Keywords: grammatical inference, nondeterministic automata, SAT models

published or not. The documents may come    

Inference of over-constrained NFA of size k + 1 to efficiently and systematically derive NFA of size k for grammar learning

Tomasz Jastrząb, Frédéric Lardeux, Eric Monfroy

Inference of over-constrained NFA of size k + 1 to efficiently and systematically derive NFA of size k for grammar learning Tomasz Jastrząb 1[0000-0002-7854-9058] , Frédéric Lardeux 2[0000-0001-8636-3870] , and Eric Monfroy 2[0000-0001-7970-1368]

1 Introduction

Grammatical inference [START_REF] De La Higuera | Grammatical Inference: Learning Automata and Grammars[END_REF] is the process of learning formal grammars, such as finite automata or production rules, from a given learning sample of words. This method is useful in various fields, such as compiler design, bioinformatics, pattern recognition, and machine learning. The problem we tackle is to learn a finite automaton, specifically a Nondeterministic Finite Automaton (NFA), that can accept a set of positive examples and reject a set of negative examples. The complexity of this problem is determined by the number of states in the automaton. Nondeterministic automata are often smaller in size than deterministic automata for the same language, thus the focus is on learning NFAs. The goal is to minimize the number k of states in the automaton-this is typically done by determining lower (such as 1) and upper bounds (such as the size of a prefix tree acceptor 3 ) on the number of states, and using optimization algorithms to find the smallest possible number of states. The problem of learning formal grammars from a given sample of words has been explored from multiple angles. Several algorithms have been proposed, including ad-hoc methods such as DeLeTe2 [START_REF] Denis | Learning regular languages using rfsas[END_REF] that focuses on merging states from the prefix tree acceptor (PTA), and newer approaches like the family of algorithms for regular languages inference presented in [START_REF] Vázquez De Parga | A family of algorithms for non deterministic regular languages inference[END_REF]. Some studies have employed metaheuristics, such as hill-climbing in [START_REF] Tomita | Dynamic construction of finite-state automata from examples using hill-climbing[END_REF], while others have used complete solvers that can always find a solution if one exists, prove unsatisfiability, and find the global optimum in optimization problems. The problem is often modeled as a Constraint Satisfaction Problem (CSP) and various techniques have been employed, such as Integer Non-Linear Programming (INLP) in [START_REF] Wieczorek | Grammatical Inference -Algorithms, Routines and Applications[END_REF] and parallel solvers in [START_REF] Jastrzab | On parallel induction of nondeterministic finite automata[END_REF][START_REF] Jastrzab | Two parallelization schemes for the induction of nondeterministic finite automata on PCs[END_REF]. Additionally, the author of [START_REF] Jastrzab | A comparison of selected variable ordering methods for NFA induction[END_REF] proposed two strategies for solving the CSP formulation of the problem, and [START_REF] Jastrzab | Parallel algorithms for minimal nondeterministic finite automata inference[END_REF] presents a parallel approach for solving the optimization variant of the problem.

In this paper, we aim to enhance SAT models for grammatical inference, as opposed to creating a new solver. A SAT (the propositional SATisfiability problem [START_REF] Garey | Computers and Intractability, A Guide to the Theory of NP-Completeness[END_REF]) model consists in defining the problem with Boolean variables and a Boolean formula in Conjunctive Normal Form (CNF). More precisely, we focus here on the definition of over-constrained models of size k + 1 with properties that allow deducing information about the classical model of size k. The benefit of these over-constrained models is in terms of spacial complexity. Whereas the complexity of the generation of an NFA of size k of a learning sample S is in O(σ • k 3 ) variables, and O(σ • k 3 ) clauses (with σ = Σ w∈S |w| for most of the models4 ), the generation of our over-constrained NFA of size

k + 1 is in O(σ • k 2 ) variables, and O(σ • k 2 ) clauses.
We made some experiments to test our method. The originality is that we use some of these properties to derive k-state NFAs by building more constrained models of size k + 1, where the previous model of size k was unable to provide a solution.

The structure of this paper is as follows. Section 2 gives an overview of the NFA inference problem. Section 3 describes extensions of the classical models. In Section 4, we present some properties concerning the extensions. The results of our experiments are discussed in Section 5 and we conclude in Section 6.

The NFA inference problem

In this section, we formally introduce the NFA inference problem by utilizing the propositional logic paradigm and providing a generic model. Additionally, we review and highlight some previously established models within the current literature.

Notations

Let Σ = {a 1 , . . . , a n } be an alphabet of n symbols. A learning sample S = S + ∪ S -is given by a set S + of so called "positive" words from Σ * that the inferred NFA must accept, and a set S -of "negative" words that the NFA must reject.

Let K be the set of the k first non-zero integers, K = {1, . . . , k}. We consider the following variables:

k, an integer, the size of the NFA to be generated, a set of k Boolean variables F = {f 1 , . . . , f k } determining whether state i is final or not, and, ∆ = {δ a, # » i,j |a ∈ Σ and (i, j) ∈ K 2 }, a set of nk 2 Boolean variables representing the existence of transitions from state i to state j with the symbol a ∈ Σ, for each i, j, and a.

We define p w,i1,im+1 as the path i 1 , i 2 , . . . , i m+1 for a word w = a 1 . . . a m .

p w,i1,im+1 = δ a1, # » i1,i2 ∧ . . . ∧ δ am, # » im,im+1
Although the path is directed from i 1 to i m+1 (it is a sequence of derivations), we will build it either starting from i 1 , starting from i m+1 , or starting from both sides. Thus, to avoid confusion of path and building, we prefer keeping i 1 , i m+1 without any direction.

A "meta-model"

A meta-model to define an NFA of size k (noted k_NFA) can be done with the 3 following constraints:

-Special cases for the empty word λ; if it is a word of S + , the initial state must be final, if it is a negative word, the initial state must not be final:

(λ ∈ S + -→ f 1 ) ∧ (λ ∈ S --→ ¬f 1 ) (1) 
-A positive word must terminate on a final state of the k_NFA, i.e., there must be a path from the initial state 1 to a final state i (f i must be true):

i∈K p w,1,i ∧ f i (2) 
-A negative word w must not terminate on a final state of the k_NFA, i.e., either there is no path for w, or each path terminates in a non-final state:

i∈K (¬p w,1,i ∨ ¬f i ) (3) 
Of course, the notion of path can be defined and built in many ways. In [START_REF] Jastrząb | Taking advantage of a very simple property to efficiently infer NFAs[END_REF], prefix, suffix, and hybrid approaches are proposed.

Some previous models

As seen in the previous section, several models can be considered for learning an NFA. We skip the direct model (see [START_REF] Jastrzab | Parallel algorithms for minimal nondeterministic finite automata inference[END_REF][START_REF] Lardeux | GA and ILS for optimizing the size of NFA models[END_REF]) which has a bad complexity and does not behave well in practice: its space complexity is in O(|S

+ | • (|ω + | + 1) • k |ω+| )
clauses, and O(|S + | • k |ω+| ) variables with ω + the longest word of S + . We also discard models with 0/1 variables, either from INLP [START_REF] Wieczorek | Grammatical Inference -Algorithms, Routines and Applications[END_REF] or CSP [START_REF]Handbook of Constraint Programming[END_REF]: we made some tests with various models with [START_REF] Lecoutre | PYCSP3: modeling combinatorial constrained problems in python[END_REF] and obtained some disastrous results: the NFA inference problem is intrinsically a Boolean problem, and thus, well suited for SAT solvers.

In [START_REF] Lardeux | Optimized models and symmetry breaking for the NFA inference problem[END_REF], 7 different models were defined: the prefix model (P), the suffix model (S), and several hybrid models combining prefix and suffix models with different splitting strategies of words, such as the best prefix model (P ⋆ ) to optimize size and use of prefixes, the best suffix model (S ⋆ ) to optimize size and use of suffixes, and 3 hybrid models (ILS(Init)) based on a local search optimization [START_REF] Stützle | Iterated Local Search[END_REF] of word splittings (starting with an initial configuration Init, being either a random splitting of words, the splitting found by the P ⋆ model, or by the S ⋆ model).

The main difference is the definition and construction of paths. For example, in the prefix model (P), some extra Boolean variables represent paths for each prefix of the learning sample. Thus, paths are defined with the following two constraints: (each word is represented as w = va with a ∈ Σ):

-Case for a word of length 1:

i∈K δ a, # » 1,i ↔ p a,1,i (4) 
-Recursive definition of paths for each prefix w of each word of the sample:

i∈K (p w,1,i ↔ ( j∈K p v,1,j ∧ δ a, #» j,i )) (5) 
The suffix model (S) is obtained similarly, but with extra variables representing suffixes (i.e., with words represented as w = av with a ∈ Σ).

Hybrid models are built with both prefixes and suffixes constructions, each word being considered as the concatenation of a prefix and a suffix. Some constraints are also added to "join" prefix paths and suffix paths.

After transformation in Conjunctive Normal Form (CNF) using Tseitin transformations [START_REF] Tseitin | On the Complexity of Derivation in Propositional Calculus[END_REF], the spacial complexity of the prefix model is in O(σ•k 2 ) variables, and O(σ • k 2 ) clauses with σ = Σ w∈S |w| (see [START_REF] Lardeux | GA and ILS for optimizing the size of NFA models[END_REF] for details). Although similar, the spacial complexity of the suffix model is in

O(σ • k 3 ) variables and O(σ • k 3 ) clauses.
The reason is that we build prefixes from the initial state 1, whereas suffixes are built from one of the k states (see [START_REF] Lardeux | GA and ILS for optimizing the size of NFA models[END_REF]). Hybrid models are thus also in O(σ • k 3 ) variables and clauses.

k_NFA extensions

For a given sample, if there is a k_NFA, i.e., an NFA of size k, to recognize words of S + and reject words of S -, there is also an NFA of size k + 1. Although obvious and rather useless, this property can be refined to generate k_NFA. To this end, some more constraints are added to the (k + 1)_NFA to build what we call (k + 1)_NFA extensions.

3.1 Buiding a (k + 1)_NFA from a k_NFA Let A = (Q A , Σ, ∆ A , q 1 , F A ) be an NFA of size k. Then, there always exists an NFA of size k + 1,

A ′ = (Q A ′ , Σ, ∆ A ′ , q 1 , F A ′ ), such that Q A ′ = Q A ∪ {q k+1 }, F A ′ = {q k+1 } and ∆ A ′ : ∀ i,j∈(Q A ) 2 δ A a, # » i,j ↔ δ A ′ a, # » i,j ∀ i∈Q A ,j∈F A δ A a, # » i,j ↔ δ A ′ a, # » i,k+1
In other words, A ′ has only one final state which is the new state k + 1, each transition of A also exists in A ′ , and transitions from a state i to a final state of A are duplicated as new transitions from i to state k + 1. The obvious but important property for the rest of this paper is that the language recognized by A ′ is the same as the one recognized by A.

In the following, the main idea is to over-constrain a (k + 1)_NFA model (i.e., a model to generate an NFA of size k + 1) to obtain a model closer or equal to A ′ as described above. Moreover, the idea is also that the over-constrained (k+1)_NFA model can be solved and reduced to an NFA of size k more efficiently than solving directly the k_NFA model. We propose two (k + 1)_NFA model extensions for which a new state and new constraints are added. The first model extension, the (k + 1)_NFA + , over-constrains the (k + 1)_NFA to be able to reduce a generated (k + 1)_NFA into a k_NFA with a reduction algorithm (see [START_REF] Jastrząb | Taking advantage of a very simple property to efficiently infer NFAs[END_REF]). However, as shown in [START_REF] Jastrząb | Taking advantage of a very simple property to efficiently infer NFAs[END_REF], we are not always able to reduce a (k + 1)_NFA + into a k_NFA, and the gain is really poor. In fact, a (k + 1)_NFA + instance mainly provides information when it is unsatisfiable: in this case, we also know that there is no k_NFA. The second model extension, the (k + 1)_NFA ⋆ model, does not require any algorithm to reduce a generated (k + 1)_NFA to a (k + 1)_NFA: the satisfiability (respectively unsatisfiability) of a (k + 1)_NFA ⋆ implies the satisfiability (respectively unsatisfiability) of a k_NFA: moreover, in case of satisfiability, the k_NFA can always be directly derived from the (k + 1)_NFA ⋆ by removing a state and some transitions. This operation has no cost.

(k + 1)_NFA + extension

Let K = {1, . . . , k} be the k first non-zero integers, and K + = {1, . . . , k + 1} be the k + 1 first non-zero integers.

A (k + 1)_NFA + is a (k + 1)_NFA with some extra properties that ensure that it may be reduced to a k_NFA by a reduction algorithm [START_REF] Jastrząb | Taking advantage of a very simple property to efficiently infer NFAs[END_REF]. The extra properties of a (k + 1)_NFA + are:

a (k + 1)_NFA + has one and only one final state, i.e., state k + 1;

state k + 1 has no outgoing transition; each transition from a state i to state k + 1 reading the symbol a has an equivalent transition from the state i to a state j (j ̸ = k + 1) with a. State i is called a possibly final state.

A (k + 1)_NFA + is defined by the same variables as a k_NFA with an addition of those related to state k + 1 (a variable for the final state, transitions, and paths). The extra constraints are the following:

-The (k + 1)_NFA + has only one final state, state k + 1:

i∈K (¬f i ) ∧ f k+1 (6) 
Note that this constraint mainly impacts the suffix model by unit propagation. -There is no outgoing transition from the (k + 1)_NFA + final state:

a∈Σ i∈K+ ¬δ a, # » k+1,i (7) 
-Each incoming transition of the (k + 1)_NFA + final state k + 1 must also finish in another state:

a∈Σ i∈K δ a, # » i,k+1 → j∈K δ a, # » i,j (8) 

k_NFA ⋆ extension

A (k + 1)_NFA ⋆ is a (k + 1)_NFA + with some extra properties on words and a new set of Boolean variables representing possibly final states for the corresponding k_NFA (F * = {f * 1 , ..., f * k }). (k + 1)_NFA ⋆ may be reduced to a k_NFA by removing state k + 1 and its incoming transitions, and fixing the final states among the possible final states, i.e., determining the f * i of {f * 1 , . . . , f * k } which are final states of the k_NFA. To determine these final states, we have to ensure:

-A negative word cannot terminate in a possible final state:

i∈K f * i → w∈S - ¬p w,1,i (9) 
-Each possibly final state validates at least one positive word of S + :

i∈K f * i → ( va∈S + j∈K (p v,1,j ∧ δ a, #» j,i ∧ δ a, # » j,k+1 ) (10) 
-Each positive word terminates in at least one possible final state:

w∈S + i∈K (p w,1,i ∧ f * i ) (11) 

Complexity

Extensions (k + 1)_NFA + and (k + 1)_NFA ⋆ are of course bigger than k_NFA since the corresponding models contain an extra state, some extra transitions, and some extra constraints. (k + 1)_NFA ⋆ model needs also k new variables for the possible final states. New constraints to transform (k +1)_NFA to the extensions also increase the number of clauses and variables. Table 1 provides the cost in terms of variables and clauses. Some details about the arity of the generated clauses are given (unary, binary, and greater). A blank in a cell corresponds to 0. k

+ 1 k + 1 Constraint 7 n(k + 1) n(k + 1) Constraint 8 nk nk Constraint 9 k|S -| k|S -| Constraint 10 k|S + | k(k + 4)|S + | k 2 |S + | + 4k|S + | k|S + | Constraint 11 k|S + | (3k + 1)|S + | 2k|S + | (k + 1)|S + |
Both extensions increase the number of variables and clauses of the initial (k + 1)_NFA model. We can observe a lot of unary and binary clauses allowing solvers to perform very well. The global complexity for each extension remains unchanged or decreases, despite the increase in clauses and variables. As we will observe in Section 5.2, the implementation of these new constraints significantly lowers the complexity of many of the models (O(σ • k 3 ) clauses to O(σ • (k + 1) 2 ) clauses) just by simplification.

Properties of the extensions

Extensions (k + 1)_NFA + and (k + 1)_NFA ⋆ are over-constrained models for (k + 1)_NFA. Indeed, some properties allow them to infer a k_NFA solution. A k_NFA + is a "weak" extension because only the existence of a k_NFA can be proved, whereas k_NFA ⋆ is a "strong" extension that proves the existence or not of a k_NFA.

(k + 1)_NFA +

Major property Adding Constraints (6), [START_REF] Jastrzab | Two parallelization schemes for the induction of nondeterministic finite automata on PCs[END_REF], and (8) to k_NFA model leads to the following property:

∃ k_NFA ⇒ ∃ (k + 1)_NFA + (12) 
The contraposition allows us to prove the unsatisfiability of k_NFA with (k + 1)_NFA + :

̸ ∃ (k + 1)_NFA + ⇏ ∃ k_NFA (13) 
Proof. The main idea is: there always exists a transformation from any k_NFA to a (k + 1)_NFA + which recognizes the same language.

1. A new state k + 1 is added to the k_NFA. Minor property While the lack of solutions for (k + 1)_NFA + allows to conclude the lack of solutions for k_NFA, a solution for (k + 1)_NFA + is not sufficient to conclude existence of a k_NFA:

∃ (k + 1)_NFA + ̸ ⇒ ∃ k_NFA (14) 
The simple following example (Figure 1) shows a k_NFA + solution with k = 3, whereas there is no k_NFA with k = 2. It is possible to try to obtain a k_NFA from a (k + 1)_NFA + solution with the algorithm presented in [START_REF] Jastrząb | Taking advantage of a very simple property to efficiently infer NFAs[END_REF]. However this algorithm rarely succeeds, and its worst-case complexity is in O(k • |S|).

(k + 1)_NFA ⋆

Major property Adding Constraints ( 9), [START_REF] Jastrząb | Taking advantage of a very simple property to efficiently infer NFAs[END_REF], and ( 11) to (k + 1)_NFA + model allows to obtain the equisatisfiability between k_NFA and (k +1)_NFA ⋆ :

∃ k_NFA ≡ ∃ (k + 1)_NFA ⋆ (15)
Proof. The main idea is: there are some transformations from k_NFA to (k + 1)_NFA ⋆ and from (k + 1)_NFA ⋆ to k_NFA preserving acceptance of positive words and rejections of negative words. Minor property The lack of solutions for (k +1)_NFA ⋆ allows concluding that there are no solutions for the k_NFA model. However, nothing can be deduced for the (k + 1)_NFA model.

⇒ From k_NFA to (k + 1)_NFA ⋆ 1.
̸ ∃ (k + 1)_NFA ⋆ ̸ ⇏ ∃ (k + 1)_NFA (16) 
It is easy to prove Property 16 with its contraposition and its rewritting using Property 15:

∃ (k + 1)_NFA ̸ ⇒ ∃ (k + 1)_NFA ⋆ ∃ (k + 1)_NFA ̸ ⇒ ∃ k_NFA (17) 
Property 17 is correct, otherwise, the existence of a (k + 1)_NFA solution would imply the existence of a k_NFA solution. As a counterexample, Figure 1 proposes a (k + 1)_NFA with k = 3 but no k_NFA with k = 2 exists.

Experimentation

We present an experimental study of two equisatisfiable models, k_NFA and (k +1)_NFA ⋆ . Our experiments are conducted on state-of-the-art instances that vary in the sizes of the alphabet and the number of positive and negative words in the learning sample. We present a simplified version of the (k + 1)_NFA ⋆ model: indeed, the models briefly presented in Section 2.3 can be rewritten and simplified when combined with Constraints [START_REF] Jastrzab | On parallel induction of nondeterministic finite automata[END_REF][START_REF] Jastrzab | Two parallelization schemes for the induction of nondeterministic finite automata on PCs[END_REF][START_REF] Jastrzab | A comparison of selected variable ordering methods for NFA induction[END_REF][START_REF] Jastrzab | Parallel algorithms for minimal nondeterministic finite automata inference[END_REF][START_REF] Jastrząb | Taking advantage of a very simple property to efficiently infer NFAs[END_REF][START_REF] Lardeux | GA and ILS for optimizing the size of NFA models[END_REF], leading to SAT instances with fewer variables and constraints. We also compare the performance of the two models in terms of the number of solutions and running time.

Context for reproductibility

The algorithms were implemented in Python using libraries such as PySAT [START_REF] Ignatiev | PySAT: A Python toolkit for prototyping with SAT oracles[END_REF]. The experiments were carried out on a computing cluster with Intel-E5-2695 CPUs, and a fixed limit of 10 GB of memory. Running times were limited to 15 minutes, including model generation and solving time. We used the Glucose [START_REF] Audemard | Predicting learnt clauses quality in modern SAT solvers[END_REF] SAT solver with default options.

These experiments were carried out on state-of-the-art instances, described in [START_REF] Lardeux | Optimized models and symmetry breaking for the NFA inference problem[END_REF]. These instances can be divided into three categories corresponding to the sizes of the alphabet (2, 5, and 10). The number of positive and negative words is the same in each instance and varies from 10 to 100 in increments of 10 for each category. There are thus 30 instances in total. We test all the possible values of k from 1 to k P T A where k P T A is the upper bound obtained by the size of the computed prefix tree acceptor.

We focus our experiments on k_NFA and (k + 1)_NFA ⋆ excluding (k + 1)_NFA + because we want to focus on the comparison of two equisatisfiable models.

Due to the deterministic behavior of Glucose, we run only one execution of each couple (instance, k).

Simplified models

The (k+1)_NFA ⋆ model is defined by over-constraining a k_NFA model. Mixing and combining all these constraints allows us to obtain a simplified model with fewer variables (f disappear) and fewer constraints (Constraints (1) and ( 7) are deleted and Constraints (2) and (3) are simplified). The final (k + 1)_NFA ⋆ models that we use can be defined as follows:

-Variables:

• a set of k Boolean variables determining whether state i is a possibly final state or not: F * = {f * 1 , . . . , f * k }, • a set of nk(k + 1) Boolean variables representing the transitions from state i to state j with the symbol a ∈ Σ: ∆ = {δ a, # » i,j |a ∈ Σ and i ∈ K and j ∈ K + }, and • a set of Boolean variables representing the paths (sequence of transitions from a state i to a state j reading a word w):

Π = {p w,i,j |(i, j) ∈ K 2 + , w ∈ Σ * }
-Constraints:

• w∈S + p w,1,k+1 // Simplification of Constraint 2

• w∈S -¬p w,1,k+1 // Simplification of Constraint 3

• a∈Σ i∈K δ a, # » i,k+1 → j∈K δ a, # » i,j
// Constraint 8 

• i∈K f * i → w∈S -¬p w,1,i // Constraint 9 • i∈K f * i → ( v.a∈S + j∈K (p v,1,j ∧ δ a, #» j,i ∧ δ a, # » j,k+1
) // Constraint 10

• w∈S + i∈K (p w,1,i ∧ f * i ) // Constraint 11 Additionally, the constraints applied to define the paths either starting from the end, the beginning, or both extremities of words (as outlined in Section 2.3) can also be simplified. The most significant simplification is for the suffix model, where the space complexity changes from O(σ • k 3 ) clauses to O(σ • (k + 1) 2 ) clauses. All other models, which partially use the suffix model, are also affected except for the prefix model.

Results and Discussions

Table 2 shows results for k_NFA and (k + 1)_NFA ⋆ with 7 models: the prefix model P, the suffix model S, and 5 hybrid models, the local search model with random initial configuration ILS(r), with P ⋆ (respectively S ⋆ ) initial configuration, the best prefix model P ⋆ , and finally the best suffix model P ⋆ . The combination of learning samples and the number of states (k values) produces 413 instances, and thus, 413 executions for each model. Table 2 is divided into two parts: instances description and results. Instances are described by the model and the average number of variables and clauses. As result, we consider the number of satisfiable instances (Sat), unsatisfiable instances (Unsat), and Unknown solutions (noted ?). Moreover, we give the average running time (in seconds). Table 3 shows the relative difference from k_NFA to (k + 1)_NFA ⋆ for each model. Column names are the same as in Table 2, but they indicate the percentage difference compared to the results obtained with k_NFA instances.

Tables 2 and3 show that the number of variables and clauses in (k+1)_NFA ⋆ instances increase with respect to k_NFA, but they remain very close; except for the prefix model P with a +25% increase, and for the suffix model S and the best prefix model P ⋆ with a decrease (respectively -1 to -6%), the instances are around +8% larger. Model P increases by 25% because it is the only one that does not use the suffixes (which give a O(σk 3 ) complexity). The others, although adding extra Constraints [START_REF] Jastrzab | On parallel induction of nondeterministic finite automata[END_REF][START_REF] Jastrzab | Two parallelization schemes for the induction of nondeterministic finite automata on PCs[END_REF][START_REF] Jastrzab | A comparison of selected variable ordering methods for NFA induction[END_REF][START_REF] Jastrzab | Parallel algorithms for minimal nondeterministic finite automata inference[END_REF][START_REF] Jastrząb | Taking advantage of a very simple property to efficiently infer NFAs[END_REF][START_REF] Lardeux | GA and ILS for optimizing the size of NFA models[END_REF], keep similar sizes since the (k +1)_NFA ⋆ models allow decreasing complexity of suffix constructions from O(σk 3 ) to O(σk 2 ).

We can observe that the number of Sat solutions increases for all models when we use (k + 1)_NFA ⋆ . It is similar for Unsat solutions (except for model P ⋆ ). The number of instances not solved in the given time is therefore logically reduced. The very interesting result is that this improvement in the number of resolved instances is coupled with a diminution of the resolution time.

In terms of global efficiency, best results are obtained by ILS(r), ILS(P ⋆ ), and ILS(S ⋆ ) with (k + 1)_NFA ⋆ (only 151 instances remain unsolved). Adding the running time in the comparison, model ILS(S ⋆ ) is the best one. Compared to the best model for k_NFA (P), it finds one more Sat and 6 more Unsat solutions with a faster average running time (6 seconds less).

Conclusion

Grammatical inference is the process of learning formal grammars, in our case as a Nondeterministic Finite Automaton. In this paper, we proposed an overconstrained model of size k+1 ((k+1)_NFA ⋆ ) with properties that allow deriving a solution for the classical model of size k (k_NFA). If such an automaton of size k + 1 exists, it can be freely reduced to an automaton of size k, and if it does not exist, we have the proof there is no automaton of size k. The advantage of using the (k + 1)_NFA ⋆ model is to obtain shorter resolution times while increasing the rate of solved instances.

Working with a model of size k + 1 increases the number of clauses and variables but the additional constraints allow us to simplify the model and limit the combinatorial explosion. Moreover, these constraints allow us to lower the global complexity of most of our models that use a suffix construction (such as the model S).

In the future, we plan to work on adding new constraints to further reduce the complexity of the model (k + 1)_NFA ⋆ . Moreover, a parallel execution of some well-chosen models could lead even more often to solved instances.

Fig. 1 .

 1 Fig. 1. Example of a (k + 1)_NFA + solution for k = 3 and S = ({a, ab, abb, bbb}, {aab, b, ba, bab, aaa}). It is not possible to find a k_NFA with k = 2.
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 1 Complexity in terms of variables and clauses for each new constraint allowing the definition of the (k + 1)_NFA + (Constraints (6-8)) and the (k + 1)_NFA ⋆ models (Constraints[START_REF] Jastrzab | On parallel induction of nondeterministic finite automata[END_REF][START_REF] Jastrzab | Two parallelization schemes for the induction of nondeterministic finite automata on PCs[END_REF][START_REF] Jastrzab | A comparison of selected variable ordering methods for NFA induction[END_REF][START_REF] Jastrzab | Parallel algorithms for minimal nondeterministic finite automata inference[END_REF][START_REF] Jastrząb | Taking advantage of a very simple property to efficiently infer NFAs[END_REF][START_REF] Lardeux | GA and ILS for optimizing the size of NFA models[END_REF]).

	Variables	total	unary	Clauses binary	>
	Constraint 6				

  2. Each of incoming transitions of k_NFA final states are duplicated by transitions outgoing to state k + 1. Thus, a path p w,1,k+1 exists from the initial state to state k+1 if and only if a path exists from the initial state to k_NFA final states. 3. This induces: -Each positive word can now finish in state k + 1, -No negative word can finish in state k + 1. 4. All k_NFA final states are then redundant with state k + 1 thus state k + 1 can be considered as the unique final state. 5. The automaton is then a (k + 1)_NFA + since it has only one final state, and it validates positive words and rejects negative words.

  It is similar to the proof of Section 4.1. ⇐ From (k + 1)_NFA ⋆ to k_NFA 1. All transitions δ a, # » i,k+1 are removed, and states j such that δ a, # » i,k+1 ∧δ a, # » i,j are now considered as final states. 2. State k + 1 is removed. 3. Each positive word can terminate in a possible final state because there are some transitions to a possible final state redundant to transitions to state k + 1. 4. No negative word can terminate in a possible final state otherwise, by construction, it would also finish in state k + 1. 5. The automaton is then a k_NFA validating words of S + and rejecting words of S -.

Table 2 .

 2 Results for k_NFA and (k + 1)_NFA ⋆ on instances with all values coming from PTA. Each instance corresponds to the average for all samples of words with all k between 1 and the value given by PTA.

			Instances	Results
		Model	Vars Clauses Sat Unsat ? Time
		P	56,256 212,229 124 131 158 368
		S	386,508 1,459,936 80 116 217 217
	k_NFA	ILS(r) 114,218 446,854 104 133 176 418 ILS(P ⋆ ) 114,781 449,122 110 132 171 423 ILS(S ⋆ ) 51,401 205,593 105 134 174 415
		P ⋆	412,120 1,574,192 74 126 213 504
		S ⋆	51,683 206,564 103 134 176 409
	(k + 1)_NFA ⋆	P S ILS(r) 122,553 477,081 125 137 151 376 70,362 267,368 128 133 152 356 381,308 1,417,649 86 126 201 169 ILS(P ⋆ ) 123,707 479,036 124 138 151 423 ILS(S ⋆ ) 55,192 219,637 125 137 151 362 P ⋆ 391,773 1,475,492 120 122 171 406 S ⋆ 55,567 220,898 122 137 154 356

Table 3 .

 3 Difference (in %) from k_NFA to (k + 1)_NFA ⋆ based on results in Table2.

	Model	Vars Clauses Sat Unsat ? Times
	P	+25.07 +25.98 +3.23 +1.53 -2.35 -3.44
	S	-1.35	-2.9 +7.5 +8.62 -8.16 -22.04
	ILS(r)	+7.3 +6.76 +20.19 +3.01 -10.55 -10.16
	ILS(P ⋆ ) +7.78 +6.66 +12.73 +4.55 -8.26 -0.13
	ILS(S ⋆ ) +7.37 +6.83 +19.05 +2.24 -9.62 -12.9
	P ⋆	-4.94	-6.27 +62.16 -3.17 -21.00 -19.5
	S ⋆	+7.51 +6.94 +18.45 +2.24 -9.28 -13.01

A prefix tree acceptor (PTA) is a tree-like Deterministic Finite Automaton built from the sample by using each prefix in the sample as a state

Only the complexity of the prefix model is in O(σ • k 2 ) variables, and O(σ • k 2 ) clauses.