are obtained accord-

ing to the desired embedding parameter 𝑚. The templates for 𝜼𝑐 are de-

fined in equation (1). For the remaining mapped versions, the templates 
𝝃
𝑚,𝑐

𝑖,𝑗
, 𝜿𝑚,𝑐

𝑖,𝑗
, 𝝀𝑚,𝑐

𝑖,𝑗
, and 𝝎𝑚,𝑐

𝑖,𝑗
are obtained similarly. The number of possible 

templates 𝑁𝑡 obtained for each mapping is 𝑁𝑡 = (𝐻 −𝑚) × (𝑊 −𝑚).

𝜼
𝑚,𝑐

𝑖,𝑗
=

⎡⎢⎢⎣
𝜂𝑖,𝑗 … 𝜂𝑖,𝑗+𝑚−1
… … …

𝜂𝑖+𝑚−1,𝑗 … 𝜂𝑖+𝑚−1,𝑗+𝑚−1

⎤⎥⎥⎦ . (1)

Afterwards, the templates for each mapping are vectorized into dis-

persion patterns 𝜋𝑚,𝑐

𝑖,𝑗
. In the next step, we obtain the probability asso-

ciated with each dispersion pattern by evaluating all the mappings at 
once. Let Π𝑚,𝑐 be the set composed by all the unique dispersion pat-

terns in the mapped images. Then, 𝐶(Π𝑚,𝑐

𝑘
) corresponds to the number 

of occurrences of Π𝑚,𝑐

𝑘
on the dispersion patterns extracted from the 

five image mapped versions. The probability of each occurrence is then 
computed as:

𝑚,𝑐
𝐶(Π𝑚,𝑐

𝑘
)

𝑝(Π
𝑘

) =
5𝑁𝑡

. (2)
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Finally, EnsDispEn2𝐷 is defined as:

EnsDispEn2𝐷(X,𝑚,𝐶) = − 1
log(𝑁𝑑 )

𝐾∑
1
𝑝(Π𝑘) × log(𝑝(Π𝑘)) , (3)

where 𝑁𝑑 = 𝐶𝑚×𝑚 is the number of possible dispersion patterns.

2.2. Two-dimensional ensemble distribution entropy

Two-dimensional distribution entropy (DistEn2𝐷) [4] is based on the 
empirical probability density function (ePDF), estimated through a his-

togram [4]. DistEn2𝐷 depends on two parameters: the number of bins 
(𝐵), used in the histogram, and the embedding dimension (𝑚). DistEn2𝐷
is detailed in Ref. [4].

EnsDistEn2𝐷 is based on the mean of multiple DistEn2𝐷 values by 
using several 𝑚-values to obtain the templates, i.e., [𝑚1,… ,𝑚𝐾 ]. To the 
best of our knowledge, an ensemble distribution entropy approach has 
not yet been proposed either for one- or two-dimensional data.

Let’s consider an image X of dimensions 𝐻 × 𝑊 . First, the tem-

plates X𝑚𝑘

𝑖,𝑗
for a specific 𝑚𝑘-value are obtained using equation (4). These 

squared templates have 𝑚𝑘 ×𝑚𝑘 points. Similarly to DispEn2𝐷, the total 
number of templates is 𝑁𝑡 = (𝐻 −𝑚𝑘) × (𝑊 −𝑚𝑘).

X
𝑚𝑘

𝑖,𝑗
=

⎡⎢⎢⎣
𝑋𝑖,𝑗 … 𝑋𝑖,𝑗+𝑚𝑘−1
… … …

𝑋𝑖+𝑚𝑘−1,𝑗 … 𝑋𝑖+𝑚𝑘−1,𝑗+𝑚𝑘−1

⎤⎥⎥⎦ . (4)

Afterwards, the distance between templates X𝑚𝑘

𝑖,𝑗
and X𝑚𝑘

𝑎,𝑏
is obtained 

using the following definition:

𝑑
𝑚𝑘

𝑖,𝑗,𝑎,𝑏
=max |X𝑚𝑘

𝑖,𝑗
−X

𝑚𝑘

𝑎,𝑏
| , (5)

with 1 ≤ 𝑎 ≤𝐻 −𝑚𝑘, 1 ≤ 𝑏 ≤𝑊 −𝑚𝑘, and (𝑖, 𝑗) ≠ (𝑎, 𝑏). The histogram of 
the distance values is determined using 𝐵 bins, and the probability of 
each bin 𝑝𝑏, 𝑏 = 1,… ,𝐵, is used to compute the entropy value according 
to Shannon’s definition:

DistEn2𝐷(X,𝑚𝑘) = −
∑𝐵

𝑏=1 𝑝𝑏 × log2(𝑝𝑏)
log2(𝐵)

. (6)

EnsDistEn2𝐷 is obtained by using different 𝑚𝑘-values as follows:

EnsDistEn2𝐷(X,𝑀) = 1
𝐾

𝐾∑
𝑘=1

DistEn2𝐷(X,𝑚𝑘) . (7)

2.3. Two-dimensional ensemble permutation entropy

Permutation entropy (PerEn) [24] was introduced as a robust, sim-

ple, and computationally low-cost entropy algorithm for signal analysis. 
Later on, two-dimensional permutation entropy (PerEn2𝐷) was pro-

posed by Morel et al. [11]. This method relies on the determination 
of the probability associated with each permutation pattern. PerEn was 
designed to avoid the need for multi-parameter tuning [24]. This char-

acteristic is extended to PerEn2𝐷 such that only the parameter 𝑚 has to 
be set.

EnsPerEn2𝐷 is defined as the average of PerEn2𝐷 for multiple 𝑚-

values, i.e., 𝑀 = [𝑚1,… ,𝑚𝐾 ], with 𝑚1 = 2 and 𝐾 the number of models. 
Based on PerEn recommendation [24], the maximum 𝑚-value should be 
defined based on the limit ((𝑚𝐾 + 1)2)! ≤ (𝑊 ×𝐻).

As the methods before, templates are extracted from the image with 
a specific embedding dimension (X𝑚𝑘

𝑖,𝑗
). The maximum number of tem-

plates for each 𝑚𝑘-value is defined as 𝑁𝑡 = (𝐻 −𝑚𝑘) × (𝑊 −𝑚𝑘). Then, 
each template is vectorized line by line. The intensities of the vector-

ized templates must be rearranged in ascending order to determine the 
corresponding permutation pattern 𝜋𝑚𝑘

𝑖,𝑗
.

Let’s consider that one of these vectors has the following intensities 
[0.8,0.1,0.5,0.9] and their positions are defined as {0,1,2,3}. When re-

arranging the intensity values in ascending order, the vector becomes 
3

[0.1,0.5,0.8,0.9]. Therefore, the initial positions are sorted as {1,2,0,3}. 
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The corresponding permutation pattern 𝜋2
𝑖,𝑗

would be [1,2,0,3] [11]. 
The vector has 𝑚2

𝑘
points, and there are 𝑁𝑚𝑘

𝑝 = (𝑚𝑘 ×𝑚𝑘)! possible dif-

ferent permutation patterns.

Considering Π𝑚𝑘 the set of all unique permutation patterns extracted 
from the original image, and 𝐶(Π𝑚𝑘

𝑐 ) the number of occurrences of Π𝑚𝑘
𝑐

on the set of all the permutation patterns extracted from the image, we 
can compute the following probability.

𝑝(Π𝑚𝑘
𝑐 ) =

𝐶(Π𝑚𝑘
𝑐 )

𝑁𝑡

. (8)

For each 𝑚𝑘-value within 𝑀 and based on Shannon’s definition, the 
PerEn2𝐷 is defined as:

PerEn2𝐷(X,𝑚𝑘) = −
𝐶∑
𝑐=1

𝑝(Π𝑚𝑘
𝑐 ) × ln(𝑝(Π𝑚𝑘

𝑐 )) . (9)

Then, we define normalized PerEn2𝐷 as follows:

NPerEn2𝐷(X,𝑚𝑘) =
PerEn2𝐷(X,𝑚𝑘)

ln(𝑁𝑚𝑘
𝑝 )

. (10)

Finally, EnsPerEn2𝐷 can be defined as:

EnsPerEn2𝐷(X,𝑀) = 1
𝐾

𝐾∑
𝑘=1

NPerEn2𝐷(X,𝑚𝑘) . (11)

2.4. Two-dimensional ensemble sample entropy

Two-dimensional sample entropy (SampEn2𝐷) [1] relies on verifying 
if squared templates of (𝑚 ×𝑚)-points remain similar for (𝑚+ 1) × (𝑚+ 1).
SampEn2𝐷 was shown to be robust and to be able to differentiate dis-

tinct textures but it can be inaccurate for small images [4].

SampEn2𝐷 depends on two main parameters, the size of templates 
(𝑚) and the tolerance value (𝑟) used to define similarity between tem-

plates. The 𝑟 balances the estimation of entropy. When the tolerance 
is small, templates are more difficult to be considered similar, which 
can lead to inaccurate (or even undefined) entropy values. In contrast, 
when 𝑟 is large, many templates are defined as similar and the details of 
the image can be lost, associating biased high entropy values to the im-

ages [1]. Therefore, EnsSampEn2𝐷 is based on using different 𝑟-values, 
where 𝑅 = [𝑟1,… , 𝑟𝐾 ], with 𝐾 corresponding to the number of tolerance 
values used, hence, the number of considered models.

Once again, we consider an image X of dimensions 𝐻 ×𝑊 , and a 
fixed embedding dimension 𝑚. In addition, we define the tolerance pa-

rameter as 𝑟𝑘 = 𝑝 × SD(X), where 𝑝 is a percentage level, SD stands for 
standard deviation, and 1 ≤ 𝑘 ≤𝐾 .

First, the templates are defined as the other methods (𝑋𝑚
𝑖,𝑗

). Sim-

ilarly, there will be 𝑁𝑡 = (𝐻 −𝑚) × (𝑊 −𝑚) possible templates within 
the image X. Then, we can calculate the distance between templates 
𝑋𝑚

𝑖,𝑗
and 𝑋𝑚

𝑎,𝑏
of the same embedding size as shown in equation (5).

Considering 𝐶(𝑑𝑚
𝑖,𝑗,𝑎,𝑏

≤ 𝑟𝑘) the number of times that the distance is 
less than or equal to the threshold 𝑟𝑘, we can defined the probability as:

𝜙𝑚(𝑟𝑘) =
𝐶(𝑑𝑚

𝑖,𝑗,𝑎,𝑏
≤ 𝑟𝑘)

𝑁𝑡

, (12)

where 1 ≤ 𝑘 ≤𝐾 . Subsequently, the average Φ𝑚(𝑟𝑘) is determined as fol-

lows:

Φ𝑚(𝑟𝑘) =
∑𝐾

1 𝜙𝑚(𝑟𝑘)
𝑁𝑡

. (13)

Thereupon, the average of all Φ𝑚(𝑟𝑘) is obtained (equation (14)), and 
after repeating the previous steps for templates of size (𝑚+ 1) × (𝑚+ 1), 
EnsSampEn2𝐷 is defined as in equation (15).

Φ𝑚 =
∑𝑁𝑟

1 Φ𝑚(𝑟𝑘)
𝑁𝑟

. (14)

Φ𝑚
EnsSampEn2𝐷(X,𝑚,𝑅) = ln
Φ𝑚+1 . (15)
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2.5. Two-dimensional ensemble fuzzy entropy

Hilal et al. [9,10] proposed the use of two-dimensional fuzzy en-

tropy (FuzEn2𝐷) based on the original concept of fuzzy entropy (FuzEn) 
[25]. FuzEn2𝐷 was used to characterize both the local and global char-

acteristics of an image, in contrast with FuzEn that analyzed only local 
properties of the signal. FuzEn2𝐷 is an entropy metric in which similar-

ity between templates is obtained continuously. In addition, FuzEn2𝐷
remains consistent for short data, when compared to SampEn2𝐷 , al-

though it has a higher computational cost. This metric is dependent on 
three parameters: the embedding dimension of the templates 𝑚, toler-

ance 𝑟, and fuzzy power 𝑛 (usually set to 𝑛 = 2) [9,10].

Herein, we describe the two derived ensemble approaches of 
FuzEn2𝐷: the two-dimensional ensemble fuzzy entropy with multiple 
tolerances (EnsFuzEn𝑅

2𝐷) and the two-dimensional ensemble fuzzy en-

tropy with multiple embedding dimensions (EnsFuzEn𝑀
2𝐷).

EnsFuzEn𝑅
2𝐷 will first be described. For an image X of dimen-

sions 𝐻 ×𝑊 , a fixed embedding dimension 𝑚, and multiple 𝑟𝑘-values 
𝑅 = [𝑟1, … , 𝑟𝐾 ] with 𝐾 being the number of models, the templates are 
defined as in the other cases with 𝑁𝑡 = (𝐻 −𝑚) × (𝑊 −𝑚) possible tem-

plates within the image X.

Afterwards, the distance 𝑑𝑚
𝑖,𝑗,𝑎,𝑏

between the templates 𝑋𝑚
𝑖,𝑗

and 𝑋𝑚
𝑎,𝑏

for 1 ≤ 𝑖, 𝑎 ≤𝐻 − 𝑚, 1 ≤ 𝑗, 𝑏 ≤𝑊 − 𝑚, and (𝑖, 𝑗) ≠ (𝑎, 𝑏) is obtained as in 
equation (5) (𝑚𝑘 =𝑚).

Next, the similarity degree 𝐷𝑚
𝑖,𝑗,𝑎,𝑏

(𝑟𝑘) is obtained as follows:

𝐷𝑚
𝑖,𝑗,𝑎,𝑏

(𝑟𝑘) = exp
(
−
(𝑑𝑚

𝑖,𝑗,𝑎,𝑏

𝑟𝑘

)𝑛)
, (16)

where 𝑛 is the fuzzy power. Then, the average of the similarity degree 
values between templates is defined as:

Φ𝑚(𝑟𝑘) =

∑𝑁𝑡

1 𝐷𝑚
𝑖,𝑗,𝑎,𝑏

(𝑟𝑘)

𝑁𝑡
2 . (17)

The average of Φ𝑚(𝑟𝑘) is obtained as:

Φ𝑚 =
∑𝐾

𝑘=1 Φ
𝑚(𝑟𝑘)

𝐾
. (18)

Subsequently, the previous steps are repeated for templates of size 
(𝑚 + 1) × (𝑚 + 1), and EnsFuzEn𝑅

2𝐷 is defined as:

EnsFuzEn𝑅
2𝐷(X,𝑚,𝑅, 𝑛) = ln Φ𝑚

Φ𝑚+1 . (19)

For EnsFuzEn𝑀
2𝐷, we now consider a fixed tolerance and a variable 

𝑚-value, for a certain number of models 𝐾 where 𝑀 = [𝑚1, … , 𝑚𝐾 ]. The 
process is similar to the EnsFuzEn𝑅

2𝐷 but the average similarity degree 
for the set of 𝑚-values is defined as:

Φ𝑀 (𝑟) =
∑𝐾

𝑘=1 Φ
𝑚𝑘 (𝑟)

𝐾
. (20)

Finally, the EnsFuzEn𝑀
2𝐷 can be computed by using a new set of 𝑚-

values where 𝑀 ′ = [𝑚1 + 1,… ,𝑚𝐾 + 1].

EnsFuzEn𝑀
2𝐷(X,𝑀, 𝑟, 𝑛) = ln Φ𝑀 (𝑟)

Φ𝑀 ′ (𝑟)
. (21)

2.6. Synthetic data

To evaluate if two-dimensional ensemble algorithms are able to 
detect the degree of randomness, MIX2𝐷(𝑝) images [1] were used. 
MIX2𝐷(𝑝) images are defined by sinusoidal regular behavior and a 
random distribution (irregular behavior). The level of irregularity is de-

termined by the parameter 𝑝. Fig. 1 shows 64 × 64 pixels-sized images 
defined by MIX2𝐷(𝑝) processes.

MIX2𝐷(𝑝) images of 64 × 64 pixels were used to show the behavior 
of entropy metrics upon increasing irregularity. For this test, we varied 
4

the parameter 𝑝 between 0.0 and 1.0 with a step of 0.05 and calculated 
Computer Methods and Programs in Biomedicine 242 (2023) 107855

Fig. 1. Examples of MIX2𝐷(𝑝) images with 64 × 64 pixels.

their entropy values. This test was repeated 10 times for each 𝑝 value. 
In addition, to assess the stability of these metrics in comparison with 
their corresponding original entropy values, we applied the ensemble 
and original entropy methods to MIX2𝐷(𝑝) images of 32 × 32, 64 × 64, 
and 128 × 128 pixels with fixed 𝑝 to 𝑝 = 0.5. For each size, we used 10 
randomly generated images.

2.7. Biomedical application

The biomedical dataset used in this study is publicly available at 
https://lauge -soerensen .github .io /emphysema -database [26]. This pub-

lic dataset has 168 patches of high-resolution computed tomography 
scans from 39 subjects. These subjects were either never-smokers indi-

viduals (9), smokers (10), or smokers diagnosed with chronic obstruc-

tive pulmonary disease (COPD). The patches were manually segmented 
by an experienced radiologist and experienced pulmonologist. These 
patches were divided into 3 categories regarding their leading pattern: 
normal tissue (NT), centrilobular emphysema (CLE), and paraseptal em-

physema (PSE).

CLE is usually distributed in the upper lobe of the lung or in the su-

perior segment of the lower lobe. When CLE is present, an enlargement 
of the centriacinar airspace is verified mainly in proximal respiratory 
bronchioles. CLE is the type of emphysema most associated with smok-

ing habits [22]. On the other hand, PSE leads to an enlarged airspace in 
the peripheric acini and is usually limited in extent and present along 
the dorsal surface of the upper lung. Reduced alveoli is also verified 
[21].

The patches have a size of 61 × 61 pixels. The ensemble entropy 
algorithms and their corresponding original forms were used to charac-

terize the texture of these patterns. Afterwards, the normality of each 
group was assessed with the Shapiro Wilk test for a significance level 
of 𝛼 = 0.05. Moreover, we performed a Kruskal-Wallis analysis regard-
ing the statistical significance between the three groups and we tested 

https://lauge-soerensen.github.io/emphysema-database
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the statistical difference between each groups’ pair (NT vs CLE, CLE vs 
PSE, and NT vs PSE) using Tukey’s honestly test.

Finally, through a multiclass KNN classifier we assessed the ability 
of each entropy metric to classify NT texture, CLE texture, and PSE tex-

ture. The classification metrics chosen are: area under the curve (AUC) 
for the three groups (NT, CLE, and PSE), accuracy, sensitivity (macro 
and micro), precision (macro and micro), and F1-score (macro and mi-

cro). Sensitivity and precision macro were obtained by averaging the 
sensitivity and precision obtained for each class. F1-score macro was 
obtained with these macro values. Sensitivity and precision micro were 
obtained with the true positives, the false negatives, and false positives 
values of each class. F1-score micro was then obtained with sensitivity 
and precision micro.

2.8. Parameters settings

First, the effects of parameter settings and the performance of en-

semble entropy approaches was compared to the original entropy meth-

ods in the validation tests. For this purpose the methods were tested 
with the following parameter settings:

• EnsDispEn2𝐷:

𝑛𝑐 = 5 and five mappings;

• EnsDistEn2𝐷:

𝑀 = [2, 3] and 𝐵 = 1024;

• EnsSampEn2𝐷:

𝑅 = [0.1, 0.15, 0.2, 0.25, 0.3]×SD(X) and 𝑚 = 2;

• EnsFuzEn𝑀
2𝐷: 𝑀 = [2, 3, 4], 𝑟 = 0.2×SD(X), and 𝑛 = 2;

• EnsFuzEn𝑅
2𝐷:

𝑅 = [0.1, 0.15, 0.2, 0.25, 0.3]×SD(X), 𝑚 = 2, and 𝑛 = 2.

The ensemble entropy algorithms were also tested, on the biomedi-

cal dataset, with the parameters above.

For the original entropy algorithms, the parameters were fixed to 
𝑚 = 2 for DistEn2𝐷 , FuzEn2𝐷, PerEn2𝐷 , and SampEn2𝐷, 𝑟 = 0.2×SD(X) 
for FuzEn2𝐷 , and SampEn2𝐷 , 𝑛𝑐 = 6 and NCDF mapping for DispEn2𝐷, 
𝐵 = 1024 for DistEn2𝐷 , and 𝑛 = 2 for FuzEn2𝐷 .

For the statistical tests, we used Matlab’s® kruskalwallis function for 
the Kruskal Wallis test, and the multcompare function for Tukey’s hon-

estly test. In addition, we also used the function fitcknn for the k-nearest 
neighbor (KNN) classifier with automatic hyperparameters optimization 
option.

3. Results and discussion

3.1. Validation tests

First, we show the variation of entropy for ensemble and original en-

tropy techniques according to different irregularity 𝑝 levels of MIX2𝐷(𝑝) 
images. As the irregularity of images increases, we expect to observe 
higher entropy values.

In Fig. 2, comparing both DispEn2𝐷 (green) approach and the ensem-

ble version, both methods show increasing entropy with the increasing 
of image irregularity. DispEn2𝐷 is slightly better than EnsDispEn2𝐷
when discriminating different irregular images because it shows a 
higher entropy variation (45.9 ±0.2% vs. 41.5 ±0.1%). DispEn2𝐷 has bet-

ter differentiation than EnsDispEn2𝐷 for more irregular images as they 
have higher frequency components. Based on this, DispEn2𝐷 might per-

form better for higher frequency based images than EnsDispEn2𝐷 . For 
more regular images composed by lower frequencies, both algorithms 
should perform similarly.

For DistEn2𝐷 and EnsDistEn2𝐷 methods (see Fig. 3), we observe that 
DistEn2𝐷 achieves a variation of entropy of 53.0 ± 0.0%. EnsDistEn2𝐷
shows a variation of 51.6 ± 0.0% and a curve profile very similar to 
DistEn2𝐷 . Moreover, DistEn2𝐷 and EnsDistEn2𝐷 have an increase of 
5

around 2% between 𝑝 = 0.95 and 𝑝 = 1.0 which occurs due to the nature 
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Fig. 2. DispEn2𝐷 and EnsDispEn2𝐷 entropy values for MIX2𝐷(p) images of 64 ×64
pixels and 0 ≤ 𝑝 ≤ 1.

Fig. 3. DistEn2𝐷 and EnsDistEn2𝐷 entropy values for MIX2𝐷(p) images of 64 ×64
pixels.

of the method. Both approaches are determined by using the histogram 
of the distances between templates.

Fig. 4 shows a similar variation for EnsPerEn2𝐷 and PerEn2𝐷 . 
EnsPerEn2𝐷 shows a relative increase of entropy of 36.5 ±0.0% which is 
better compared to the 34.6 ± 0.0% increase of PerEn2𝐷 . Both measures 
show stable curves for 𝑝 ≥ 0.4, with little or none increase of entropy 
after that.

For SampEn2𝐷 (Fig. 5), the relative increase observed is 89.0 ±1.2%. 
However, this value cannot be compared directly with the remaining 
measures since entropy for 0.55 ≤ 𝑝 ≤ 1.0 was undefined. The same hap-

pens for EnsSampEn2𝐷 but, in this case, the entropy was undefined for 
𝑝 ≥ 0.6, with an increase of 89.2 ± 0.9%. Both curves completely overlap 
leading to the conclusion that both parameter settings have similar be-

haviors in entropy evaluation. However, EnsSampEn2𝐷 is more stable 
since it can determine entropy for 𝑝 ≤ 0.6. For this size (64 × 64 pix-

els) and given the irregularity (𝑝 ≥ 0.6 and 𝑝 ≥ 0.5), EnsSampEn2𝐷 and 
SampEn2𝐷 are not able to find similar templates within the image, lead-

ing to undefined entropy values.

In addition, the performances of FuzEn2𝐷 and EnsFuzEn𝑀
2𝐷 are sim-

ilar for every value of 𝑝. Their entropy variation is 82.9 ± 0.1% and 
87.7 ± 0.1%, respectively. EnsFuzEn𝑅

2𝐷 shows a lower relative entropy 
increase of 81.5 ± 0.1%.

Overall, EnsFuzEn𝑀
2𝐷 (see Fig. 6) shows the best increase of entropy 

(87.7%) between the most regular (𝑝 = 0) and the most irregular (𝑝 = 1) 

images. The remaining methods and their different parameter settings 
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Fig. 4. PerEn2𝐷 and EnsPerEn2𝐷 entropy values for MIX2𝐷(p) images of 64 × 64
pixels.

Fig. 5. SampEn2𝐷 and EnsSampEn2𝐷 entropy values for MIX2𝐷(p) images of 
64 × 64 pixels.

Fig. 6. FuzEn2𝐷 , EnsFuzEn𝑀

2𝐷 , and EnsFuzEn𝑅

2𝐷 entropy values for MIX2𝐷(p) im-

ages of 64 × 64 pixels.

have a lower variation of entropy values when considering images with 
increasing irregularity such as MIX2𝐷(𝑝) images.

Summarizing the previous results, we observe that:

• DispEn2𝐷 and DistEn2𝐷 show very similar behaviors compared to 
6

their corresponding ensemble techniques;
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Table 1

Mean ensemble and original entropy values for MIX2𝐷(𝑝 =
0.5) images of 32 × 32, 64 × 64, and 128 × 128 pixels.

Entropy algorithms 32 × 32 64 × 64 128 × 128

DispEn2𝐷 6.13 ± 0.04 6.63 ± 0.02 6.78 ± 0.01
EnsDispEn2𝐷 6.09 ± 0.03 6.19 ± 0.01 6.21 ± 0.01

DistEn2𝐷 0.90 ± 0.00 0.90 ± 0.00 0.90 ± 0.00
EnsDistEn2𝐷 0.89 ± 0.00 0.89 ± 0.00 0.90 ± 0.00

PerEn2𝐷 0.99 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
EnsPerEn2𝐷 0.76 ± 0.00 0.82 ± 0.00 0.87 ± 0.00

SampEn2𝐷 - 6.57 ± 0.77 6.82 ± 0.22
EnsSampEn2𝐷 - 6.44 ± 0.37 6.58 ± 0.13

FuzEn2𝐷 3.68 ± 0.08 3.68 ± 0.07 3.70 ± 0.02
EnsFuzEn𝑀

2𝐷 3.69 ± 0.08 3.68 ± 0.10 3.70 ± 0.02
EnsFuzEn𝑅

2𝐷 (2) 3.36 ± 0.07 3.35 ± 0.06 3.37 ± 0.01

Table 2

Coefficient of variation (CV) for the values obtained 
by the ensemble and original entropy methods using 
MIX2𝐷(𝑝 = 0.5) images of 32 × 32, 64 × 64, and 128 ×
128 pixels.

Entropy algorithms 32 × 32 64 × 64 128 × 128

DispEn2𝐷 0.006 0.003 0.002

EnsDispEn2𝐷 0.005 0.002 0.001

DistEn2𝐷 0.006 0.003 0.001

EnsDistEn2𝐷 0.005 0.002 0.001

PerEn2𝐷 0.002 0.001 0.000

EnsPerEn2𝐷 0.001 0.000 0.000

SampEn2𝐷 - 0.117 0.033

EnsSampEn2𝐷 - 0.057 0.021

FuzEn2𝐷 0.022 0.018 0.004

EnsFuzEn𝑀
2𝐷 0.022 0.018 0.004

EnsFuzEn𝑅
2𝐷 0.021 0.017 0.004

• EnsPerEn2𝐷 and PerEn2𝐷 have a similar irregularity discrimination;

• EnsSampEn2𝐷 is more stable than the original algorithm, being able 
to determine entropy for 0.0 ≤ 𝑝 ≤ 0.6;

• EnsFuzEn𝑀
2𝐷 has a higher entropy variation, followed by FuzEn𝑀

2𝐷, 
and finally, EnsFuzEn𝑅

2𝐷.

Table 1 shows the mean entropy values of MIX2𝐷(𝑝 = 0.5) images 
with different sizes. This allows to observe how different entropy al-

gorithms remain stable based on the image’s size. First, we can ob-

serve that DistEn2𝐷 , EnsDistEn2𝐷, PerEn2𝐷 , and EnsPerEn2𝐷 show the 
lowest SD values, indicating higher precision. Nonetheless, DispEn2𝐷, 
EnsDispEn2𝐷, FuzEn2𝐷, EnsFuzEn𝑀

2𝐷, and EnsFuzEn𝑅
2𝐷 also show very 

low SD values. Table 2 reflects the coefficient of variation (CV=SD∕𝜇) 
of these algorithms for the different image sizes.

The ensemble version of DispEn2𝐷 has an improved consistency (Ta-

ble 1) when compared with DispEn2𝐷. The original algorithm has a 
relative difference (RD) of about 9.6% when using images of 128 × 128
and 32 × 32 pixels, and EnsDispEn2𝐷 has a RD of 2.1%. Table 2 also 
shows that EnsDispEn2𝐷 is more stable since its corresponding CV is 
lower.

RD between the smallest and the largest image was 0.0% for 
DistEn2𝐷 and 1.1% for EnsDistEn2𝐷. However, in terms of CV, it is pos-

sible to observe that EnsDistEn2𝐷 is more stable (see Table 2).

On the other hand, PerEn2𝐷 and EnsPerEn2𝐷 are both precise but 
PerEn2𝐷 only varies around 0.5% between the smallest and the largest 
images, in opposition to 12.8% for EnsPerEn2𝐷 .

SampEn2𝐷 and EnsSampEn2𝐷 are the least precise entropy algo-

rithms and the least reliable ones for small images analysis. These 

algorithms were not able to determine entropy for images of 32 × 32
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Table 3

Kruskal-Wallis test for the ensemble 
and original entropy values of nor-

mal tissue, centrilobular emphysema, 
and paraseptal emphysema. The sym-

bol ∗ indicates statistical significance 
for 𝑃 < 0.01.

Metrics H(2) P-value

DispEn2𝐷 77.81 1.27E−17∗

EnsDispEn2𝐷 64.46 1.01E−14∗

DistEn2𝐷 81.60 1.91E−18∗

EnsDistEn2𝐷 75.72 3.61E−17∗

PerEn2𝐷 15.20 5.00E−04∗

EnsPerEn2𝐷 21.36 2.30E−05∗

SampEn2𝐷 81.81 1.72E−18∗

EnsSampEn2𝐷 76.22 2.81E−17∗

FuzEn2𝐷 70.46 5.02E−16∗

EnsFuzEn𝑀

2𝐷 61.47 4.48E−14∗

EnsFuzEn𝑅
2𝐷 71.86 2.50E−16∗

pixels. Nevertheless, if we compare the entropy between images of 
64 × 64 and 128 × 128 pixels, EnsSampEn2𝐷 methods are more consis-

tent than the original method. SampEn2𝐷 and EnsSampEn2𝐷 show a 
RD of 3.8% and 2.2%, respectively. Besides, when analyzing their corre-

sponding CVs, SampEn2𝐷 has the highest CV reported (including when 
comparing with other entropy techniques), and, although it decreases 
with size, this algorithm is the least stable. EnsSampEn2𝐷 is able to im-

prove the algorithm stability when compared to SampEn2𝐷 .

Finally, FuzEn2𝐷 is consistent with a RD of 0.3% (between images 
of 32 × 32 and 128 × 128 pixels). EnsFuzEn𝑅

2𝐷 shows a RD of 0.0% and 
EnsFuzEn𝑀

2𝐷 shows a RD of 0.2%, both below FuzEn2𝐷 RD (Table 1). In 
fact, EnsFuzEn𝑅

2𝐷 and EnsFuzEn𝑀
2𝐷 are more stable than FuzEn2𝐷 when 

analyzing their corresponding CVs (Table 2).

3.2. Biomedical application

As mentioned above, this study analyzes the texture of images from 
three different pulmonary conditions: normal tissue (NT), centrilobular 
emphysema (CLE), and paraseptal emphysema (PSE). Both original and 
ensemble entropy methods with the aforementioned parameter settings 
were used to characterize these textures.

We evaluated the ability of the ensemble and original methods to 
differentiate the three groups based on the Kruskal-Wallis test. The pro-

posed methods are compared in Table 3 (99% confidence level). The 
results show that EnsPerEn2𝐷 and EnsFuzEn𝑅

2𝐷 give lower 𝑃 -values than 
their corresponding original entropy algorithms.

Furthermore, when comparing two groups with each other (NT vs. 
CLE, NT vs. PSE, and CLE vs. PSE) through the Tukey’s honestly test 
(Table 4), only EnsDistEn2𝐷, DistEn2𝐷, EnsPerEn2𝐷, and PerEn2𝐷 are 
not able to statistically differentiate all the three possible comparisons 
for 𝑃 < 0.05. Differences in EnsDistEn2𝐷, DistEn2𝐷, and EnsPerEn2𝐷 are 
only statistically significant for the cases NT vs. PSE and CLE vs. PSE. 
PerEn2𝐷 is only able to statistically differentiate CLE and PSE groups. 
On the other hand, the remaining ensemble and original entropy tech-

niques are able to statistically differentiate the three groups between 
each other.

In addition, Table 4 shows the effect size (d) between groups by 
using the Cohen’s test [27]. The effect size allows us to quantify the 
experimental effect of the relationship between variables. When evalu-

ating the entropy algorithms and the three possible comparisons, the |𝑑|
values were lower when comparing the NT and CLE groups within the 
same entropy algorithm. Within the algorithms achieving statistical sig-

nificance, EnsFuzEn𝑅
2𝐷 shows the weakest difference, with |𝑑| = 0.18. 

The remaining entropy techniques show relative medium effect size 
7

when comparing NT and CLE (0.5 ≤ |𝑑| < 0.8).
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Fig. 7. Examples of patches correctly (a-b) and incorrectly (c-d) labeled by the 
KNN classifier using EnsFuzEn𝑀

2𝐷 values.

When comparing the NT and PSE groups, the effect size is rela-

tively high with |𝑑| > 0.8, indicating a strong difference between the 
entropy obtained for NT and that for PSE. EnsDispEn2𝐷 leads to the 
lowest |𝑑| while EnsPerEn2𝐷 leads to the highest one for the NT vs. PSE 
groups. In addition, between the CLE and PSE groups, the effect size is 
even higher (|𝑑| > 1.5) for all the entropy metrics, indicating that the 
strongest difference is obtained between these two groups. When dif-

ferentiating these last two groups, the obtained 𝑃 -values are also lower 
compared to the 𝑃 -values obtained for the other groups’ comparisons.

When applying a KNN classifier to differentiate the three types of 
tissue, shown in Table 5 and Table 6, EnsFuzEn𝑀

2𝐷 is the best ensem-

ble method in terms of accuracy, precision (macro and micro), F1-score 
(macro and micro), sensitivity (macro and micro), AUC of NT, and AUC 
of PSE (see Table 5). When analyzing sensitivity micro, EnsDistEn2𝐷
is slightly better than EnsFuzEn𝑀

2𝐷 with 88.3% of sensitivity. How-

ever, considering F1-score which balances the sensitivity and precision, 
EnsFuzEn𝑀

2𝐷 is clearly the best method. The alternative EnsFuzEn𝑅
2𝐷

gives the best AUC value for the classification of CLE. The ensemble 
method with the lowest accuracy is EnsPerEn2𝐷(69.8%).

Table 5 shows that EnsFuzEn𝑀
2𝐷 has the best accuracy value within 

ensemble and original entropy methods. Overall, the ensemble meth-

ods show better accuracy than the original techniques except for 
EnsSampEn2𝐷 and EnsFuzEn𝑅

2𝐷. However, EnsFuzEn𝑅
2𝐷 is only slightly 

lower than FuzEn2𝐷 in terms of accuracy.

When comparing original and ensemble methods, EnsDispEn2𝐷 and 
EnsFuzEn𝑅

2𝐷 have worse F1-scores than the corresponding original 
methods DispEn2𝐷 and FuzEn2𝐷, respectively. However, the remain-

ing ensemble methods (EnsDistEn2𝐷 , EnsPerEn2𝐷, EnsSampEn2𝐷, and 
EnsFuzEn𝑀

2𝐷) all perform better than the original techniques, demon-

strating their practical application. Moreover, in terms of accuracy, all 
of these ensemble methods (except for EnsFuzEn𝑅

2𝐷) achieve higher ac-

curacy values than the corresponding original entropy algorithms (see 
Table 6).

In Figs. 7a-7b, we showed four examples of patches that were cor-

rectly classified as normal tissue (NT) and CLE, respectively, using the 
best entropy method for classification, EnsFuzEn𝑀

2𝐷, with a KNN classi-

fier. On the other hand, Conversely, in Figs. 7c-7d, we can observe two 
instances of misclassified patches, where NT was incorrectly classified 
as CLE and PSE, respectively.

In Ref. [28], one of the latest works using the same database, the 
authors proposed two neural networks with data augmentation obtain-
ing a total of 5520 CT images (512 × 512 pixels) to classify emphysema. 



Computer Methods and Programs in Biomedicine 242 (2023) 107855A.S. Gaudêncio, H. Azami, J.M. Cardoso et al.

Table 4

Tukey’s honestly test’s 𝑃 -value and Cohen’s |𝑑| effect size for ensemble entropy 
techniques to compare normal tissue (NT), centrilobular emphysema (CLE), 
and paraseptal emphysema (PSE) groups. The symbol ∗ indicates statistical 
significance for 𝑃 < 0.05.

Metrics NT vs CLE NT vs PSE CLE vs PSE

P-value |𝑑| P-value |𝑑| P-value |𝑑|
DispEn2𝐷 1.40E-04∗ 0.83 2.55E-06∗ 1.02 2.01E-18∗ 2.84

EnsDispEn2𝐷 1.38E-03∗ 0.65 8.87E-06∗ 0.81 3.48E-15∗ 2.45

DistEn2𝐷 3.74E-01 0.24 1.64E-12∗ 1.36 3.38E-16∗ 2.04

EnsDistEn2𝐷 4.10E-01 0.23 1.07E-11∗ 1.32 4.955E-15∗ 1.83

PerEn2𝐷 1.84E-01 0.34 6.88E-02 0.45 3.11E-04∗ 0.67

EnsPerEn2𝐷 9.76E-02 0.21 2.24E-02∗ 1.43 1.30E-05∗ 3.59

SampEn2𝐷 1.05E-03∗ 0.83 6.84E-08∗ 1.10 5.16E-19∗ 1.93

EnsSampEn2𝐷 7.59E-04∗ 0.70 5.59E-07∗ 1.32 7.66 E-18∗ 1.92

FuzEn2𝐷 1.59E-02∗ 0.71 5.20E-08∗ 1.31 6.67E-16∗ 1.81

EnsFuzEn𝑀
2𝐷 3.16E-03∗ 0.73 7.94E-06∗ 0.93 2.00E-14∗ 2.70

EnsFuzEn𝑅
2𝐷 1.44E-02∗ 0.18 3.86E-08∗ 1.30 3.21E-16∗ 1.60

Table 5

Multiclass classification using KNN classifier for ensemble entropy techniques to evaluate normal tissue, cen-

trilobular emphysema, and paraseptal emphysema (∗ represents the best value).

Metrics (%) EnsDispEn2𝐷 EnsDistEn2𝐷 EnsPerEn2𝐷 EnsSampEn2𝐷 EnsFuzEn𝑀

2𝐷 EnsFuzEn𝑅

2𝐷

Accuracy 84.9 86.5 69.8 79.0 92.7∗ 81.0

Macro

Sensitivity 55.6 72.2 71.9 70.0 86.5∗ 70.1

Precision 59.4 89.5 72.8 73.3 91.5∗ 81.9

F1-score 57.4 80.0 72.3 71.6 88.9∗ 75.6

Micro

Sensitivity 53.9 74.4 71.4 75.0 88.4∗ 73.9

Precision 84.9 86.5 69.8 79.0 92.7∗ 81.0

F1-score 65.9 80.0 70.6 76.9 90.5∗ 77.3

AUC of NT 50.1 62.2 58.7 47.4 72.4∗ 67.2

AUC of CLE 80.9 69.8 72.7 61.1 80.9 85.3∗

AUC of PSE 78.0 89.8 71.8 76.1 93.7∗ 83.5

Table 6

Multiclass classification using KNN classifier for original entropy techniques to 
evaluate normal tissue, centrilobular emphysema, and paraseptal emphysema (∗
represents the best value).

Metrics (%) DispEn2𝐷 DistEn2𝐷 PerEn2𝐷 SampEn2𝐷 FuzEn2𝐷

Accuracy 73.2 81.6 56.8 89.2∗ 86.7

Macro

Sensitivity 87.5 63.8 70.7 56.7 87.9∗

Precision 77.1 76.9 63.9 63.2 86.6∗

F1-score 82.0 69.7 67.1 59.8 87.2∗

Micro

Sensitivity 90.9 75.6 75.0 68.8 88.6∗

Precision 73.2 81.6 56.8 89.2∗ 86.7

F1-score 81.1 78.5 64.6 77.7 87.6∗

AUC of NT 39.1 75.1∗ 57.1 65.3 70.9

AUC of CLE 82.3 67.0 74.1 87.1∗ 77.1

AUC of PSE 89.9 91.0∗ 56.2 87.1 88.5
When classifying each class, their best network, the enhanced multiscale 
residual network with data augmentation (EMS-ResNet-DA), obtained 
an accuracy over 95% for PSE. The remaining classes obtained accuracy 
values between 90 and 95%. Overall, the average accuracy was 94.6%. 
The sensitivity and precision values of each class were all around 95%. 
The F1-score (macro) was approximately 93% for CLE, around 95% for 
PSE, and 94% for NT [28]. However, it is important to mention that 
these results were obtained for a substantially higher number of data. 
Our results for our best model, EnsFuzEn𝑀

2𝐷 , are only slightly inferior 
using only 168 patches. Furthermore, our results are obtained based on 
a single ensemble-based entropy feature to classify emphysema patches 
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retrieved from CT scans.
Furthermore, the pre-trained Visual Geometry Group with 16 layers 
depth (VGG16) model was also used to classify the 512 × 512 pixels-

sized CT images [29] using the dataset of [26]. After pre-processing the 
images, they divided the 115 CT images into 2 classes: normal and em-

physema subjects. In that work, the accuracy, precision, sensitivity, and 
F1-score were verified to be 88% [29]. In our case, when using only 
a single feature EnsFuzEn𝑀

2𝐷, the sensitivity value of the classifier was 
slightly lower (86.5%). Isaac et al. [30] also proposed a model to clas-

sify the same emphysema dataset based on a competitive co-evolution 
model with feature selection, reporting an accuracy of 93.7%, precision 

of 90.61%, recall of 90.61%, and specificity of 95.3% [30].
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On the other hand, Barnacles Mating-based Butterfly Optimiza-

tion Algorithm hybrid classifier (BM-BOA-HC) [31] was also proposed 
to study this dataset [26]. In this case, the accuracy obtained was 
93.8%. Moreover, the precision was 92.3%, the sensitivity was 82.8%, 
and the F1-score was 82.8% [31]. Even though this method achieved 
slightly better accuracy than EnsFuzEn𝑀

2𝐷, when analyzing the F1-score, 
which balances the sensitivity and the precision, we observe that KNN 
EnsFuzEn𝑀

2𝐷 F1-score was 88.9% compared to the 82.8% of BM-BOA-HC 
method. Overall, our classification values based on an ensemble-based 
entropy were similar to the machine and deep learning approaches.

In our study, the introduced ensemble entropy techniques are not 
directly correlated; instead, they target distinct aspects of information 
entropy. Each introduced ensemble entropy serves a specific purpose 
based on its original form, aiming to capture unique characteristics of 
2D data, with its own set of advantages and disadvantages. For instance, 
EnsDistrEn2𝐷, EnsPerEn2𝐷, and EnsDispEn2𝐷 measure the information 
learned within a system, while EnsSampEn2𝐷 and EnsFuzEn2𝐷 are 
rooted in conditional entropy, addressing the rate of information pro-

duction in a system. However, it is important to note that EnsPerEn2𝐷
exhibits sensitivity to artifacts, EnsDistrEn2𝐷 demands storage for a 
large number of elements, and EnsDispEn2𝐷 ’s performance can be af-

fected by its parameters. Additionally, the computation time for both 
EnsSampEn2𝐷 and EnsFuzEn2𝐷 is relatively high.

In spite of the promising findings, we suggest selecting a subset of 
two-dimensional entropy models to distinguish various features for an 
ensemble method. Using all the models might provide redundant infor-

mation instead of helping to improve the performance of an ensemble 
method for an application. Thus, we may need to exclude redundant 
models and choose a subset of all the models based on the mutual 
information between the data obtained by these models. Such a se-

lection strategy aims to select better two-dimensional entropy models 
among original entropy approaches. In fact, the key aim of the entropy 
ensemble selection is the selection of an appropriate subset of base en-

tropy approaches and forms a smaller entropy ensemble that performs 
better than the set of all of the base entropy methods. The ensemble 
forms of multiscale two-dimensional and three-dimensional ensemble 
entropy can also be developed to produce a larger set of textural fea-

tures [10,32,33].

4. Conclusions

In this study, we developed the low bias ensemble forms of two-

dimensional SampEn, DispEn, FuzEn, and DistEn entropy methods to 
quantify the image irregularity or uncertainty. The results on the syn-

thetic data showed that the ensemble approaches are able to detect the 
degrees of randomness and periodicity in images. The ensemble process 
led to more stable results (lower coefficient of variations). Even though 
these approaches were tested with synthetic images, additional tests of 
images under noisy situations should be evaluated to test the robustness 
of these algorithms under different noise conditions. Finally, classifiers 
based on most of the ensemble approaches distinguished normal tissue, 
centrilobular emphysema, and paraseptal emphysema with high accu-

racy and outperformed classifiers based on their corresponding original 
entropy forms. Together, thanks to its ability to detect low bias and sta-

ble patterns of an image, the present findings support further study of 
ensemble entropy in various applications of image processing.
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