Daniel Schaub 
email: daniel.schaub@univ-angers.fr
  
Mark Spivakovsky 
email: mark.spivakovsky@math.univ-toulouse.fr
  
  
  
  
On the set of bad primes in the study of the Casas-Alvero conjecture

The Casas-Alvero conjecture predicts that every univariate polynomial over a field of characteristic zero having a common factor with each of its derivatives H i (f ) is a power of a linear polynomial. One approach to proving the conjecture is to first prove it for polynomials of some small degree d, compile a list of bad primes for that degree (namely, those primes p for which the conjecture fails in degree d and characteristic p) and then deduce the conjecture for all degrees of the form dp ℓ , ℓ ∈ N, where p is a good prime for d. In this paper we calculate certain distinguished monomials appearing in the resultant R(f, H i (f )) and obtain a (non-exhaustive) list of bad primes for every degree d ∈ N \ {0}.

Introduction

In the year 2001 Eduardo Casas-Alvero published a paper on higher order polar germs of plane curve singularities [START_REF] Casas-Alvero | Higher Order Polar Germs[END_REF]. His work on polar germs inspired him to make the following conjecture (according to the testimony of José Manuel Aroca, E. Casas communicated the problem orally well before 2001).

Let K be a field, d a strictly positive integer and

f = x d + a 1 x d-1 + • • • + a d-1
x + a d a monic univariate polynomial of degree d over K. Let

H i (f ) = d i x d-i + d -1 i a 1 x d-i-1 + • • • + i i a d-i
be the i-th Hasse derivative of f .

Definition 1

The polynomial f is said to be a Casas-Alvero polynomial if for each i ∈ {1, . . . , d -1} it has a non-constant common factor with its i-th Hasse derivative H i (f ).

Note that, by definition, a Casas-Alvero polynomial f has a common root with H d-1 (f ). In particular, if char K = 0, it has at least one root b ∈ K, regardless of whether or not K is algebraically closed. Making the change of variables x ⇝ x -b, we may assume that 0 is a root of f , in other words, a d = 0. In the sequel, we will always make this assumption without mentioning it explicitly.

Conjecture 1 (Casas-Alvero) Assume that char

K = 0. If f ∈ K[x] is a Casas-Alvero polynomial of degree d with a d = 0, then f (x) = x d . For i ∈ {1, . . . , d -1}, let R i = R(f, H i (f )) ∈ K[a 1 , . . . , a d-1
] be the resultant of f and H i (f ). The polynomials f and H i (f ) have a common factor if and only if

R i = 0. Thus f is Casas-Alvero if and only if the point (a 1 , . . . , a d-1 ) ∈ V (R 1 , . . . , R d-1 ) ⊂ K d-1 .
In those terms the Conjecture can be reformulated as follows:

Conjecture 2 Let V = V (R 1 , . . . , R d-1 ) ⊂ K d-1 . Then V = {0}. In other words, (R 1 , . . . , R d-1 ) = (a 1 , . . . , a d-1 ) (1) 
or, equivalently,

a N i ∈ (R 1 , . . . , R d-1
) for all i ∈ {1, . . . , d -1} and some N ∈ N.

(2)

If char K = p > 0, the Conjecture is false in general. The simplest counterexample is the polynomial f (x) = x p+1 -x p . Remark 2 Let K ⊂ K ′ be a field extension. The induced extension K[a 1 , . . . , a d-1 ] ⊂ K ′ [a 1 , . . . , a d-]
is faithfully flat. Since the polynomials R 1 , . . . , R d-1 have coefficients in Z, (2) holds in K[a 1 , . . . , a d-1 ] if and only if it holds in K ′ [a 1 , . . . , a d-1 ]. Hence the truth of the conjecture depends only on the characteristic of K but not on the choice of the field K itself.

Remark 3 Formulae (1) and (2) can be interpreted in terms of Gröbner bases. Namely, (1) and ( 2) are equivalent to saying that for any choice of monomial ordering and Gröbner basis (f 1 , . . . , f s ) of (R 1 , . . . , R d-1 ), after renumbering the f j , the leading monomial of f j is a power of a j .

We will write CA d,p for the statement "The Casas-Alvero conjecture holds for polynomials of degree d over fields of characteristic p".

The following equivalences are known for each d ( [START_REF] Draisma | On the Casas-Alvero conjecture[END_REF], [START_REF] Graf Von Bothmer | The Casas-Alvero conjecture for infinitely many degrees[END_REF]) : CA d,0 holds ⇐⇒ CA d,p holds for some prime number p ⇐⇒ CA d,p holds for all but finitely many primes p. Definition 4 A prime number p is said to be a bad prime for d if CA d,p is false. If p is not a bad prime for d, we will say that p is a good prime for d. Proposition 5 ([6], Propositions 2.2 and 2.6) Take a strictly positive integer d, a prime number p and a non-negative integer ℓ. Assume that CA d,p holds. Then so do CA dp ℓ ,p and CA dp ℓ ,0 .

This result suggests the following general approach to the problem :

(1) prove the conjecture for a small number d;

(2) compile lists of good and bad primes for d;

(3) conclude that CA dp ℓ ,0 holds for all the primes p that are known to be good for d.

In particular, this shows the importance of knowing which primes are good or bad for a given degree d.

The above approach has been carried out up to d ≤ 7 ( [START_REF] Castryck | Constraints on counterexamples to the Casa-Alvero conjecture and a verification in degree 12[END_REF], [START_REF] De Frutos Marín | Perspectivas Aritméticas para la Conjectura de Casas-Alvero[END_REF], [START_REF] Salinier | La conjecture de Casas-Alvero pour les degrés 5p e[END_REF], [START_REF] Draisma | On the Casas-Alvero conjecture[END_REF], [START_REF] Graf Von Bothmer | The Casas-Alvero conjecture for infinitely many degrees[END_REF]). Some integers cannot be written in the form dp ℓ where p is a good prime for d. For example,

12 = 2 2 • 3, 20 = 2 2 • 5, 24 = 2 3 • 3, 28 = 2 2 • 7, 30 = 2 • 3 • 5, 36 = 2 2 • 3 2 , 40 = 2 3 • 5, . . .
CA 12,0 has been proved by [START_REF] Castryck | Constraints on counterexamples to the Casa-Alvero conjecture and a verification in degree 12[END_REF] with the aid of a computer, by using a very clever strategy to cut down the computation of resultants and Gröbner basis. Thus the smallest degree d for which CA d,0 is not known is d = 20.

In this paper we show that for each i ∈ {1, . . . , d -1}, the monomials 1

-d i d-i a d d-i and (-1) (d-1)(d-i) d i d-1 a d-i
d-1 a d-i appear in the resultant R i (unless i = 1 in which case the two monomials are the same and the coefficient is (1 -d) d-1 ). Moreover, the monomials a d d-i are the only pure powers appearing in any of the R i . We then use these facts to compile a (nonexhaustive) list of bad primes for each d ∈ N >0 , namely all the primes p for which there exists i ∈ {1, . . . , d -1} such that

p d i -1 .
Acknowledgement. The fact that the monomial 1

-d i d-i a d
d-i appears in R i and is the only pure power appearing there was first proved by Rosa de Frutos' in her Ph.D. thesis [START_REF] De Frutos Marín | Perspectivas Aritméticas para la Conjectura de Casas-Alvero[END_REF], Proposition 2.2.1, page 17.

A list of bad primes

Unless otherwise specified, from now till the end of this paper we shall regard the R i as elements of the polynomial ring Z[a 1 , . . . , a d-1 ]. Theorem 6 ([3], Proposition 2.2.1) For each i ∈ {1, . . . , d -1}, the monomial

(-1) d-i d i -1 d-i a d d-i appears in the resultant R i .
Moreover, the monomials a d d-i are the only pure powers appearing in any of the R i .

Proof: The polynomial R i is the resultant of f = x d + a d-1 x d-1 + • • • + a d-1 x and H i (f ) = d i x d-i + d -i -1 i a 1 x d-i-1 + • • • + i + 1 i a d-i-1 x + i i a d-i .
Notation. For i, j ∈ {1, . . . , d -1}, we denote by a ij the element d-j i a j . Note that for all i ∈ {1, . . . , d -1}, a i,d-i = a d-i .

The resultant R i equals the determinant D(d, i) of the following matrix M (d, i): 

                          d-i 1 a 1 a 2 • • • a d-i-1 0 1 a 1 • • • a d-i-2 . . . . . . 0 • • • 0 • • • 1 d a d-i • • • a d-1 0 • • • • • • 0 a d-i-1 a d-i • • • a d-1 0 • • • 0 . . . . . . a 1 a 2 • • • a d-i • • • a d-1 0 d i a i,1 a i2 • • • a i,d-i-1 0 d i a i,1 • • • a i,
0 0 • • • • • • 0 a d-i • • • 0 0 • • • • • • 0 a i,d-i-1 a d-i 0 • • • • • • 0 a i,
• • • 0 d i a i,1 a i,2 • • • a d-i                           By definition, the determinant D(d, i) of the (2d -i) × (2d -i) matrix M (d, i) = (m ℓj ) is ∆ = σ∈Σ 2d-i (-1) ϵ(σ) m σ(1),1 m σ(2),2 • • • m σ(2d-i),2d-i , (3) 
where Σ 2d-i is the group of permutations of {1, . . . , 2d -i} and

ϵ(σ) = 0 if σ is even = 1 if σ is odd.
First of all, note that the last column of M (d, i) has only one non-zero entry that equals a d-i . Hence a d-i | D(d, i) . In particular no pure power of a j can appear in D(d, i) for j ̸ = d -i.

Remark 7 The entry a d-i appears only in the last d columns of M (d, i): exactly once in each of the last i columns and exactly twice in each of the columns numbered d-i+1, d-i+2, . . . , 2d-2i.

By inspection of the matrix M (d, i), we see that (1) a monomial ω appearing in D(d, i) cannot be divisible by a d+1

d-i (2) if a d d-i ̸ | ω, then ω is not a pure power of a d-i (3) if a d d-i ω, then in the notation of formula (3), ω = (-1) ϵ(σ) m σ(1),1 • • • m σ(2d-i),2d-i
with σ(j) = j for j ∈ {2d-2i+1, . . . , 2d-1} and σ(j) ∈ {j, j-d+i} for j ∈ {d-i+1, . . . , 2d-2i}.

The term in (3) corresponding to σ = Id is the product of the elements on the main diagonal of M (d, i); this product is equal to a 

The matrix M (d, i) is                  1 a 1 a 2 . . . a d-i-1 a d-i . . . a d-1 0 0 1 a 1 . . . a d-i-2 a d-i-1 a d-i . . . a d-1 . . . . . . . . . . . . . . . 0 . . . 0 . . . 1 a 1 a 2 . . . a d-i d i a i,1 a i,2 . . . a i,d-i-1 a d-i 0 . . . 0 0 d i a i,1 . . . a i,d-i-2 a i,d-i-1 a d-i 0 . . . . . . . . . . . . . . . . . . 0 . . . 0 d i . . . . . . a i,d-i-1 a d-i 0 0 0 . . . . . . d i . . . . . . a i,d-i+1 a d-i                 
In this determinant, the first d -i columns do not contain any a d-i and in the last d -i columns, each a d-i appears two times, once in the first d -i rows, once in the last d -i rows.

In each of the last d-i columns we have to choose one of the two a d-i and delete the rest of the line and the rest of the column to which it belongs. Fix one such choice. The corresponding monomial (-1)

ϵ(σ) m σ(1),1 m σ(2),2 • • • m σ(2d-2i),2d-2i , σ ∈ Σ 2d-2i , satisfies σ(j) ∈ {j, j -d + i} for all j ∈ {d -i + 1, . . . , 2d -2i}. Let J = { σ(j) | j ∈ {d -i + 1, . . . , 2d -2i}} (4) 
and

J c = {1, . . . , 2d -2i} \ J. Write J = {j 1 , . . . , j d-i } ⊂ {1, . . . , 2(d -i)}.
For all q, ℓ ∈ {1, . . . d -i} we have j q -j ℓ ̸ = d -i.

The set J c has the same property. Note that, conversely, every set

J = {j 1 , . . . , j d-i } ⊂ {1, . . . , 2(d -i)}
satisfying (5) has the form (4) for a suitable σ ∈ Σ 2d-2i . The coefficient of the term a d-i d-i in the expansion of D(d, i) corresponding to a given choice of J is the determinant of the matrix N (d, i, J) obtained from the first (d -i) columns of M (d, i) by deleting the rows numbered j 1 , . . .

j d-i-1 , j d-i . Let k = # (J c ∩ {d -i + 1, d -i + 2, . . . 2(d -i)}) . (6) 
There exists a permutation of the rows of N (d, i, J) such that the resulting matrix is an upper triangular matrix with only 1 and d i on the main diagonal, where 1 appears (d -i -k) times and d i appears k times. Thus the permutation σ ∈ Σ 2d-2i is uniquely determined by J ∩ {d -i + 1, . . . , 2d -2i}.

We have

det N (d, i, J) = ± d i k . (7) 
Now, σ is the composition of k transpositions (j, j -

d + i) for j ∈ J c ∩ {d -i + 1, . . . , 2d -2i}. Thus ϵ(σ) ≡ k mod 2. ( 8 
)
Example To illustrate the process, let us take

J = {d -i + 1, d -i + 2, . . . , 2(d -i) -3, d -i -2, 2(d -i) -1, 2(d -i)},
which means that we chose all the occurrences of a d-i lying on the main diagonal in the last (d -i) rows of M (d, i) except in the column number 2(d -i) -2 in which case we chose the occurrence of a d-i at the place (d -i -2, 2d -2i -2). We have k = 1. The resulting matrix N (d, i, J) looks like 

           1 
a i,1 a i,2           
To obtain an upper triangular matrix, we have to apply a cyclic permutation to the rows d -i, d -i -1 and d -i -2 and we obtain that the desired determinant is ± d i . Coming back to the proof of the Theorem, for each k ∈ {0, . . . , d-i}, there are d-i k choices of J satisfying [START_REF] Graf Von Bothmer | The Casas-Alvero conjecture for infinitely many degrees[END_REF]. Combining this with (7) and (8) and summing over all k ∈ {0, . . . , d -i}, we get that the coefficient of

a d d-i in R i is d-i k=0 (-1) k d -i k d i k = (-1) d-i d i -1 d-i (9) 
□ Corollary 8 Take a prime number p such that there exists i ∈ {1, . . . , d-1} for which p Proof. Assume that char(K) = p. By Theorem 6, no pure power of any of the a i appears in any of the R j mod p. Hence the point of K d-1 whose i-th coordinate is 1 and all of whose other coordinates are zero belongs to V (R 1 , . . . , R d-1 ). □ Using similar arguments, we obtain the following Theorem. 

  d d-i . There are other choices of σ ∈ Σ d for which the corresponding summand in (3) is of the form ca d d-i , where c ∈ Z. Let us group all of these terms together and calculate the total coefficient of a d d-i in (3) Now, the coefficient of a d d-i in D(d, i) is given by the coefficient of a d-i d-i in the expansion of the determinant D(d, i) of the (2d -2i) × (2d -2i)-matrix M (d, i) obtained by deleting the last i lines and the last i columns of M (d, i).

d i - 1 .

 1 Then CA d,p is false.

Theorem 9

 9 For i ∈ {2, . . . , d -1}, the monomial (-1)(d-1)(d-i) d i d-1 a d-i d-1 a d-i appears in the resultant R i . The term (-1) (d-1)(d-i) d i d-1 a d-i d-1 a d-iis the unique monomial in (3) of degree d -i + 1; all the other monomials appearing in (3) have degree strictly greater than d -i + 1.Proof. By inspection of the matrix M (d, i), we see that the monomial (-1)(d-1)(d-i) d i d-1 a d-i d-1 a d-i appears in the resultant R i : it is the monomial with σ(j) = d -i + j for {1, . . . , d -i} = j -(d -i) for j ∈ {d -i + 1, . . . , 2d -i -1} = 2d -i for j = 2d -i.Moreover, it is the unique monomial ω of R i such that a d-i d-1ω. Let us prove the second statement of the Theorem. Let M • (d, i) be the matrix obtained by deleting the last row and the last column of M (d, i). Let D • (d, i) = det M • (d, i). We need to show that all the monomials appearing in D • (d, i) have order at least d -i and a d-i d-1 is the only one of order exactly d -i.

  a 1 a 2 . . . . . . . . . a d-i-1 0 1 a 1 . . . . . . . . . a d-i-2

	. . .	. . .	. . .		. . .
	0 . . . 0	1 a 1 a 2	a 3
	0 . . . . . . 0	0	1	a 1
	0 . . . . . . . . . 0	0	1
	0 . . . . . . 0	d i

Remark 10 For ℓ, j ∈ {1, . . . , 2d -i -1}, we have m ℓj ∈ N \ {0} if and only if one of the following conditions holds:

(1) j ∈ {d -i + 1, . . . , d -1} and ℓ = j + d -i (2) j ∈ {1, . . . , d -i} and ℓ ∈ {j, j + d -i}.

By Remark 10, the last d -i columns of M • (d, i) do not involve any non-zero constant entries. Hence every monomial ω = (-1)

Moreover, for j ∈ {1, . . . , d -1} one of the conditions (1) or (2) of Remark 10 holds with ℓ = σ(j). Let

Lemma 11 We have j(ω) = 1.

Proof of Lemma. Assume that j(ω) > 1, aiming for contradiction. By Remark 10,

By descending induction on j, we obtain

By equation ( 11), we have σ(j(ω) + d -2) = j(ω) -1, so σ(j(ω) -1) ̸ = j(ω) -1. By Remark 10, σ(j(ω) -1) = j(ω) -1 + d -i. contradicting the definition of j(ω). The Lemma is proved. □ The Theorem follows from the Lemma by inspection of the matrix M • (d, i). □