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Abstract

Introduction: Propolis is a resinous natural substance collected by honeybees from

buds and exudates of various trees and plants; it is widely accepted that the composi-

tion of propolis depends on the phytogeographic characteristics of the site of

collection.

Objectives: The aim of this study was to determine the phytochemical composition

of ethanolic extracts from eight propolis batches collected in different regions of

Benin (north, center, and south) and Congo, Africa.

Material and methods: Characterization of propolis samples was performed by using

different hyphenated chromatographic methods combined with carbon-13 nuclear

magnetic resonance (13C NMR) dereplication with MixONat software. Their antioxi-

dant or anti-advanced glycation end-product (anti-AGE) activity was then evaluated

by using diphenylpicrylhydrazyl and bovine serum albumin assays, respectively.

Results: Chromatographic analyses combined with 13C NMR dereplication showed

that two samples from the center of Benin exhibited, in addition to a huge amount of

pentacyclic triterpenes, methoxylated stilbenoids or phenanthrenoids, responsible for

the antioxidant activity of the extract for the first one. Among them, combretastatins

might be cytotoxic. For the second one, the prenylated flavanones known in

Macaranga-type propolis were responsible for its significant anti-AGE activity. The

sample from Congo was composed of many triterpene derivatives belonging to

Mangifera indica species.

Conclusion: Therefore, propolis from the center of Benin seems to be of particular

interest, due to its antioxidant and anti-AGE properties. Nevertheless, as standardiza-

tion of propolis is difficult in tropical zones due to its great chemodiversity, a system-

atic phytochemical analysis is required before promoting the use of propolis in food

and health products in Africa.
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1 | INTRODUCTION

Propolis is a natural resinous substance collected by bees from the

buds and exudates of various trees and plants, mixed with beeswax

and salivary enzymes.1 It is used by bees to protect the entrance from

intruders, plug holes, smooth internal walls, mummify dead animals

(small insects) inside the hive, and balance extreme humidity or

drought conditions.2,3 Propolis has been widely used in folk medicine

since ancient times due to its wide range of therapeutic properties.4

Propolis is generally composed of resin (50%), wax (30%), oils (10%),

pollen (5%), and additional phenolic compounds such as flavonoids.5,6

The chemical composition of propolis is known to be complex and

varies according to plant species growing around the hive, from which

bees collect exudates.7 It is accepted that several factors, such as the

floristic composition of the area, the place and time of collection, the

season, the type of collector, the availability and altitude, and the food

activity developed during the exploitation of the propolis have an

impact on the chemical composition of the propolis.8,9 There are dif-

ferent types of propolis, depending on the geographical area of pro-

duction, botanical source, and chemical composition. The most

common types of propolis are temperate, birch, tropical, Mediterra-

nean, and Pacific.10 Propolis from temperate climatic zones, such as

Europe, North America, or non-tropical regions of Asia, comes mainly

from exudates of buds of Populus species (Salicaceae) and is therefore

rich in flavonoids and phenolic acids and their esters; however, tropi-

cal propolis, originating from regions where neither poplar nor birch

grows, is rich in prenylated derivatives of p-coumaric acids, benzophe-

nones, or terpenoids.11 Pacific propolis, typically rich in prenylated fla-

vanones, is another important type of propolis found in Taiwan,

Japan, and the Solomon Islands, and birch propolis is found specifically

in Russia.12 The study of propolis from tropical Asia has led to the dis-

covery of Macaranga tanarius L. and Mangifera indica L. as plant

sources of Indonesian propolis.13 On the other hand, coniferous spe-

cies of the Cupressaceae family are the main botanical source of prop-

olis in Mediterranean regions.14 Chemical analyses revealed that

propolis contains more than 300 different natural products (NPs),

including phenolic acid derivatives, coumarins, flavonoids, sesquiter-

penes, diterpenes, triterpenes, steroids, lignans, or prenylated benzo-

phenones.15 The biological effects of propolis have been described

mainly in relation to not only their antioxidant,16–18 anti-AGE

(i.e., inhibition of advanced glycation end-product [AGE] formation),19

anti-inflammatory,20 and anti-tumor effects,21–23 but also their anti-

bacterial,24–26 anti-fungal,15 anti-viral,27 and anti-parasitic28 activities.

Propolis is also known to stimulate the production of antibodies, sug-

gesting its potential use as adjuvants in vaccines.29 The increasing use

of this natural substance of diversified composition and therefore

varying biological activities in the pharmaceutical, cosmetic, and food

industries is generating particular interest in scientific research,

especially when it comes to defining its chemical composition. Most

studies have been carried out on samples from Europe19,30–33 and

Latin America, more specifically Brazil,20,23,34–36 while few studies

were conducted in Africa.37–41 Information on Beninese and

Congolese42 propolis remains scarce.

Thus, the aim of this study was to characterize major com-

pounds from propolis samples collected in various phytogeographical

zones of Benin and Congo (Africa) using 13C nuclear magnetic reso-

nance (NMR) dereplication with MixONat software.43,44 A prelimi-

nary study using a database (DB) containing NPs previously

reported from propolis together with their 13C predicted chemical

shifts (δC) did not yield any usable data compared to the satisfactory

results usually obtained with plant extracts.43–45 This can be

explained by the chemical composition of propolis, which is highly

dependent on the local flora, making it impossible to construct a

chemotaxonomic DB. Thus, to decipher major compounds from

Beninese and Congolese propolis, in the present work we per-

formed high-performance liquid chromatography coupled with ultra-

violet and evaporative light scattering detection mass spectrometry

(HPLC-UV-ELSD-MS) and gas chromatography coupled with mass

spectrometry (GC-MS) analyses on crude propolis extracts to iden-

tify their main structural features and build corresponding DBs of

NPs suitable for MixONat software.46 Then, after a coarse fraction-

ation of the propolis samples selected according to their chemical

profile, 13C NMR-based dereplication allowed to identify major NPs

without further purification. Antioxidant and anti-AGE assays were

also carried out.

2 | EXPERIMENTAL PROCEDURES

2.1 | Chemicals

1,1-Diphenyl-2-picrylhydrazyl (DPPH), Folin–Ciocalteu reagent,

formic acid, and gallic acid, all analytical grade, were purchased

from Sigma-Aldrich (St Quentin Fallavier, France). 6-Hydroxy-2,-

5,7,8-tetramethylchroman-2-carboxylic acid (Trolox®) and 50-

caffeoylquinic acid (chlorogenic acid) were obtained from Acros

Organics (Geel, Belgium).

2.2 | Propolis samples

Eight Beninese propolis samples were collected by scraping from bee-

hives in three phytogeographic zones (Table 1 and Figure SI-1). A

sample of Congolese propolis was collected in the artificial forest of

acacia trees in the Bateke plateau in the center of the Republic of

Congo (Table 1).
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2.3 | Propolis extraction

Ethanolic extracts of propolis (EEPs) were initially prepared using the

following extraction protocol.19 Raw propolis was first homogenously

pulverized in the presence of liquid nitrogen. For all samples, 1 g of

propolis powder was macerated in 20 ml of 95% EtOH. After stirring

for 2 h at room temperature, the mixture was filtered using a sintered

glass disc funnel filter (16–40 μm pore size). The residue was re-

extracted twice using the same steps. Then, the three gathered fil-

trates were maintained at �18�C overnight, filtered to remove waxes,

and evaporated under reduced pressure (40�C, 10 mbar) to give

the EEPs.

Amounts of 8.0 g of propolis powder of BC1 (1) and BC2 (2) or

10.3 g of CG (3) were extracted again with EtOH 95% (UAE, 4�
80 ml, 15 min) for further flash chromatography.

2.4 | Determination of total phenolic content

The total phenolic content was determined via the Folin–

Ciocalteu colorimetric method as previously described,19 and recently

adapted to direct use in microplates. Briefly, 10 μl of each propolis

extract in MeOH (3.5 mg/ml for BC1, 5 mg/ml for BN2, BC2, and CG,

7.5 mg/ml for BN1, BS1a, BS1b, and BS2, and 10 mg/ml for BS3) was

mixed with 20 μl of distilled water and 10 μl of Folin–Ciocalteu

reagent in a 96-well microplate. After 3 min, 120 μl of distilled water

and 40 μl of 20% aqueous sodium carbonate were added. The absor-

bance was measured on a TECAN® microplate spectrophotometer

(V6.5) at 760 nm after 30 min in the dark at room temperature. A

blank was prepared in the same way by using MeOH instead of the

extract solution and gallic acid was used to calculate the calibration

curve (0.04–0.328 mg/ml; y = 2.7241x � 0.0039; r2 = 0.9982). Each

sample was analyzed in triplicate. Total phenolic content was

expressed in terms of gallic acid equivalents (mg) per gram of extract

(mg GAE/g).

2.5 | Preliminary chromatographical analyses

2.5.1 | Analytical TLC

Analytical thin layer chromatography (TLC) was performed on a TLC

Alugram Xtra SIL G/UV254 (Macherey-Nagel, Düren, Germany), using

a mixture of cyclohexane:AcOEt as eluant. Spots in the chromatogram

were visualized first under UV light (254 nm) and then by spraying

with vanillin–sulfuric acid reagent (2 ml of concentrated sulfuric acid

in 98 ml of a 1:99 w/v vanillin:95% ethanol solution) and heating the

chromatograms to 110�C for 5 min.

2.5.2 | GC-MS procedure

GC-MS analysis was performed on non-derivatized samples using a

Shimadzu Gas Chromatograph GCMS-QP2010 SE (Noisiel, France)

with an ionization voltage of 70 eV (Electronic Impact). Samples were

prepared in dichloromethane (DCM) at 2 mg/ml for extracts and 1 mg/ml

for fractions. Separations were carried out using a Phenomenex ZB5 col-

umn (30 m � 0.250 mm internal diameter with 0.25 mm film thickness;

Phenomenex, Le Pecq, France). The temperature was programmed as

follows: 180�C (3 min), 180–280�C at a rate of 10�C/min, and 280�C

(27 min). Helium was used as a carrier gas at a flow rate of 2.0 ml/min.

Injector and detector temperatures were set at 250�C and 280�C,

respectively. Metabolites were identified by comparing their retention

times (Rt), nominal mass, and/or fragmentation patterns with those of

authentic samples and/or those contained in the fragmentation pattern

libraries of the equipment (NIST11, NIST11s, and FFNSC2).

2.5.3 | HPLC-DAD-ELSD procedure

Chromatographic analyses were carried out using a Shimadzu 2030C

3D liquid chromatograph (Noisiel, France) equipped with a diode array

TABLE 1 Information on the location
of the propolis samples.

Country/zone Sample Town/site GPS location* (lat/long)

North of Benin BN1 Peporiyakou 10.35297475/1.35438942

BN2 Atabenou 11.27507773/2.37161035

Center of Benin BC1 Koko 8.375579061/1.846530533

BC2 Dassa-Zoumé 7.774161936/2.185793839

South of Benin BS1a Bohicon 7.172598359/2.067876393

BS1b

BS2 Covè 7.219391049/2.340060799

BS3 Dovogon 7.061627221/2.14747234

Congo CG Bateke plateau 3.97861111/15.3816666

*decimal degrees (latitude/longitude) in World Geodetic System 1984.
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detector (DAD) and an ELSD (Sedere®) with a Lichrospher® column

100 RP-18 (125 mm � 4 mm i.d., 5 μm, Merck, Darmstadt, Germany)

protected with a Lichrocart® 4–4 guard cartridge (4 mm � 4 mm i.d.),

using a flow rate of 1 ml/min. The mobile phase consisted of 0.1% for-

mic acid in water (solvent A) and methanol (solvent B), and separation

was performed by the following linear gradient: 25–100% B (0–

40 min), 100% (40–45 min). UV–vis spectra were recorded in the

range of 190–600 nm, and chromatograms were acquired at 254 and

280 nm. ELSD was heated at 30�C, and a gain of 4 was applied on the

signal. Samples were prepared at a concentration of 10 mg/ml in

MeOH and centrifuged at 13,000 g for 10 min prior to injection

(10 μl) to remove traces of suspended materials.

2.5.4 | HPLC-UV-MS procedure

HPLC-UV-MS analyses were performed using a 2795 Waters sepa-

ration module (Guyancourt, France) equipped with a Dual λ 2487

Waters detector. Column, mobile phases, and gradient were the

same as described above for HPLC-DAD-ELSD. Chromatograms

were acquired at 254 and 280 nm. The mass analyses were carried

out on a Bruker (Bremen, Germany) electrospray ionization/

atmospheric pressure chemical ionization (ESI/APCI) Ion Trap

Esquire 3000 + in both positive and negative modes as follows:

collision gas, He; collision energy amplitude, 1.3 V; nebulizer and

drying gas, N2, 7 L/min; pressure of nebulizer gas, 30 psi; dry tem-

perature, 340�C; flow rate, 1.0 ml/min; solvent split ratio, 1:9; scan

range, m/z 100–1,000. Samples were prepared at a concentration

of 10 mg/ml in MeOH, centrifuged at 13,000 g for 10 min, and fil-

tered through a 0.45-μm polytetrafluoroethylene (PTFE) membrane

syringe filter prior to injection (20 μl) to remove traces of sus-

pended materials.

2.6 | EEP fractionation by flash chromatography

First, 3.8 g of BC1 (1), 3.5 g of BC2 (2), or 4.0 g of CG (3) EEPs was

totally dissolved in a minimal volume of DCM and acetone and mixed

with silica gel (silica gel:extract ratio, 2:1). For all of them, the solvent

was allowed to evaporate until a fine dry powder was obtained. For

each EEP, fractionation was then performed by using a CombiFlash

Teledyne ISCO apparatus (Lincoln, NE, USA) with a silica gel column

(Chromabond® Flash RS 40 SiOH, 40 g, Macherey-Nagel, Hoerdt,

France) at a flow rate of 25 ml/min with cyclohexane (solvent A) and

ethyl acetate (EtOAc) (solvent B) using the following gradient elution:

(1) for BC1 EEP, 5% B (0–10 min), 5–20% B (10–30 min), 20–30% B

(30–60 min), 30–50% B (60–85 min), and 50–100% B (85–110 min);

160 tubes of 20 ml were collected and combined into 14 fractions

(BC1_F1 to BC1_F14) on the basis of their TLC chromatographic pro-

files (cyclohexane:EtOAc ratio, 90:10 to 50:50); (2) for BC2 EEP, 5% B

(0–10 min), 5–10% B (10–20 min), 10–30% B (20–40 min), 30–40% B

(40–55 min), and 40–100% B (55–70 min); 100 tubes of 20 ml were

collected and combined into 8 fractions (BC2_F1 to BC2_F8) on the

basis of their TLC chromatographic profiles (cyclohexane:EtOAc ratio,

90:10 to 60:40); (3) for CG EEP, 5% B (0–10 min), 5–10% B (10–

30 min), 10–20% B (30–50 min), 20–40% B (50–70 min), 40–60% B

(70–80 min), and 60–100% B (80–90 min); 135 tubes of 20 ml were

collected and combined into 23 fractions (CG_F1 to CG_F23) on the

basis of their TLC chromatographic profiles (cyclohexane:EtOAc ratio,

80:20 to 60:40).

An additional fractionation step was performed on the BC2_F7

fraction: 200 mg was dissolved in a minimal volume of MeOH and

mixed with C18-silica gel (C18-silica gel:extract ratio, 2:1). Separation

was realized on a C18 column (Interchim® PF-C18HP, 4 g, Montluçon,

France) at a flow rate of 15 ml/min with water (solvent A) and MeOH

(solvent B) using the following gradient elution: 50–70% B (0–30 min)

and 70–100% B (30–40 min); 80 tubes of 8 ml were collected and

combined into 5 fractions (BC2_F7-1 to BC2_F7-5) on the basis of

their HPLC-UV (280 nm) profiles.

2.7 | 1H and 13C NMR analyses

NMR spectra (1D and 2D) of propolis fractions (7–58 mg) or some-

times NPs were recorded in deuterated chloroform (CDCl3) or deuter-

ated methanol (CD3OD) (500 μl) on a JEOL NMR spectrometer at

400 MHz for 1H and 100 MHz for 13C. NMR experiments (1H NMR,
13C NMR, DEPT-135, DEPT-90, and 2D NMR) on fractions and pure

NPs were performed at 298 K on a JEOL 400 MHz H spectrometer

(JEOL Europe, Croissy-sur-Seine, France) equipped with an inverse

5-mm probe (ROYAL RO5). Chemical shifts (δH and δC) are expressed

in ppm and J values in Hz.

For 13C NMR (100 MHz) spectra, a WALTZ-16 decoupling

sequence was used with an acquisition time of 1.04 s (32,768 com-

plex data points) and a relaxation delay of 2 s. Between 1,500 and

11,000 scans were collected to obtain a satisfactory S/N ratio. A 1 Hz

exponential line broadening filter was applied to each free induction

decay (FID) prior to the Fourier transformation. Spectra were

manually phased and baseline-corrected using MestReNova software

(Mestrelab Research, Santiago de Compostela, Spain) and referenced

on the central resonance of the deuterated solvent at δC 77.16 ppm

(CDCl3) and δC 49.00 ppm (CD3OD). For distortionless enhancement

by polarization transfer (DEPT) experiments, between 512 and 5,500

scans were required and alignments with the 13C spectra were

made using a given δC. A minimum intensity threshold was then

used to manually collect positive 13C NMR and DEPT-90 signals

and positive and negative DEPT-135 signals while avoiding potential

noise artifacts.

Propolis DB1 was first built by searching for compounds

described in propolis on SciFindern,47 resulting in a DB of 1,471 NPs;

δC values were predicted using Advanced Chemistry Development

(ACD) NMR predictors (C,H). From such DBs containing NPs together

with their δC-SDF values, the CTypeGen routine included in MixONat

created a suitable DB: It read the spatial data file (SDF) and sorted

chemical shifts by carbon type. The required c-type SDF was then cre-

ated, i.e., c-type Propolis DB1.43,44
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Stilbenoids_Phenanthrenoids DB2 was created. A search of

substances using the keywords stilbenoids and phenanthrenoids in

the LOTUS DB containing 276,518 NPs48 (LOTUS, 2022) allowed

to obtain a Stilbenoids_Phenanthrenoids DB2 of 2,681 NPs as an

SDF. Flavanones DB3 was then created: A search on SciFindern47

using the 2-phenylchroman-4-one substructure allowed to select

56,679 molecules. They were further reduced to 2,893 referring to

“Natural products occurrence” using an analysis of the substances

with the filter “Reference role” proposed by SciFindern. After an

additional refining by a filtering step based on the expected molec-

ular weight (MW) (i.e., 340 to 424 Da), all relevant flavanones were

subsequently exported as an SDF to obtain the NPs from

Flavanones DB3 (684 NPs). For each NPs of DB2 and DB3, δC-SDF

values were predicted using ACD NMR predictors (C,H)

software as well as the methodology previously described by

Nuzillard46 to directly obtain the c-type SDF ready for use by

MixONat. The latter contain for each compound of the DB the

predicted δC values organized as methyl, methylene, methine, or

quaternary carbons.

Triterpenes DB4 was built from the PNMRNP3 DB49,50 imported

as an SDF in ACD NMR predictors (C,H) software by searching triter-

penes with an MW between 100 and 500 Da (i.e., Search data: triter-

penes; Search MW: 100 to 500) to directly obtain a DB of 6,623

triterpenes in the required c-type file format.

Alk(en)yl resorcinol and phenol derivatives DB5 was built from

the PNMRNP3 DB49,50 imported as an SDF in ACD NMR predictors

(C,H) software by searching NPs with an m-alk(en)yl phenol scaffold

and classified as phenols (i.e., 3-(hexadec-8-en-1-yl)phenol Substruc-

ture search; Search Classyfire class: phenol) to directly obtain a DB of

44 NPs in the required c-type file format.

2.8 | 13C NMR-based dereplication using MixONat
software

The peak list and intensity data obtained from each experimental

spectrum (13C NMR, DEPT-135, and DEPT-90) were exported as a .

csv file using Microsoft Excel (Microsoft 16.45) software and used as

an input file in MixONat software. Such files consist of a list of δC
values ordered in decreasing order associated with their intensities on

the same line, separated by a comma.

Data were then processed using MixONat, which exploits any

dataset that provides molecular structures in the previously described

SDF (i.e., c-type DB1–5 file format). Based on this information, MixO-

Nat was used to compare the experimental δC values of the fractions

to the predicted δC-SDF values from the DB and made suggestions for

specific NPs potentially present in the analyzed sample. In the

end, MixONat provided NP proposals with scores ranging from 0 to

1, i.e., from 0% to 100% (where 1 corresponds to a perfect match and

0 indicates no similarity for a given compound from the used DB).

Acceptable values for putative identification were >0.70. Afterwards,

experimental data of NPs with the best scores were compared with

literature.

2.9 | Purification

2.9.1 | Preparative HPLC

Purification of fractions BC1_F6 and BC1_F8 (40 mg in 2 ml of

MeOH) was carried out using a Shimadzu LC-20AP preparative liquid

chromatograph equipped with a UV–vis detector SPD-40 (Noisiel,

France), an injection loop of 2 ml, and a fraction collector FRC-10A,

using a preparative column C18 (250 mm � 21.2 mm i.d., 5 μm)

(Pursuit XRs 5, Agilent, Les Ulis, France) at a flow rate of 21.24 ml/

min. The mobile phase consisted of 0.1% formic acid in water (solvent

A) and methanol (solvent B) and the separation was performed using

the following gradient: (1) for BC1_F6, 40% B (0–5 min), 40–70% B

(5–20 min), and 70–90% (20–30 min); (2) for BC1_F8, 40–70% B (0–

15 min) and 70–90% (15-25 min). Chromatograms were acquired at

254 and 280 nm.

2.9.2 | Solid phase extraction (SPE)

To obtain the most polar fraction of BC2-EPP (200 mg in 5 ml of

MeOH mixed with 350 mg of C18-silica gel after evaporation), purifi-

cation was carried out using a C18 solid phase extraction column

(2 g/15 ml, Thermo Scientific™, Villebon-sur-Yvette, France) with

water:MeOH 7:3 (10 ml) and water:MeOH 6:4 (10 ml). Tubes 4–10

were combined to form the polar fraction of BC2 (BC2_SPE) on the

basis of their HPLC-UV (330 nm) profiles.

2.10 | Antioxidant and anti-AGE assays

2.10.1 | Scavenging of DPPH radicals

The DPPH radical scavenging evaluation of Beninese EEPs was per-

formed as previously described.51 Briefly, tested samples were diluted

in absolute EtOH at 0.02 mg/ml from stock solutions at 1 mg/ml in

dimethylsulfoxide (DMSO). Aliquots (100 μl) of these diluted solutions

were placed in 96-well plates in triplicate. About 25 μl of freshly pre-

pared DPPH solution (1 mM) was added to 75 μl of absolute EtOH

using the microplate reader's injector (Infinite® 200, Tecan, France) to

obtain a final volume of 200 μl per well. After 30 min in the dark at

ambient temperature, the absorbance was determined at 517 nm.

EtOH was used as a blank, whereas 10, 25, 50, and 75 μM solutions

of Trolox (a hydrophilic α-tocopherol analog) were used for the cali-

bration curve. A sample of chlorogenic acid ethanolic solution

(0.02 mg/ml) was used as the quality control standard. Results were

expressed as Trolox equivalents (micromoles of TE per g of extract).

2.10.2 | Anti-AGE assay

The effects of propolis extracts and the five major isolated naringenin

derivatives on AGE formation were determined as described
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previously.51 Briefly, bovine serum albumin (BSA) (10 mg/ml) was

incubated with D-ribose (0.5 M) together with the tested compound

(3 μM to 3 mM) or extract (1 μg to 1 mg) in 50 mM phosphate buffer

at pH 7.4 (NaN3, 0.02%). Solutions were incubated in 96-well microti-

ter plates at 37�C for 24 h in a closed system before AGE fluores-

cence measurement. Fluorescence from the incubated sample in

identical conditions without D-ribose was subtracted for each mea-

surement. Pentosidine-like (excitation at 335 nm, emission at 385 nm)

AGE fluorescence was measured by fluorometry.52 IC50 values were

defined as the amount of extract (μg/ml) or positive control (μM)

required to reduce AGE formation by 50% relative to the negative

control. According to the statistical validation assay,53 a single analysis

is sufficient for an accurate IC50 determination.

3 | RESULTS AND DISCUSSION

3.1 | Chromatographic profiling

General LC profiling of the eight Beninese and the Congolese EPP

using the quasi-universal ELSD detector showed that all samples con-

tained non-polar compounds, eluted at the end of the chromatograms

(Figure 1). BC1 also presented a large amount of more polar com-

pounds, and BC2 exhibited some medium polar compounds in smaller

amounts. Non-polar compounds in CG EEP appeared to be quite dif-

ferent from Beninese ones.

Thus, ELSD profiling led to three different and original samples

whose composition was further investigated: BC1, BC2, and CG.

Firstly, GC-MS analyses were conducted, comparing the MS frag-

mentation with the NIST DB, to characterize the chemical classes and,

when possible, to identify the constituents. Putative identification

(based the percentage of match with the NIST DB) and chemical clas-

ses of compounds are presented in Table 2 (GC–total ionic current

[TIC] profiling data are shown in Figure SI-2).

All Beninese EEPs presented the same profiles of non-polar com-

pounds, labeled as letter A to F, but their amounts could vary. They

were putatively identified as α- or β-amyrenone (A), β-amyrin (B), lupe-

none (C), α-amyrin (D), α- or β-amyrin acetate (E), and lupeol acetate

(F) (cf. Figure SI-3), already described as major NPs in a Mexican prop-

olis.54 Zhang et al. (2014) and Tamfu et al. (2020) also described triter-

penoids as amyrin/lupeol and amyrin/lupeol acetates in various

African propolis samples.41,55 Only BC1 presented additional NPs

eluted between Rt 10 and 15 min suggested as methoxylated stilbe-

noids or phenanthrenoids according to their fragmentation patterns.

The Congolese EEP exhibited a different profile from the Beninese

ones, with C16 and C18 acid ethyl esters as more volatile compounds

associated with a good matching score of 94%, a phenol derivative at

Rt 13.1 min, three resorcinol derivatives in the range of 14–17 min,

and different types of triterpene derivatives after Rt 21 min.

In addition, EPPs were analyzed by HPLC-DAD-MS to visualize

non-volatile NPs (cf. Figure SI-4). The different profiling showed that

BC1 EEP exhibited a large amount of medium polar compounds with

F IGURE 1 ELSD profiling of the eight Beninese and the Congolese EEP.
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chromophores absorbing at 280 nm, as well as BC2 in smaller propor-

tions, and CG possessed a very poor UV profile at 280 nm.

3.2 | Chemical composition of BC1 and BC2

To identify their major NPs using 13C NMR dereplication based on Mix-

ONat and suitable DBs, a coarse fractionation of BC1 and BC2 EEP

was then achieved by flash chromatography. Indeed, for BC1, GC-MS

analysis revealed the presence of methoxylated stilbenoids or

phenanthrenoids, which guided us to build the specific Stilbenoids_Phe-

nanthrenoids DB2. For BC2, except for the more polar compounds at

Rt 3.8 min, all compounds showed UV spectra of flavanones-dihydrofla-

vonols, which suggested to create the Flavanones DB3.

As depicted in Table 3, dihydrophenanthrenes 1 and 3–5, phen-

anthrenes 2 and 6, and the dihydrostilbene 7 (Figure 2) were

TABLE 2 GC-MS data of the eight Beninese and the Congolese EPP and putative identification of the constituents.

GC-MS

Rt (min) Target ion Fragmentation Compound (% match NIST) or structural class

All Beninese EEPs

22.1 424 409, 281, 218(b), 205, 189 α/β-Amyrenone (80–91) (A)

22.7 426 411, 281, 218(b), 205, 189 β-Amyrin (88–96) (B)

23.2 424 409, 313, 245, 218, 205, 189, 109(b) Lupenone (82–90) (C)

23.9 426 411, 218(b), 205, 189 α-Amyrin (80–86) (D)

25.2 468 218(b), 205, 189 α/β-Amyrin acetate (83–93) (E)

26.6 468 453, 393, 218(b), 205, 189 Lupeol acetate (81–91) (F)

BC1 more volatile compounds

10.8 244 138, 107(b), 77 Phenol derivative

10.9 274 244, 167(b), 107, 77 -

12.0 304 167(b), 137, 122 -

12.1 318 181(b), 137 -

12.2 302 287, 255, 151 Methoxylated stilbenoid or phenanthrenoid

12.7 302 287, 255, 151 Methoxylated stilbenoid or phenanthrenoid

13.1 272 257, 225 Methoxylated stilbenoid or phenanthrenoid

13.9 300 285, 242, 214, 150 Methoxylated stilbenoid or phenanthrenoid

14.8 316 270(b), 255, 223, 135 Methoxylated stilbenoid or phenanthrenoid

CG

6.7 284 241, 213, 185, 157, 115, 101, 88(b) Palmitic acid ethyl ester (94)

8.5 310 264, 222, 180, 111, 69, 55(b) Oleic acid ethyl ester (94)

13.1 330 234, 147, 120, 108(b) Phenol derivative

14.0 318 222, 137, 124(b) Resorcinol derivative

14.0 320 222, 137, 124(b) Resorcinol derivative (pentadecyl) (92)

16.3 346 250, 137, 124(b) Resorcinol derivative

21.8 468 424, 410, 367, 297, 205, 109(b), 95 Triterpene derivative

22.1 424 409, 281, 218(b), 203 α/β-Amyrenone (89–91) (A)

22.7 426 411, 281, 218(b), 203 β-Amyrin (89) (B)

23.2 424 409, 313, 218(b), 205, 189, 109 Lupenone (82)

23.3 424 409, 313, 286, 218, 205, 109, 95(b) Triterpene derivative

23.6 426 393, 365, 339, 286, 271, 205, 175, 147, 109, 69(b) Cycloartenol (89)

23.8 426 393, 315, 257, 218(b), 207, 189, 147, 109 Lupeol (79)

23.9 426 411, 393, 257, 218(b), 205, 189 α-Amyrin (77) (D)

24.7 438 423, 395, 340, 313, 207, 175, 147, 121, 109, 95(b) Triterpene derivative

25.5 424 409, 355, 281, 205, 189, 147, 121, 95(b) Triterpene derivative

27.9 424 355, 313, 281, 205, 189, 147, 109(b) Triterpene derivative

28.8 426 357, 313, 281, 207, 191, 147, 109(b) Triterpene derivative

(b) base peak
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suggested in BC1 EEP by MixONat and validated by comparison with

literature data (cf. supporting information). When necessary, a MW fil-

ter was used based on HPLC-MS data.

More precisely, among 9,10-dihydrophenanthrene derivatives out

of 2,681 NPs in DB2, MixONat suggested 6-methoxycoelonin

(2,7-dihydroxy-3,5-dimethoxy-9,10-dihydrophenanthrene; 3, rank

1, score 0.75, Figures SI-13 and SI-14) in BC1-F5 and its presence

was confirmed by comparison to published NMR data. It has been yet

identified from Combretaceae species56 and in the orchid Bulbophyl-

lum vaginatum;57 and 2,7-dihydroxy-3,4,6-trimethoxy-

9,10-dihydrophenanthrene (4, rank 1, score 0.88, Figures SI-15 and

SI-16) was hypothesized in BC1_F2. Compound 4 has already been

TABLE 3 UV-MS data and 13C NMR dereplication results of BC1 and BC2 EEP after fractionation.

Rt

(min)
λmax

(nm)

ESI
(-MS)
[M-H]�

ESI
(+MS)
[M+H]+ MW

Present
in
fraction

13C NMR dereplication

(MixONat)

Formula Compound/classDatabase Results

BC1

12.1 277,

311

287 289 288 BC1_F6-1 DB2 Rank 2 with MW

288 filter;

score 0.5

C16H16O5 2,6,7-Trihydroxy-3,4-dimethoxy-

9,10-dihydrophenanthrene (1)

13.2 257,

280sh

285 287 286 BC1_F8-1 DB2 Rank 1; score

0.86

C16H14O5 2,6,7-Trihydroxy-

3,4-dimethoxyphenanthrene

(2)

15.3 276,

300

271 273 272 BC1_F5 DB2 Rank 1; score

0.75

C16H16O4 6-Methoxycoelonin (3)

16.4 279,

311

301 303 302 BC1_F2 DB2 Rank 1; score

0.88

C17H18O5 2,7-Dihydroxy-3,4,6-trimethoxy-

9,10-dihydrophenanthrene (4)

16.9 278,

311

301 303 302 BC1_F2 DB2 Rank 8; score

0.76

C17H18O5 2,6-Dihydroxy-3,4,7-trimethoxy-

9,10-dihydrophenanthrene (5)

17.3 258,

280sh

299 301 300 BC1_F4 DB2 Rank 5; score

0.94 with MW

300 filter

C17H16O5 2,7-Dihydroxy-

3,4,6-trimethoxyphenanthrene

(6)

18.1 268 303 305 304 BC1_F4 DB2 Rank 4; score 1

with MW 304

filter

C17H20O5 Combretastatin B-2 (7)

BC2

3.8 299,

322

353 355 354 BC2_SPE - - C16H18O9 Biflorin (8) and isobiflorin (9)

24.5 295,

338sh

339 341 340 BC2_F7-1 DB3 Rank 1; score

0.95

C20H20O5 6-Prenylnaringenin (10)

27.5 297,

338sh

339 341 340 BC2_F6 DB3 Rank 2; score

0.65

C20H20O5 6-Dimethylallylnaringenin (11)

29.5 296 423 425 424 BC2_F7-3 DB3 Rank 1; score 1 C25H28O6 6,8-Diprenylaromadendrin (12)

31.6 298,

351sh

407 409 408 BC2_F5 DB3 Rank 10; score

0.84

C25H28O5 6,8-Diprenylnaringenin (13)

33.1 295,

336sh

407 409 408 BC2_F7-5 DB3 Rank 1; score

0.84

C25H28O5 6-Geranylnaringenin (14)

DB2: Stilbenoids_Phenanthrenoids DB. DB3: Flavanones DB.

F IGURE 2 Structures of compounds 1–7.
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described in Senegalese propolis58 and its presence was validated

based on reported data by Pettit et al. from the African tree Combre-

tum caffrum59 and by Lu et al. from Dioscorea nipponicaMakino.60

The 13C NMR-based dereplication process also predicted

2,6-dihydroxy-3,4,7-trimethoxy-9,10-dihydrophenanthrene (5, rank

8, score 0.76, Figures SI-15 and SI-16) in BC1_F2 and

2,6,7-trihydroxy-3,4-dimethoxy-9,10-dihydrophenanthrene (1, rank

2, score 0.5, Figures SI-5 and SI-6) in BC1_F6-1 when a molecular fil-

ter at MW 288 Da was used. For 1, the score was quite low (0.5);

therefore, additional 2D NMR experiments (heteronuclear multiple-

quantum correlation [HMQC], heteronuclear multiple-bond connec-

tivity [HMBC], nuclear Overhauser effect spectroscopy [NOESY],

cf. Figures SI-7–SI-10) were performed to confirm the structure; for 5,

the score was 0.76, i.e., higher than 0.70. These two NPs (1 and 5)

were first mentioned by Letcher et al. in Combretum species61,62 and

1 has already been found in Senegalese propolis.58

Among phenanthrene derivatives, MixONat hypothesized

2,6,7-trihydroxy-3,4-dimethoxyphenanthrene (2, rank 1, score 0.88,

Figures SI-11 and SI-12) in BC1_F8-1, which was confirmed by com-

parison with its spectral data described by Letcher et al. in Combretum

apiculatum.61 2,7-Dihydroxy-3,4,6-trimethoxyphenanthrene (6, rank

5, score 0.94, Figures SI-17 and SI-18) previously isolated from Photo-

lida Chinensis63 was suggested in BC1_F4.

Combretastatin B-2 (7), a dihydrostilbene, was suggested by Mix-

ONat in first rank (score 1.0, Figures SI-17 and SI-19) in BC1 EPP

when using an MW filter (MW 304 Da) and validated by comparison

with NMR data described by Pettit et al. in Combretum caffrum.59

Compounds 2, 6, and 7 have already been identified in

Senegalese propolis.58

1H and 13C NMR data of 1–7 are available in the supporting

information.

For BC2, seven compounds were identified belonging to two

structural classes of polyphenols, chromone-C-glucoside and prenyl-

flavanone derivatives (8–14), some of which were described for the

first time in propolis (Figure 3).

The 13C NMR-based process using MixONat and DB1 to DB5 did

not give relevant results suggesting original NPs. Two major products

(8–9) were fully characterized as a mixture using mass spectra and 1D

and 2D NMR data (1H, 13C, HMQC, HMBC, cf. Figure SI-20–SI-23)

and identified as biflorin (8) and isobiflorin (9), two chromanone-C-

glucosides newly described in propolis, previously described in Pancra-

tium biflorum64 and cloves of Eugenia caryophyllata, respectively.65

Regarding flavanone derivatives, among 688 NPs in DB3, MixO-

Nat proposed 6-prenylnaringenin (10, rank 1, score 0.95, Figures SI-

24 and SI-25) already described in Nigerian red propolis66 in

BC2_F7-1. 6,8-Diprenylaromadendrin (12, rank 1, score 1.0,

Figures SI-28 and SI-29) and 6,8-diprenylnaringenin (lonchocarpol A)

(13, rank 10, score 0.84, Figures SI-30 and SI-31), previously found in

Cameroon propolis samples,42 were validated in BC2_F7-1 and

BC2_F5, respectively. 6-Geranylnaringenin (14, rank 1, score 0.84,

Figures SI-32 and SI-33), previously described in propolis from the

Solomon Islands,67 was hypothesized and confirmed in BC2_F7-5.

Finally, 6-dimethylallylnaringenin (11) was suggested in second posi-

tion by MixONat in BC2_F6 (rank 2, score 0.65, Figures SI-26 and SI-

27). The isomer in position 8 was proposed in first position, but com-

parison with literature data68,69 showed that it is the isomer in posi-

tion 6. Compound 11 was new in propolis but already described in

organic extracts of Monotes africanus.70 1H and 13C NMR data of 8–

14 are available in the supporting information.

3.3 | Chemical composition of CG

For CG, the EEP from Congo, GC-MS was not effective enough to

directly identify all the different constituents but allowed us to char-

acterize several chemical classes, including fatty esters, phenol and

resorcinol derivatives, and triterpenoids. This structural information

prompted us to use 13C NMR-based dereplication using customized

DBs, i.e., DB4 and DB5. Thus, flash chromatography was performed

on CG EEP and fractions were gathered using TLC with sulfuric vanil-

lin revelation (cf. Figure SI-24). 13C NMR dereplication with MixONat

software was performed on the different fractions using DB4 and

DB5, followed by comparison with literature for validation. Moreover,

GC-MS data allowed us to determine the MW of major NPs, which

were used with MixONat software to improve structural hypotheses

(Table 4, Figure 4).

As expected, fatty esters such as palmitic acid ethyl ester (15) and

oleic acid ethyl ester (16), the most volatile compounds of CG, were

F IGURE 3 Structures of compounds
8–14.
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confirmed in CG_F2 by 1H NMR as hypothesized by GC-MS. For

CG_F3, 13C NMR dereplication using MixONat software with triter-

penes DB4 gave more than 50 compounds with a match score higher

than 0.90. 13C NMR spectra of CG_F3 revealed a mixture of several

triterpene derivatives (with MW at 424 for all proposed by GC-MS)

including one major and two minor ones. After validation of 13C NMR

data in literature, the major compound was identified as cycloarte-

none71,72 (17, rank 1, score 0.90, MW filter at 424 Da, Figures SI-35

and SI-36) and the two minor ones as lupenone73,74 (18, rank 4, score

0.87) and β-amyrenone75 (19, rank 31, score 0.83, Figures SI-35 and

SI-36). Similarly, in fraction CG_F8, we found a mixture of correspond-

ing alcohols such as cycloartenol76 (21, rank 7, score 0.90, Figures SI-

TABLE 4 Identification of CG EEP constituents by 13C NMR dereplication.

Flash chrom./TLC 13C NMR dereplication (MixONat) 1H and 13C NMR dereplication/identification

GC-MS of fractionsFractions Rf DB Results Analysis Compound/class Formula MW

CG_F2 0.85–0.96 - - 1H NMR Palmitic acid ethyl ester

(15)

C18H36O2 284 Rt 6.7 min, m/z

284

Oleic acid ethyl ester

(16)
C20H38O2 310 Rt 8.5 min, m/z

310

CG_F3 0.88 DB4 Maj: Rank 3; score 0.90 (17)
Tot with MW 424 filter:
Rank 1; score 0.90 (17)
Rank 4; score 0.87 (18)

Rank 31; score 0.83 (19)

1H and
13C

NMR

Cycloartenone (17) (maj) C30H48O 424 Rt 23.3 min, m/z

424

Lupenone (18) C30H48O 424 Rt 23.2 min, m/z

424

β-Amyrenone (19) C30H48O 424 Rt 22.1 min, m/z

424

CG_F5 0.69–0.85 DB5 Rank 1, score 0.87 (20) 1H and
13C

NMR

m-Heptadecenylphenol

(20)
C23H38O 330 Rt 13.1 min, m/z

330

CG_F8 0.44–0.67 DB4 Maj: Rank 7; score 0.90 (21)
Tot with MW 426 filter:
Rank 1; score 0.97 (22)
Rank 34; score 0.83 (23)

1H and
13C

NMR

Cycloartenol (21) (maj) C30H50O 426 Rt 23.6 min, m/z

426

Lupeol (22) C30H50O 426 Rt 23.8 min, m/z

426

β-Amyrin (23) C30H50O 426 Rt 22.7 min, m/z

426

α-Amyrin (24) C30H50O 426 Rt 23.9 min, m/z

426

CG_F10 0.54–0.65 DB4 Rank 1; score 0.93 (25) 1H and
13C

NMR

Dipterocarpol (25) C30H50O2 442 Rt 27.9 min, m/z

424 (442-H2O)

DB5 Rank 1; score 0.92: (26) 6-Heptadecenylsalicylic

acid (26)
C24H38O3 374 Rt 13.1 min, m/z

330 (374-CO2)

CG_F12 0.38–0.65 DB4 Rank 20; score 0.90 with

MW 442 filter (25)
Rank 3; score 0.97 with

MW 456 filter (27)

1H and
13C

NMR

Dipterocarpol (25) C30H50O2 442 Rt 27.9 min, m/z

424 (442-H2O)

24-Methylene

cycloartane-3β,26-diol
(27)

C31H52O2 456 Rt 24.7 min, m/z

438 (456-H2O)

CG_F15 0.39–0.43 DB4 Rank 1; score 1 (28)
Rank 10; score 0.87 with

MW 454 filter (29)

Rank 1; score 0.94 with

MW 468 filter (30)

1H and
13C

NMR

Dammarenediol II (28) C30H52O2 444 Rt 28.8 min, m/z

426 (444-H2O)

Mangiferonic acid (29) C30H46O3 454 -

Ambonic acid (30) C31H48O3 468 -

CG_F16 0.26–0.43 DB5 Rank 1; score 0.91 (31) 1H and
13C

NMR

Heptadecenyl resorcinol

(31)
C23H38O2 346 Rt 16.3 min, m/z

346

Pentadecenyl resorcinol

(32)
C21H34O2 318 Rt 14.0 min, m/z

318

Pentadecyl resorcinol

(33)
C21H36O2 320 Rt 14.0 min, m/z

320

CG_F18 0.13–0.35 DB4 Rank 1; score 0.87 (34)
Rank 9; score 0.80 (35)

1H and
13C

NMR

Ambolic acid (34) C31H50O3 470 -

Mangiferolic acid (35) C30H48O3 456 -

DB4: Triterpenes DB. DB5: Alk(en)yl resorcinol_phenols DB.
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39 and SI-40) as major NP and lupeol77 (22) and β-amyrin78 (23) as

minor ones (rank 1, score 0.97 and rank 34, score 0.83, MW filter at

426 Da; Figures SI-41 and SI-42). The isomer of 23, α-amyrin (24),

was also identified mainly based on 13C NMR data (comparison to lit-

erature data by Seo et al.78 and GC-MS (MW 426) data. All these

ketone and alcohol triterpene derivatives were already known in

propolis.37,38,42,54,79 For CG_F5, as GC-MS analysis showed a major

compound at 13.1 min with a phenol derivative profile (Table 1), 13C

NMR dereplication with the alk(en)yl resorcinol_phenol DB5 rightly

identified m-heptadecenylphenol80 (20, rank 1, score 0.87 (Figures SI-

37 and SI-38) already described in Cameroonian propolis.37 In fraction

CG_F10, Triterpenes DB4 accurately highlighted dipterocarpol81 (25,

rank 1, score 0.93, MW 442, Figures SI-43 and SI-44) previously

described in propolis from Thailand82 and Alk(en)yl resorcinol_phe-

nol DB5 suggested 6-heptadecenylsalicylic acid (26, rank 1, score

0.92, MW 374, Figures SI-43 and SI-45). Regarding these two NPs,

their MW did not match with those determined by GC-MS. This

could be explained by the high temperature used in the GC-MS

method: Compound 25 might lose a molecule of water through

dehydration (m/z 424 [M � 18]) while 26 might lose a molecule of

carbon dioxide through decarboxylation (m/z 330 [M-44]). For the

following fraction CG_F12, the dereplication process using Triter-

penes DB4 suggested a lot of compounds with high scores. Using

an MW filter at 442 Da, dipterocarpol (25) already found in CG_F10

(rank 20, score 0.90, Figures SI-46 and SI-47) and 24-methylene

cycloartane-3β,26-diol83 (27, rank 3, score 0.97, MW filter at

456 Da, Figures SI-46 and SI-48) were identified. In fraction

CG_F15, dammarenediol II (28) was rightly hypothesized by MixO-

Nat and Triterpenes DB4 using a MW filter at 444 Da (rank 1, score

1, Figures SI-49 and SI-50; GC-MS: m/z 426 [M-18]) and confirmed

by 13C NMR data.84 Using the same approach, this latter fraction

was shown to contain two other triterpenoids, i.e., mangiferonic

acid (29, rank 10, score 0.87, MW filter at 454 Da, Figures SI-49

and SI-51) and ambonic acid (30, rank 1, score 0.94, MW filter at

468 Da, Figures SI-49 and SI-52) already found in propolis from

Nigeria40 and from Brazil.85 These carboxylic acids were not

detected by GC-MS because of their lack of volatility (intermolecu-

lar hydrogen bond due to carboxylic acid function). Likewise, in

CG_F18, two other triterpenoid acids were identified, i.e., ambolic

acid (34, rank 1, score 0.87, MW filter at 470 Da, Figures SI-55 and

SI-56) and mangerolic acid (35, rank 9, score 0.80, MW filter at

456 Da, Figures SI-55 and SI-57) also described by Silva et al. in

Brazil.85 In the penultimate fraction CG_F16, 13C NMR dereplication

with Alk(en)yl resorcinol_phenol DB5 accurately suggested a resorci-

nolic lipid, i.e., heptadecenylresorcinol86 (31, rank 1, score 0.91,

Figures SI-53 and SI-54) associated to two other resorcinol deriva-

tives identified as pentadecenylresorcinol87 (32, MW 318) and pen-

tadecylresorcinol88 (33, MW 320). All were previously isolated in

Cameroonian37 and Mexican propolis.89 13C NMR data of 17–35

are available in the supporting information.

For this Congolese propolis sample, most triterpenoids as well as

resorcinolic lipids might originate from M. indica.83,89,90

F IGURE 4 Structures of compounds 15–35.
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3.4 | Antioxidant and anti-AGE assessment

Evaluation of the antioxidant and anti-AGE activities of BC1, BC2,

and CG EEPs revealed that only BC1 EEP showed a good antioxidant

activity (1,172 ± 97 μmol TE/g), twice higher than that of ethanolic

rosemary extract (E392). This activity was in relation with its high total

phenolic content (297.0 ± 15.6 mg GAE/g) comparable to those of

poplar-type EEPs mostly found in Europe, North America, or China.19

However, the chemical analysis of BC1 EEP revealed phenanthrenoids

and stilbenoid polyphenols, including combretastatin B-2 (7), a dihy-

drostilbene. Such derivatives have already been described by Inui

et al. in 202158 in Senegalese propolis showing significant anti-

inflammatory activity, compounds 4, 6, and 7 being the most active.

The dihydrophenanthrene 6-methoxycoelonin (3) has also been

described displaying cytotoxic effect against five human cancer cell

lines (786-0, MCF-7, Hep2, UACC-62, and NCI/ADR-RES) with

remarkable activity against UACC-62 cells (IC50 2.59 μM).91 The

phenanthrene 6 was also known for its moderate cytotoxic activity

against KB, MCF-7, and K562 cells and its potent inhibitory activity

on CDK1/cyclin B (IC50 0.07 μM).92 Dihydrophenanthrenes from

Combretum species such as combretastatins were also previously

described as cell growth inhibitors59: Four types of combretastatins

can be distinguished, i.e., stilbene-type (combretastatin A),

dihydrostilbene-type (combretastatin B), phenanthrene-type (combre-

tastatin C), and cyclic macrolactone-type combretastatins (combretas-

tatin D). Among them, combretastatins A (A-4, but also A-1 and A-2)

exhibit the highest anti-tumor activity.93,94 Consequently, it seems

best to use such antioxidant propolis containing phenanthrene, dihy-

drophenanthrene, and combretastatin derivatives with great care. It

confirms the importance of the preliminary determination of the

chemical composition of propolis before its use in food and health

products.

Among all propolis extracts used in this study, only BC2 EEP

exhibited a moderate anti-AGE activity (IC50 0.70 mg/ml) compared

to S. japonicum ethanolic extract, well known for its high anti-AGE

activity19 (cf. Table SI.1). As expected, all purified flavanone deriva-

tives showed a good activity (IC50 0.20–0.26 mM; Table SI-1) close to

the reference value (Quercetin IC50 0.20 mM) except for 13 (IC50

0.60 mM). A higher anti-AGE activity was previously reported for a

French EEP (IC50 0.05 mg/ml) with much lower levels of triterpene

derivatives and high amounts of pinobanksine derivatives.19

In conclusion, in the present work, GC-MS or HPLC-DAD-MS

was first used to identify different classes of NPs and determine their

MWs. Then 13C NMR-based dereplication using MixONat software

with custom DBs allowed us to unambiguously characterize major

NPs from fractions. In addition to major triterpenoids, BC1, a propolis

sample originating from the center of Benin, exhibited an original

composition with high levels of dihydrophenanthrene, phenanthrene,

and bisbenzyl derivatives, some of which were identified for the first

time in propolis. Some of these antioxidant polyphenols are probably

cytotoxic and remind us of the need for systematic analysis of propo-

lis before use in food and health products, especially for the lesser

known propolis from tropical areas. Among the other extracts

belonging to Macaranga-type propolis, BC2, collected in the same

area, contained prenyl and geranyl flavanones with anti-AGE activi-

ties. Propolis from Congo contained NPs most likely associated to the

botanical source M. indica: cycloartane-type triterpenoids and resorci-

nolic lipids. Further investigation will be performed to associate the

phytochemical composition of Beninese and Congolese propolis sam-

ples to the local flora and to evaluate their anti-fungal or anti-bacterial

properties.
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