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Abstract. Grammatical inference involves learning a formal grammar
as a finite state machine or set of rewrite rules. This paper focuses on
inferring Nondeterministic Finite Automata (NFA) from a given sample
of words: the NFA must accept some words, and reject others. Our ap-
proach is unique in that it addresses the question of whether or not a
finite automaton of size k exists for a given sample by using an over-
constrained model of size k + 1. Additionally, our method allows for
the identification of the automaton of size k when it exists. While the
concept may seem straightforward, the effectiveness of this approach is
demonstrated through the results of our experiments.

Keywords: grammatical inference · nondeterministic automata · SAT
models.

1 Introduction

Grammatical inference [4] is the process of learning formal grammars, such as
finite automata or production rules, from a given learning sample of words. This
method is useful in various fields, such as compiler design, bioinformatics, pat-
tern recognition, and machine learning. The problem we tackle is to learn a
finite automaton, specifically a Nondeterministic Finite Automaton (NFA), that
can accept a set of positive examples and reject a set of negative examples.
The complexity of this problem is determined by the number of states in the au-
tomaton. Nondeterministic automata are often smaller in size than deterministic
automata for the same language, thus the focus is on learning NFAs. The goal
is to minimize the number k of states in the automaton—this is typically done
by determining lower (such as 1) and upper bounds (such as the size of a prefix
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tree acceptor3) on the number of states, and using optimization algorithms to
find the smallest possible number of states.

The problem of learning formal grammars from a given sample of words
has been explored from multiple angles. Several algorithms have been proposed,
including ad-hoc methods such as DeLeTe2 [2] that focuses on merging states
from the prefix tree acceptor (PTA), and newer approaches like the family of
algorithms for regular languages inference presented in [18]. Some studies have
employed metaheuristics, such as hill-climbing in [16], while others have used
complete solvers that can always find a solution if one exists, prove unsatisfia-
bility, and find the global optimum in optimization problems. The problem is
often modeled as a Constraint Satisfaction Problem (CSP) and various tech-
niques have been employed, such as Integer Non-Linear Programming (INLP)
in [19] and parallel solvers in [6, 7]. Additionally, the author of [8] proposed two
strategies for solving the CSP formulation of the problem, and [9] presents a
parallel approach for solving the optimization variant of the problem.

In this paper, we aim to enhance SAT models for grammatical inference,
as opposed to creating a new solver. A SAT (the propositional SATisfiability
problem [3]) model consists in defining the problem with Boolean variables and
a Boolean formula in Conjunctive Normal Form (CNF). More precisely, we focus
here on the definition of over-constrained models of size k + 1 with properties
that allow deducing information about the classical model of size k. The benefit
of these over-constrained models is in terms of spacial complexity. Whereas the
complexity of the generation of an NFA of size k of a learning sample S is in
O(σ · k3) variables, and O(σ · k3) clauses (with σ = Σw∈S |w| for most of the
models4), the generation of our over-constrained NFA of size k+1 is in O(σ ·k2)
variables, and O(σ · k2) clauses.

We made some experiments to test our method. The originality is that we use
some of these properties to derive k-state NFAs by building more constrained
models of size k + 1, where the previous model of size k was unable to provide
a solution.

The structure of this paper is as follows. Section 2 gives an overview of the
NFA inference problem. Section 3 describes extensions of the classical models.
In Section 4, we present some properties concerning the extensions. The results
of our experiments are discussed in Section 5 and we conclude in Section 6.

2 The NFA inference problem

In this section, we formally introduce the NFA inference problem by utilizing
the propositional logic paradigm and providing a generic model. Additionally,
we review and highlight some previously established models within the current
literature.
3 A prefix tree acceptor (PTA) is a tree-like Deterministic Finite Automaton built

from the sample by using each prefix in the sample as a state
4 Only the complexity of the prefix model is in O(σ · k2) variables, and O(σ · k2)

clauses.
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2.1 Notations

Let Σ = {a1, . . . , an} be an alphabet of n symbols. A learning sample S =
S+ ∪ S− is given by a set S+ of so called “positive” words from Σ∗ that the
inferred NFA must accept, and a set S− of “negative” words that the NFA must
reject.

Let K be the set of the k first non-zero integers, K = {1, . . . , k}. We consider
the following variables:

– k, an integer, the size of the NFA to be generated,
– a set of k Boolean variables F = {f1, . . . , fk} determining whether state i is

final or not,
– and, ∆ = {δa, # »

i,j |a ∈ Σ and (i, j) ∈ K2}, a set of nk2 Boolean variables
representing the existence of transitions from state i to state j with the
symbol a ∈ Σ, for each i, j, and a.

We define pw,i1,im+1
as the path i1, i2, . . . , im+1 for a word w = a1 . . . am.

pw,i1,im+1
= δa1,

#     »
i1,i2

∧ . . . ∧ δam,
#               »
im,im+1

Although the path is directed from i1 to im+1 (it is a sequence of derivations),
we will build it either starting from i1, starting from im+1, or starting from both
sides. Thus, to avoid confusion of path and building, we prefer keeping i1, im+1

without any direction.

2.2 A “meta-model”

A meta-model to define an NFA of size k (noted k_NFA) can be done with the
3 following constraints:

– Special cases for the empty word λ; if it is a word of S+, the initial state
must be final, if it is a negative word, the initial state must not be final:

(λ ∈ S+ −→ f1) ∧ (λ ∈ S− −→ ¬f1) (1)

– A positive word must terminate on a final state of the k_NFA, i.e., there
must be a path from the initial state 1 to a final state i (fi must be true):∨

i∈K

pw,1,i ∧ fi (2)

– A negative word w must not terminate on a final state of the k_NFA, i.e.,
either there is no path for w, or each path terminates in a non-final state:∧

i∈K

(¬pw,1,i ∨ ¬fi) (3)

Of course, the notion of path can be defined and built in many ways. In [10],
prefix, suffix, and hybrid approaches are proposed.
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2.3 Some previous models

As seen in the previous section, several models can be considered for learning an
NFA. We skip the direct model (see [9, 11]) which has a bad complexity and does
not behave well in practice: its space complexity is in O(|S+| · (|ω+|+1) · k|ω+|)
clauses, and O(|S+| · k|ω+|) variables with ω+ the longest word of S+. We also
discard models with 0/1 variables, either from INLP [19] or CSP [14]: we made
some tests with various models with [13] and obtained some disastrous results:
the NFA inference problem is intrinsically a Boolean problem, and thus, well
suited for SAT solvers.

In [12], 7 different models were defined: the prefix model (P), the suffix model
(S), and several hybrid models combining prefix and suffix models with different
splitting strategies of words, such as the best prefix model (P ⋆) to optimize size
and use of prefixes, the best suffix model (S⋆) to optimize size and use of suffixes,
and 3 hybrid models (ILS(Init)) based on a local search optimization [15] of
word splittings (starting with an initial configuration Init, being either a random
splitting of words, the splitting found by the P ⋆ model, or by the S⋆ model).

The main difference is the definition and construction of paths. For example,
in the prefix model (P), some extra Boolean variables represent paths for each
prefix of the learning sample. Thus, paths are defined with the following two
constraints: (each word is represented as w = va with a ∈ Σ):

– Case for a word of length 1: ∨
i∈K

δa, # »
1,i ↔ pa,1,i (4)

– Recursive definition of paths for each prefix w of each word of the sample:∧
i∈K

(pw,1,i ↔ (
∨
j∈K

pv,1,j ∧ δa, #»
j,i)) (5)

The suffix model (S) is obtained similarly, but with extra variables repre-
senting suffixes (i.e., with words represented as w = av with a ∈ Σ).

Hybrid models are built with both prefixes and suffixes constructions, each
word being considered as the concatenation of a prefix and a suffix. Some con-
straints are also added to "join" prefix paths and suffix paths.

After transformation in Conjunctive Normal Form (CNF) using Tseitin trans-
formations [17], the spacial complexity of the prefix model is in O(σ·k2) variables,
and O(σ · k2) clauses with σ = Σw∈S |w| (see [11] for details). Although similar,
the spacial complexity of the suffix model is in O(σ · k3) variables and O(σ · k3)
clauses. The reason is that we build prefixes from the initial state 1, whereas
suffixes are built from one of the k states (see [11]). Hybrid models are thus also
in O(σ · k3) variables and clauses.

3 k_NFA extensions

For a given sample, if there is a k_NFA, i.e., an NFA of size k, to recognize
words of S+ and reject words of S−, there is also an NFA of size k+1. Although
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obvious and rather useless, this property can be refined to generate k_NFA. To
this end, some more constraints are added to the (k + 1)_NFA to build what
we call (k + 1)_NFA extensions.

3.1 Buiding a (k + 1)_NFA from a k_NFA

Let A = (QA, Σ,∆A, q1, F
A) be an NFA of size k. Then, there always exists an

NFA of size k + 1, A′ = (QA′
, Σ,∆A′

, q1, F
A′
), such that QA′

= QA ∪ {qk+1},
FA′

= {qk+1} and ∆A′
:

∀i,j∈(QA)2 δA
a,

# »
i,j

↔ δA
′

a,
# »
i,j

∀i∈QA,j∈FA δA
a,

# »
i,j

↔ δA
′

a,
#        »
i,k+1

In other words, A′ has only one final state which is the new state k + 1, each
transition of A also exists in A′, and transitions from a state i to a final state
of A are duplicated as new transitions from i to state k + 1. The obvious but
important property for the rest of this paper is that the language recognized by
A′ is the same as the one recognized by A.

In the following, the main idea is to over-constrain a (k + 1)_NFA model
(i.e., a model to generate an NFA of size k+1) to obtain a model closer or equal
to A′ as described above. Moreover, the idea is also that the over-constrained
(k+1)_NFA model can be solved and reduced to an NFA of size k more efficiently
than solving directly the k_NFA model. We propose two (k + 1)_NFA model
extensions for which a new state and new constraints are added. The first model
extension, the (k + 1)_NFA+, over-constrains the (k + 1)_NFA to be able to
reduce a generated (k + 1)_NFA into a k_NFA with a reduction algorithm
(see [10]). However, as shown in [10], we are not always able to reduce a (k +
1)_NFA+ into a k_NFA, and the gain is really poor. In fact, a (k + 1)_NFA+

instance mainly provides information when it is unsatisfiable: in this case, we also
know that there is no k_NFA. The second model extension, the (k + 1)_NFA⋆

model, does not require any algorithm to reduce a generated (k + 1)_NFA to a
(k+1)_NFA: the satisfiability (respectively unsatisfiability) of a (k+1)_NFA⋆

implies the satisfiability (respectively unsatisfiability) of a k_NFA: moreover,
in case of satisfiability, the k_NFA can always be directly derived from the
(k+1)_NFA⋆ by removing a state and some transitions. This operation has no
cost.

3.2 (k + 1)_NFA+ extension

Let K = {1, . . . , k} be the k first non-zero integers, and K+ = {1, . . . , k+ 1} be
the k + 1 first non-zero integers.

A (k + 1)_NFA+ is a (k + 1)_NFA with some extra properties that ensure
that it may be reduced to a k_NFA by a reduction algorithm [10]. The extra
properties of a (k + 1)_NFA+ are:

– a (k + 1)_NFA+ has one and only one final state, i.e., state k + 1;
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– state k + 1 has no outgoing transition;
– each transition from a state i to state k + 1 reading the symbol a has an

equivalent transition from the state i to a state j (j ̸= k + 1) with a. State
i is called a possibly final state.

A (k+1)_NFA+ is defined by the same variables as a k_NFA with an addition
of those related to state k + 1 (a variable for the final state, transitions, and
paths). The extra constraints are the following:

– The (k + 1)_NFA+ has only one final state, state k + 1:∧
i∈K

(¬fi) ∧ fk+1 (6)

Note that this constraint mainly impacts the suffix model by unit propaga-
tion.

– There is no outgoing transition from the (k + 1)_NFA+ final state:∧
a∈Σ

∧
i∈K+

¬δa, #        »
k+1,i (7)

– Each incoming transition of the (k + 1)_NFA+ final state k + 1 must also
finish in another state:∧

a∈Σ

( ∧
i∈K

(
δa, #        »

i,k+1 →
∨
j∈K

δa, # »
i,j

))
(8)

3.3 k_NFA⋆ extension

A (k+1)_NFA⋆ is a (k+1)_NFA+ with some extra properties on words and a
new set of Boolean variables representing possibly final states for the correspond-
ing k_NFA (F ∗ = {f∗

1 , ..., f
∗
k}). (k+ 1)_NFA⋆ may be reduced to a k_NFA by

removing state k + 1 and its incoming transitions, and fixing the final states
among the possible final states, i.e., determining the f∗

i of {f∗
1 , . . . , f

∗
k} which

are final states of the k_NFA. To determine these final states, we have to ensure:

– A negative word cannot terminate in a possible final state:∧
i∈K

(
f∗
i →

∧
w∈S−

¬pw,1,i

)
(9)

– Each possibly final state validates at least one positive word of S+:∧
i∈K

(
f∗
i → (

∨
va∈S+

∨
j∈K

(pv,1,j ∧ δa, #»
j,i ∧ δa, #        »

j,k+1)

)
(10)

– Each positive word terminates in at least one possible final state:∧
w∈S+

∨
i∈K

(pw,1,i ∧ f∗
i ) (11)
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3.4 Complexity

Extensions (k+1)_NFA+ and (k+1)_NFA⋆ are of course bigger than k_NFA
since the corresponding models contain an extra state, some extra transitions,
and some extra constraints. (k+1)_NFA⋆ model needs also k new variables for
the possible final states. New constraints to transform (k+1)_NFA to the exten-
sions also increase the number of clauses and variables. Table 1 provides the cost
in terms of variables and clauses. Some details about the arity of the generated
clauses are given (unary, binary, and greater). A blank in a cell corresponds to
0.

Table 1. Complexity in terms of variables and clauses for each new constraint allowing
the definition of the (k+1)_NFA+ (Constraints (6–8)) and the (k+1)_NFA⋆ models
(Constraints (6–11)).

Variables Clauses
total unary binary >

Constraint 6 k + 1 k + 1

Constraint 7 n(k + 1) n(k + 1)

Constraint 8 nk nk

Constraint 9 k|S−| k|S−|
Constraint 10 k|S+| k(k + 4)|S+| k2|S+|+ 4k|S+| k|S+|
Constraint 11 k|S+| (3k + 1)|S+| 2k|S+| (k + 1)|S+|

Both extensions increase the number of variables and clauses of the initial
(k+ 1)_NFA model. We can observe a lot of unary and binary clauses allowing
solvers to perform very well. The global complexity for each extension remains
unchanged or decreases, despite the increase in clauses and variables. As we will
observe in Section 5.2, the implementation of these new constraints significantly
lowers the complexity of many of the models (O(σ ·k3) clauses to O(σ · (k+1)2)
clauses) just by simplification.

4 Properties of the extensions

Extensions (k + 1)_NFA+ and (k + 1)_NFA⋆ are over-constrained models for
(k + 1)_NFA. Indeed, some properties allow them to infer a k_NFA solution.
A k_NFA+ is a “weak” extension because only the existence of a k_NFA can
be proved, whereas k_NFA⋆ is a “strong” extension that proves the existence or
not of a k_NFA.

4.1 (k + 1)_NFA+

Major property Adding Constraints (6), (7), and (8) to k_NFA model leads
to the following property:

∃ k_NFA ⇒ ∃ (k + 1)_NFA+ (12)
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The contraposition allows us to prove the unsatisfiability of k_NFA with
(k + 1)_NFA+:

̸ ∃ (k + 1)_NFA+ ⇏ ∃ k_NFA (13)

Proof. The main idea is: there always exists a transformation from any k_NFA
to a (k + 1)_NFA+ which recognizes the same language.

1. A new state k + 1 is added to the k_NFA.
2. Each of incoming transitions of k_NFA final states are duplicated by tran-

sitions outgoing to state k + 1. Thus, a path pw,1,k+1 exists from the initial
state to state k+1 if and only if a path exists from the initial state to k_NFA
final states.

3. This induces:
– Each positive word can now finish in state k + 1,
– No negative word can finish in state k + 1.

4. All k_NFA final states are then redundant with state k+1 thus state k+1
can be considered as the unique final state.

5. The automaton is then a (k + 1)_NFA+ since it has only one final state,
and it validates positive words and rejects negative words.

Minor property While the lack of solutions for (k + 1)_NFA+ allows to con-
clude the lack of solutions for k_NFA, a solution for (k + 1)_NFA+ is not
sufficient to conclude existence of a k_NFA:

∃ (k + 1)_NFA+ ̸⇒ ∃ k_NFA (14)

The simple following example (Figure 1) shows a k_NFA+ solution with
k = 3, whereas there is no k_NFA with k = 2.

Fig. 1. Example of a (k + 1)_NFA+ solution for k = 3 and S =
({a, ab, abb, bbb}, {aab, b, ba, bab, aaa}). It is not possible to find a k_NFA with k = 2.

It is possible to try to obtain a k_NFA from a (k + 1)_NFA+ solution with
the algorithm presented in [10]. However this algorithm rarely succeeds, and its
worst-case complexity is in O(k · |S|).

4.2 (k + 1)_NFA⋆

Major property Adding Constraints (9), (10), and (11) to (k + 1)_NFA+

model allows to obtain the equisatisfiability between k_NFA and (k+1)_NFA⋆:

∃ k_NFA ≡ ∃ (k + 1)_NFA⋆ (15)
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Proof. The main idea is: there are some transformations from k_NFA to (k +
1)_NFA⋆ and from (k + 1)_NFA⋆ to k_NFA preserving acceptance of positive
words and rejections of negative words.

⇒ From k_NFA to (k + 1)_NFA⋆

1. It is similar to the proof of Section 4.1.
⇐ From (k + 1)_NFA⋆ to k_NFA

1. All transitions δa, #        »
i,k+1 are removed, and states j such that δa, #        »

i,k+1∧δa, # »
i,j

are now considered as final states.
2. State k + 1 is removed.
3. Each positive word can terminate in a possible final state because there

are some transitions to a possible final state redundant to transitions to
state k + 1.

4. No negative word can terminate in a possible final state otherwise, by
construction, it would also finish in state k + 1.

5. The automaton is then a k_NFA validating words of S+ and rejecting
words of S−.

Minor property The lack of solutions for (k+1)_NFA⋆ allows concluding that
there are no solutions for the k_NFA model. However, nothing can be deduced
for the (k + 1)_NFA model.

̸ ∃ (k + 1)_NFA⋆ ̸⇏ ∃ (k + 1)_NFA (16)

It is easy to prove Property 16 with its contraposition and its rewritting using
Property 15:

∃ (k + 1)_NFA ̸⇒ ∃ (k + 1)_NFA⋆

∃ (k + 1)_NFA ̸⇒ ∃ k_NFA (17)

Property 17 is correct, otherwise, the existence of a (k + 1)_NFA solution
would imply the existence of a k_NFA solution. As a counterexample, Figure 1
proposes a (k + 1)_NFA with k = 3 but no k_NFA with k = 2 exists.

5 Experimentation

We present an experimental study of two equisatisfiable models, k_NFA and
(k+1)_NFA⋆. Our experiments are conducted on state-of-the-art instances that
vary in the sizes of the alphabet and the number of positive and negative words
in the learning sample. We present a simplified version of the (k + 1)_NFA⋆

model: indeed, the models briefly presented in Section 2.3 can be rewritten and
simplified when combined with Constraints (6–11), leading to SAT instances
with fewer variables and constraints. We also compare the performance of the
two models in terms of the number of solutions and running time.
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5.1 Context for reproductibility

The algorithms were implemented in Python using libraries such as PySAT [5].
The experiments were carried out on a computing cluster with Intel-E5-2695
CPUs, and a fixed limit of 10 GB of memory. Running times were limited to 15
minutes, including model generation and solving time. We used the Glucose [1]
SAT solver with default options.

These experiments were carried out on state-of-the-art instances, described
in [12]. These instances can be divided into three categories corresponding to
the sizes of the alphabet (2, 5, and 10). The number of positive and negative
words is the same in each instance and varies from 10 to 100 in increments of 10
for each category. There are thus 30 instances in total. We test all the possible
values of k from 1 to kPTA where kPTA is the upper bound obtained by the size
of the computed prefix tree acceptor.

We focus our experiments on k_NFA and (k + 1)_NFA⋆ excluding (k +
1)_NFA+ because we want to focus on the comparison of two equisatisfiable
models.

Due to the deterministic behavior of Glucose, we run only one execution of
each couple (instance, k).

5.2 Simplified models

The (k+1)_NFA⋆ model is defined by over-constraining a k_NFA model. Mixing
and combining all these constraints allows us to obtain a simplified model with
fewer variables (f disappear) and fewer constraints (Constraints (1) and (7) are
deleted and Constraints (2) and (3) are simplified). The final (k + 1)_NFA⋆

models that we use can be defined as follows:

– Variables:
• a set of k Boolean variables determining whether state i is a possibly

final state or not: F ∗ = {f∗
1 , . . . , f

∗
k},

• a set of nk(k + 1) Boolean variables representing the transitions from
state i to state j with the symbol a ∈ Σ: ∆ = {δa, # »

i,j |a ∈ Σ and i ∈
K and j ∈ K+}, and

• a set of Boolean variables representing the paths (sequence of transitions
from a state i to a state j reading a word w):

Π = {pw,i,j |(i, j) ∈ K2
+, w ∈ Σ∗}

– Constraints:

•
∧

w∈S+ pw,1,k+1 // Simplification of Constraint 2

•
∧

w∈S− ¬pw,1,k+1 // Simplification of Constraint 3

•
∧

a∈Σ

(∧
i∈K

(
δa, #        »

i,k+1 →
∨

j∈K δa, # »
i,j

))
// Constraint 8
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Table 2. Results for k_NFA and (k + 1)_NFA⋆ on instances with all values coming
from PTA. Each instance corresponds to the average for all samples of words with all
k between 1 and the value given by PTA.

Instances Results
Model Vars Clauses Sat Unsat ? Time

k
_

N
FA

P 56,256 212,229 124 131 158 368
S 386,508 1,459,936 80 116 217 217
ILS(r) 114,218 446,854 104 133 176 418
ILS(P ⋆) 114,781 449,122 110 132 171 423
ILS(S⋆) 51,401 205,593 105 134 174 415
P ⋆ 412,120 1,574,192 74 126 213 504
S⋆ 51,683 206,564 103 134 176 409

(k
+

1
)_

N
FA

⋆

P 70,362 267,368 128 133 152 356
S 381,308 1,417,649 86 126 201 169
ILS(r) 122,553 477,081 125 137 151 376
ILS(P ⋆) 123,707 479,036 124 138 151 423
ILS(S⋆) 55,192 219,637 125 137 151 362
P ⋆ 391,773 1,475,492 120 122 171 406
S⋆ 55,567 220,898 122 137 154 356

•
∧

i∈K

(
f∗
i →

∧
w∈S− ¬pw,1,i

)
// Constraint 9

•
∧

i∈K

(
f∗
i → (

∨
v.a∈S+

∨
j∈K(pv,1,j ∧δa, #»

j,i∧δa, #        »
j,k+1)

)
// Constraint 10

•
∧

w∈S+

∨
i∈K(pw,1,i ∧ f∗

i ) // Constraint 11

Additionally, the constraints applied to define the paths either starting from
the end, the beginning, or both extremities of words (as outlined in Section 2.3)
can also be simplified. The most significant simplification is for the suffix model,
where the space complexity changes from O(σ · k3) clauses to O(σ · (k + 1)2)
clauses. All other models, which partially use the suffix model, are also affected
except for the prefix model.

5.3 Results and Discussions

Table 2 shows results for k_NFA and (k + 1)_NFA⋆ with 7 models: the pre-
fix model P, the suffix model S, and 5 hybrid models, the local search model
with random initial configuration ILS(r), with P ⋆ (respectively S⋆) initial con-
figuration, the best prefix model P ⋆, and finally the best suffix model P ⋆. The
combination of learning samples and the number of states (k values) produces
413 instances, and thus, 413 executions for each model. Table 2 is divided into
two parts: instances description and results. Instances are described by the model
and the average number of variables and clauses. As result, we consider the num-
ber of satisfiable instances (Sat), unsatisfiable instances (Unsat), and Unknown
solutions (noted ?). Moreover, we give the average running time (in seconds).
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Table 3. Difference (in %) from k_NFA to (k+1)_NFA⋆ based on results in Table 2.

Model Vars Clauses Sat Unsat ? Times
P +25.07 +25.98 +3.23 +1.53 -2.35 -3.44
S -1.35 -2.9 +7.5 +8.62 -8.16 -22.04
ILS(r) +7.3 +6.76 +20.19 +3.01 -10.55 -10.16
ILS(P ⋆) +7.78 +6.66 +12.73 +4.55 -8.26 -0.13
ILS(S⋆) +7.37 +6.83 +19.05 +2.24 -9.62 -12.9
P ⋆ -4.94 -6.27 +62.16 -3.17 -21.00 -19.5
S⋆ +7.51 +6.94 +18.45 +2.24 -9.28 -13.01

Table 3 shows the relative difference from k_NFA to (k + 1)_NFA⋆ for
each model. Column names are the same as in Table 2, but they indicate the
percentage difference compared to the results obtained with k_NFA instances.

Tables 2 and 3 show that the number of variables and clauses in (k+1)_NFA⋆

instances increase with respect to k_NFA, but they remain very close; except for
the prefix model P with a +25% increase, and for the suffix model S and the best
prefix model P ⋆ with a decrease (respectively -1 to -6%), the instances are around
+8% larger. Model P increases by 25% because it is the only one that does not
use the suffixes (which give a O(σk3) complexity). The others, although adding
extra Constraints (6–11), keep similar sizes since the (k+1)_NFA⋆ models allow
decreasing complexity of suffix constructions from O(σk3) to O(σk2).

We can observe that the number of Sat solutions increases for all models
when we use (k + 1)_NFA⋆. It is similar for Unsat solutions (except for model
P ⋆). The number of instances not solved in the given time is therefore logically
reduced. The very interesting result is that this improvement in the number of
resolved instances is coupled with a diminution of the resolution time.

In terms of global efficiency, best results are obtained by ILS(r), ILS(P ⋆),
and ILS(S⋆) with (k+1)_NFA⋆ (only 151 instances remain unsolved). Adding
the running time in the comparison, model ILS(S⋆) is the best one. Compared
to the best model for k_NFA (P), it finds one more Sat and 6 more Unsat
solutions with a faster average running time (6 seconds less).

6 Conclusion

Grammatical inference is the process of learning formal grammars, in our case
as a Nondeterministic Finite Automaton. In this paper, we proposed an over-
constrained model of size k+1 ((k+1)_NFA⋆) with properties that allow deriving
a solution for the classical model of size k (k_NFA). If such an automaton of size
k+1 exists, it can be freely reduced to an automaton of size k, and if it does not
exist, we have the proof there is no automaton of size k. The advantage of using
the (k + 1)_NFA⋆ model is to obtain shorter resolution times while increasing
the rate of solved instances.

Working with a model of size k + 1 increases the number of clauses and
variables but the additional constraints allow us to simplify the model and limit



Over-constrained NFA for grammar learning 13

the combinatorial explosion. Moreover, these constraints allow us to lower the
global complexity of most of our models that use a suffix construction (such as
the model S).

In the future, we plan to work on adding new constraints to further reduce
the complexity of the model (k + 1)_NFA⋆. Moreover, a parallel execution of
some well-chosen models could lead even more often to solved instances.
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