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Abstract 

Collision-induced light scattering spectra of gaseous xenon at room temperature are analyzed in terms of different 
literature and new interatomic potentials and interaction-induced pair polarizability anisotropy and trace models. At 
low frequencies the spectral intensities and the associated moments are determined by both bound and free 
transitions. The spectra at intermediate and high frequencies are sensitive to both the attractive part of the potential 
and to short-range values of the anisotropy or trace polarizability. An empirical interatomic potential for the 
gaseous xenon interaction is developed by simultaneously fitting the Barker et al. (BFW) and modified Tang-
Toennies (MTT) potentials to spectroscopic and thermal properties over a wide temperature range. The quality of 
the present potentials was checked by comparison between the calculated and experimental transport properties at 
different temperatures. The results show that these are the most accurate potentials reported to date for xenon gas. 
Similarly, the combination of these potentials with our analytical models of xenon polarizability is satisfactory for 
both the reproduction of spectral moments and spectral line shapes of the xenon collision-induced spectra. 
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1. Introduction 

The collision-induced light scattering (CILS) spectrum of two atoms or molecules is shaped by two 

functions of their separation r: the interaction potential and the induced polarizability tensor of the atom 

or molecule pair. In the case of a noble gas like xenon, the interaction potential V can, to a first 

approximation, be considered isotropic; it depends only on r. Moreover, the knowledge of the 

polarizability tensor is summarized by that of its trace α(r) and its anisotropy β(r) [1]. The theoretical 

challenge is thus to determine the potential, the trace and the anisotropy which reproduce by calculation 

what can be measured experimentally. The spectra of xenon have been measured in the past [2, 3] and 

more recently [4, 5] by several groups which have given consistent results, both for spectra related to the 

anisotropy of the polarizability tensor and for that specifically related to its trace. Early studies [2, 3] used 

empirical models of polarizability. The group of Chrysos [4, 5] used the relatively recent ab initio 

calculations of the xenon trace and anisotropy by Maroulis et al. [6]. However, the interatomic potentials 

used by all these groups for their theoretical calculations were empirical and quite old [7, 8]. In this paper, 

we propose two new potentials based on different sets of experimental measurements. Similarly, we 

propose analytical models of the anisotropy and trace of xenon based on the analysis of CIS spectral 

moments. These semi-empirical models, insofar as they allow to reproduce well what is observed 

experimentally, can be a useful reference for any ab initio calculation of the potential or the polarizability 

of xenon. 

No accurate potential is available to fit the different properties for xenon. We calculate an approximate 

interatomic potential for the xenon interaction using mostly the methods outlined in previous papers [9–

11]. Since the details of the methods are given there and the references therein, we will only restate the 

equations when it is necessary for the sake of continuity. To reiterate, the basic strategy in this paper is to 

include spectroscopic properties, thermo-physical and transport properties in addition to the data of 

collision induced light scattering data (CILS) to fit the Barker, Fisher and Watts (BFW) and Modified 

Tang-Toennies (MTT) potential models for interatomic xenon interactions. Different experiments are 

sensitive to different regions of the interatomic potential. The pressure virial coefficients reflect the size 

of rm and the volume of the attractive well [12]. The viscosity, self-diffusion, thermal conductivity and 

thermal diffusion factors data are most sensitive to the wall of the potential from rm inward to a point 

where the potential is repulsive [13]. Collision-induced light scattering (CILS) intensities are most 

sensitive to the attractive potential from rm at which the potential has its minimum out to the asymptotic 

long range region, and the rainbow and supernumerary oscillations give detailed information about that 

part of the potential [14]. Thus, these six properties with the spectroscopic data can, in principle, be used 

to develop a potential over a fairly broad range of interatomic distances. 

Our paper is organized as follows: our two interatomic potential models are presented in section 2 

along with the multi-property analysis that allowed us to determine their parameters. After a brief 
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presentation of collision-induced light scattering, section 3 is devoted to depolarized and isotropic spectra 

of xenon, calculated for different potentials and different anisotropy and trace models, including the 

analytical models we determined and propose. Concluding remarks are given in Section 4. 

 

2. Multi-property analysis and the interatomic potentials of Xenon 

The interatomic potentials we provide here are obtained through the analysis of the vibrational energy 

levels [15-22], pressure second virial coefficients [23-35] and a set of gaseous transport properties [36-

52]. For the analysis of all these experimental data we consider the following potentials 

 

A- BFW potential 

The empirical Barker, Fisher and Watts (BFW) interatomic potential [53] is represented by the 

following formula 
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where x=r/rm is the reduced distance, ε is the potential depth, rm is the distance at the minimum potential 

and the rest (ξ, ζ) are fitting parameters. 

 

B- MTT potential 

The modified Tang-Toennies model (MTT) which in the whole range of interactions can be 

represented by the formula [54] 
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where f2n(r) is the appropriate damping functions, given by the expression derived by Tang and Toennies 

[55] 
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Even at the present (BFW) level, there are really thirteen parameters (ε, rm, A0, A1, A2, A3, A4, A5, ξ, 

ζ, C6, C8, C10) and in the (MTT) level, there are seven free parameters (ε, rm, A, B, C6, C8, C10) which are 

far too many to determine from the present data. Accordingly we proceeded as follows: the coefficients 

A0, A1, A and B are determined from the conditions of continuity. The long-range dispersion coefficients 

C6, C8, C10 were taken from theoretical calculations of Thakkar et al. [56], leaving rest parameters in these 
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models that were varied to fit the vibrational energy levels V. This minimization is further supported by 

calculating δB, δη, δλ, δD, and δα, the rms deviations calculated from second pressure virial coefficients, 

viscosity, thermal conductivity, diffusion coefficients and thermal diffusion factor, respectively. This 

decision leads to the potentials parameters in Table 1 as our best estimate of Xe2 interatomic potentials. 

 

Table 1. Parameters of the different interatomic potentials and the associated values of δ .  

For xenon interaction, ζ=0.01. Besides, δj is defined by ( )22 2

1

1 jn

j ji ji ji

ij

P p
n

−

=

δ = ∆ − ,  

where Pji and pji are, respectively, the calculated and experimental values of property j at point i and ∆ji is 
the experimental uncertainty of property j at point i. The subscripts V, B, η, λ, D, and αiso refer to the 
vibrational energy levels, interaction second pressure virial coefficient, viscosity, thermal conductivity, 
diffusion coefficient and thermal diffusion factor, respectively.  

The overall rms deviation was obtained from 2

1

1 N

j

jN
°

=

δ = δ .  

Pots. ε/kB (T) rm (Å) ξ A0 A1 A2 A3 A4 A5 A B 

BFW 283.0 4.37 14.75 1.05039 0.352462 −2.60148 −8.0 21.0 54.0   

MTT 284.0 4.368        80.0168 1.00908 
 

Pots. δV δB δη δλ δD δiso δ
°
 

BFW 0.75 0.86 0.62 0.59 0.87 0.93 0.78 

MTT 0.77 0.89 0.66 0.63 0.91 0.97 0.82 

 

 

2.1. Vibrational Energy Spacings 

With the above obtained interaction potentials the vibrational energy spacings can be calculated by 

solving the radial one-dimensional Schrödinger equation. In the present paper this equation is solved 

numerically. The interaction potentials of homonuclear and heteronuclear rare-gas dimers with the 

internuclear separation between 3.0 a.u. and 200 a.u. are used to do the calculation. The size of the grid 

points is 1600. Table 2 presents the calculation results for Xe2 dimers. It is seen from Table 2 that the 

agreement of the two sets of spacings predicted by the MTT and BFW is good.  

The experimental and other theoretical results are also listed in the Table 2 for comparison [15-22]. It 

is gratifying to find that the spacings of these dimers predicted by the MTT and BFW potential models 

are in excellent agreement with the experimental results if the experimental error bar are taken into 

consideration.  
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Table 2: Comparison of our computed vibrational energy spacings for Xe2 gas with experimental and other 
theoretical data. All values are given in cm−1. 

 
BFW MTT 

Sheng 
[15] 

Xie 
[16] 

Hellmann 
[17] 

Aziz 
[18] 

Dham 
[19] 

Slavı́ček 
[20] 

Hanni 
[21] 

Lit.results 
[22] 

0-1 

1-2 

2-3 

3-4 

4-5 

5-6 

6-7 

7-8 

8-9 

9-10 

19.67 

18.47  

17.27  

16.08  

14.90  

13.71  

12.54  

11.39  

10.26  

9.16 

20.02  

18.75  

17.49 

16.24 

14.99 

13.77 

12.57 

11.39 

10.23 

9.11 

19.369 

18.214 

17.06 

15.92 

14.81 

13.65 

12.34 

11.11 

10.28 

9.604 

19.5 

18.37 

17.23 

16.08 

14.93 

13.78 

12.62 

11.48 

10.35 

9.24 

19.31±0.08 

18.15±0.08 

16.99±0.09 

15.83±0.09 

14.68±0.09 

13.54±0.09 

12.41±0.09 

11.29±0.09 

10.19±0.09 

9.12±0.09 

19.61 

18.41 

17.21 

16.02 

14.83 

13.66 

12.50 

11.35 

10.23 

9.14 

19.61 

18.45 

17.28 

16.09 

14.89 

13.71 

12.54 

11.40 

10.27 

9.16 

18.69 

17.53 

16.37 

15.21 

14.07 

12.92 

11.79 

10.68 

9.58 

8.51 

19.39 

18.23 

17.08 

15.93 

14.79 

13.65 

12.52 

11.41 

10.32 

9.25 

19.90±0.3 

18.55±0.3 

17.20±0.3 

16.17±0.3 

14.63±0.3 

13.70±0.3 

12.63±0.3 

11.33±0.3 

10.15±0.3 

8.95±0.3 

 

2.2. Analysis of second pressure virial coefficients 

An effective means for checking the validity of the different potential parameters can be made using 

second pressure virial coefficient data [23-35] at different temperatures. The interaction second pressure virial 

coefficient B at temperature T was calculated classically with the first three quantum corrections from [57]: 

2 3
cl qm,1 qm,2 qm,3( ) ( ) ( ) ( ) ( )T T T T TΒ = Β + λΒ + λ Β + +λ Β  (5) 

where 

2
cl 0

0

( )
( ) 2 1 exp

B

V r
T N r dr

k T

∞   
Β = π − −  

  
  (6) 

with λ=ħ2/(12mkBT), ħ=h/2π. m and N0 are the atomic mass and Avogadro’s number. The first three 

quantum corrections Bqm,1(T), Bqm,2(T) and Bqm,3(T), are given in Ref.[57]. 

The calculated B12 was compared with the experimental results [23-35] using the present BFW 

intermolecular potentials. As it may be clearly seen in Fig.1 and Table 1, the interatomic BFW and MTT 

potentials give the best agreement with the experimental values over a high range of temperatures. 

 

2.3. Analysis of traditional transport properties 

An additional check on the proposed potential consists of the calculation of the transport properties i.e. 

viscosity η(T), diffusion coefficient D(T), thermal conductivity λ(T) and isotopic thermal factor αiso(T) at 

different temperatures T  of xenon. These are obtained via the formulae of Monchick et. al [58] and their 

comparison to the accurate experimental and theoretical results [36-52] which are clear by calculating the 
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associated values of �j as shown in Table 1. The agreements for system under consideration are excellent 

in the whole temperature range. 
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Fig.1. Temperature dependence of the xenon gas interaction pressure second virial coefficients B in 
-13 mol cm  versus temperature in K. Comparison is made with previously available experimental and 

theoretical results [23-35]. The Calculations were performed using the present BFW interatomic 
potential. 

 

3. Application to the calculation of light scattering spectra 

3.1. Principles of CILS spectrum calculations 

In a gas of atoms or molecules excited by a laser line of wavelength λL, a light scattering spectrum is 

observable on both sides of the Rayleigh line, the origin of which can be attributed to collision-induced 

(CI) interactions. By studying this spectrum at different pressures, it is possible to extract its part 

proportional to the square of the density due to binary interactions [59]. Moreover, the incident laser 

beam can be polarized parallel (//) or perpendicular (⊥) to the scattering plane. Two binary spectra can 

therefore be distinguished: the “depolarized” collision-induced light scattering (CILS) spectrum I//(ν) and 

the “polarized” spectrum I⊥(ν), where ν stands for the frequency shift relative to νL=c/λL. In a typical 90° 

scattering experiment, these two experimental spectra can be expressed in terms of the isotropic1 

                                                           
1 The isotropic spectrum is called “polarized” spectrum in some books or papers; we do not adopt this characterization, which 
we restrict to the experimental spectrum I⊥(ν). 

B
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spectrum I0(ν) and anisotropic spectrum I2(ν) generated, respectively, by the trace α(r) and anisotropy 

β(r) of the CI polarizability tensor of a pair of atoms interacting at a distance r: [1] 

 0

// 2

( ) ( )1 7 45

( ) 0 2 15 ( )

I I

I I

⊥ ν ν    
=    ν ν    

. (7) 

The knowledge of the depolarized and isotropic spectra allows therefore to test the models of induced 

polarizability and intermolecular potential of the studied gas. For a relatively heavy atom such as xenon, a 

semiclassical approximation with quantum corrections may suffice to calculate its depolarized spectrum 

I⊥(ν) and its isotropic spectrum I0(ν), at least over the spectral width that has been experimentally 

explored to date (less than ν=130 cm−1 in this case [2-5]). Here, we applied the same semi-classical 

method as the one already successfully used for rare gas mixtures such as Ne-Ar or Kr-Xe [60] or more 

recently for pure krypton [11]. To summarize what we have described in detail in these papers, we have 

first calculated the depolarized and isotropic classical spectra I
cl(ν) from the calculation of atomic 

trajectories for a pair of atoms. For each spectrum, we then distinguished two contributions: that of the 

pairs of bound or metastable atoms (BM), trapped in the well of the effective interatomic potential (about 

one third of the depolarized integrated intensity and between 33% and 40% in the isotropic case for xenon 

at 295 K), and those of the pairs of free atoms (FR) circulating between infinity and the effective potential 

barrier. At this stage of the calculation, the moments (necessarily even) of a classical spectrum must be 

equal to the corresponding moments K2n calculated by using the sum rule for n=0, 1 and 2 [11]: 

 ( )24
2 0

0

2 ( ) 2
ncl

n
k I d

∞
−Κ = ν πν ν  (8) 

To obtain the semiclassical spectra of Xenon, we multiplied I
cl(ν) by a desymmetrization function 

D(ν)=(1+δΛ(ν))exp(2πντ0), where τ0=ħ/2kBT and δΛ(ν) is an even function of quantum origin specific 

to the studied spectrum. On the one hand, these semiclassical spectra necessarily respect the detailed 

balance principle, I(ν) = I(–ν) exp(4πντ0). On the other hand, according to our method described in our 

previous paper [11], the δΛ(ν) function is fitted so that  

 ( ) ( )24
2 0 0

0

2 ( ) ( ) cosh 2 2
ncl

n
k I d

∞
−δΚ = δΛ ν ν πντ πν ν  (9) 

where δK2n stands for the Wigner-Kirkwood quantum correction [61] of the classical spectral moment 

K2n. As a final check, the successive semiclassical moments 

 ( )24
0 ( ) 2

n

n
M k I d

∞
−

−∞

= ν πν ν  (10) 

must be close to those deduced from the classical moments, their Wigner-Kirkwood corrections and their 

dynamical quantum corrections (τ0
2K2n divided by 2 or 6) calculated by using the sum rule: [11] 



 8 

 

2
0

2 2 2 2 20

2
0

2 1 0 2 2 2 21

2

6

n n n n
n

n n n n
n

M

M

+≥

− +≥

 τ= Κ + δΚ + Κ



 τ = τ Κ + δΚ + Κ   

 (11) 

In the case of Xenon, the dynamical quantum and Wigner-Kirkwood corrections are very small, almost 

negligible for M0 and M2, and of the order of a percent for M4. Furthermore, the moments calculated from 

the computed spectra match the moments calculated by the sum rule to within 1%. 

3.2. Depolarized spectrum: results and analysis 

The depolarized spectrum of xenon at 294.5 K is shown in Figs. 2-4. On these figures, the 

experimental values determined by Dixneuf, Chrysos and Rachet (DCR) [4] are reported. The 

experimental values of Zoppi et al [3] and of Profitt, Keto and Frommhold (PKF) [2] are not reported 

since they are very close to the previous ones and can hardly be distinguished from them on a logarithmic 

scale. In the same figures, theoretical depolarized spectra are reported by using three potentials: the 

“universal” potential (UP) defined in Ref. [8] and used by DCR, and the BFW and MTT potentials 

presented in this work. Intensities generated by the MP2 and B3LYP anisotropies calculated ab initio by 

Maroulis et al. [6] are presented in Fig. 2 and 3, respectively. The UP/MP2 spectrum is very close to the 

one calculated by DCR using quantum methods, which confirms partly the relevance of our semiclassical 

method. Nevertheless, our UP/B3LYP intensities diverge by higher values from DCR calculations beyond 

100 cm−1. In Fig. 2, compared to the experimental measurements, a lack of intensity is noticeable below 

70 cm−1 for the MP2 model regardless of the potential, while the agreement is satisfactory for higher 

frequencies. The result is the opposite in Fig. 3 for the B3LYP model, which generates intensities close to 

the experiment at low frequencies but generates too high intensities above 70 cm-1. In Fig. 4, intensities 

correspond to our analytical model of polarizability, hereafter referred to as the parameterized model 

(PM), 

22 2
30 6 0
0 23 6 8

0 21 22

6 241
( ) 6 exp

3

C C r r
r g

r r r r r

    α γ α − σ − σ
 β = + α + + − − −    α     

, (12) 

where, α0 = 28.44 e2
a0

2
Eh

−1, γ = 8605 e4
a0

4
Eh

−3 and C = 233.47 e2
a0

4
Eh

−1 stand for atomic polarizability, 

hyperpolarizability and quadrupole polarizability, respectively (B3LYP [6]), C6 = 285.9 au (DOSD [56]) 

for the dispersion force coefficient, and σ = 7.389 bohrs for the xenon diameter. Besides, g2 = 2,159 au, 

r21 = 0,655 bohrs and r22 = 1.890 bohrs are fitted parameters obtained according the analysis of CILS 

spectral moments described in Ref.[11]. In this PM case, based on often used empirical models [2, 62, 

63], the agreement with the experiment is very good at low frequencies while a slight deficit in intensity 

appears at higher frequencies. For MP2 and PM models, the BFW potential generates higher intensities at 

high frequencies and appears to respond best to the experimental data.  
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In Table 3, we report the values of the spectral moments Mn (n=1 to 4) that can be deduced from the 

theoretical spectra for the three potentials considered (BFW, MTT, UP), two quantum models of 

polarizability calculated by Maroulis (MP2, B3LYP) [6] and our parametrized model (PM). We also 

report the values of the moments that can be deduced from DCR experimental data [4]. Since these 

experimental intensities could only be measured from 4 cm−1, due to the presence of the Rayleigh line, we 

had to extrapolate the values of the successive experimental moments in the interval [0, 4] cm−1. To do 

this, we based ourselves on the observation that, whatever the polarizability model and the potential 

considered, the theoretical contribution of this interval is about 53% for M0, 4.3% for M1 and M2, 0.63‰ 

for M3 and M4. Besides in figure 5, it is possible to visualize the ratios Mn
calc/Mn

exp between the successive 

calculated and experimental spectral moments. We also considered the lower and upper limits of the 

ratios between theoretical and experimental moments by taking into account the uncertainty bars of the 

experimental measurements. The MP2 model of anisotropy [6] fails to fall within the limits set by the 

uncertainty bars because of the too low intensities it generates at low frequencies. The MP2 depolarized 

intensities are close to experiment beyond 70 cm−1 but it is not sufficient to get moment values 

compatible with those inferred from experiment (even for M3 and M4 because the interval [70, ∞[ cm−1 

contributes only about one-fifth of these high-order moments). The spectral moments associated with the 

B3LYP model are within the uncertainty bars, but with values of M3 and M4 close to the upper limit (this 

time, the frequency range beyond 70 cm−1 where the values of the B3LYP intensities exceed the 

experimental intensities contributes 30%). From the analysis of Table 3 and Fig.4, it appears that the PM 

model is the one that, whatever the chosen potential, is fully compatible with the experimental 

measurements of the spectral moments. Indeed, this is a logical consequence of the way this analytical 

model was developed, based on the analysis of spectral moments. 

Table 3: Experimental and computed spectral moments of the depolarized CILS spectrum of Xenon. Experimental 
moments are extrapolated from the experimental intensities published by DCR [4]. Three potentials (BFW, MTT, UP [8]) 
and three anisotropy models (PM, B3LYP [6], MP2 [6]) are considered. 

 Mini Experiment Maxi PM/BFW PM/MTT PM/UP units 

M0 1345 1512 1679 1497.1 1497.1 1550.7 Å9 

M1 3.529 3.982 4.436 4.051 4.103 4.249 1013 Å9 s−1 

M2 2.529 3.080 3.431 3.133 3.173 3.286 1027 Å9 s−2 

M3 7.538 8.597 9.656 8.528 8.507 8.565 1038 Å9 s−3 

M4 5.861 6.684 7.508 6.619 6.603 6.650 1052 Å9 s−4 
        
 B3LYP/BFW B3LYP/MTT B3LYP/UP MP2/BFW MP2/MTT MP2/UP units 

M0 1429.5 1429.5 1478.2 1246.3 1246.3 1289.0 Å9 

M1 3.634 3.647 3.823 3.203 3.204 3.340 1013 Å9 s−1 

M2 2.811 2.821 2.957 2.477 2.478 2.583 1027 Å9 s−2 

M3 9.169 9.025 9.624 7.349 7.238 7.451 1038 Å9 s−3 

M4 7.153 7.037 7.503 5.717 5.629 5.795 1052 Å9 s−4 
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Fig.2. Comparison between the calculated depolarized CILS spectra of Xe2 at T=294.5 K using 
different interatomic potentials (BFW: red; MTT: blue; UP: indigo) and ab initio MP2 pair 
polarizability anisotropy of Maroulis [6] with the experimental measurements of Ref.[4]. The bound 
and metastable pair contributions are represented by dashed lines. 
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Fig. 3. The same comparison as in Figure 2 between depolarized spectra generated by three potentials but 
for the B3LYP pair polarizability anisotropy. 
 

 
Fig. 4. The same comparison as in Figure 2 between depolarized spectra generated by three potentials but 
for the PM pair polarizability anisotropy. 
 

 
Fig.5. Ratios Mn

calc/Mn
exp of the calculated moments of the depolarized spectrum to the experimental ones 

extrapolated from Ref.[4]. Calculations were performed using BFW (blue), MTT (red) and UP (green) 
interatomic potentials for the three models of anisotropy studied: MP2 (), B3LYP () and PM (). 
The upper and lower limit values of the ratios defined by the experimental uncertainty bars are drawn in 
dash-dot or dash-dot-dot black lines, respectively. 
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3.3. Isotropic spectrum: Results and analysis 

The analysis of the isotropic spectrum is much more delicate. Experimentally, two series of 

measurements are available, performed by PKF [2] and more recently by Chrysos and Rachet (CR) 

[5]. Given the uncertainty bars, these series are compatible. However, uncertainties are very large. 

This is because the spectrum is deduced, according to Eq.(7), from the subtraction of two quantities, 

7
0 //6
( ) ( ) ( )I I I⊥ν = ν − ν , (13) 

that are generally close together. The isotropic intensities I0(ν) are of the order of a few percent of 

I⊥(ν) at lower frequencies even if they can reach a few tenths at the highest frequencies. Moreover, 

the presence of the Rayleigh line and its wings makes it particularly difficult to determine I⊥(ν) at 

low frequencies (and also the depolarized spectrum I//(ν) at ν≈0). Thus, PKF’s isotropic spectrum 

measurements only start at 23 cm−1. Even more revealing of the experimental difficulties in 

extracting the isotropic spectrum from the polarized and depolarized spectra, these of Chrysos and 

Rachet start at 70 cm−1. We report both series of intensities in Figs. 6-8. The experimental spectrum 

appears to be divided into two parts. Up to about 35 cm−1, the intensity decreases strongly in an 

almost exponential way. Beyond, the decrease is less strong while gradually stronger. The large 

dispersion of the experimental data can be noticed in the latter frequency range, in accordance with 

the big size of the uncertainty bars. For this reason, using the least squares method, we calculated 

“average” experimental intensities by degree 2 polynomial fitting of the logarithms of all the 

experimental intensities (these of PKF and these of CR) from 35 cm−1 to 130 cm−1. The “synthesis” 

curve thus obtained is represented by a black dotted line in Figs 6-8. In Fig.6 and 7, we also present 

the theoretical intensities generated by the MP2 and B3LYP models of trace of Maroulis [6] for the 

three potentials considered in this work (BFW, MTT, UP [8]). In Fig.8, we present similarly the 

theoretical isotropic spectrum generated by the PM trace,  

22
3 6 0
0 06 8

0 01 02

5 201
( ) 4 exp

9

C C r r
r g

r r r r

    γ α − σ − σ
 α = α + + − − −    α    

, (14) 

where g0 = 1.275 au, r01 = 0,49 bohrs and r02 = 2.958 bohrs are fitted parameters deduced from the 

method presented in Ref.[11], as for the PM anisotropy. From the analysis of the figures, it appears 

that the model that comes closest to the “synthesis” curve is the PM model for MTT or BFW 

potentials. However, regardless of the potential, both MP2 and B3LYP models are fully consistent 

with the experimental data in the 35-130 cm−1 frequency range. Below 35 cm−1, PKF’s 

measurements need to be confirmed, given the uncertainties in measuring the polarized spectrum at 

low frequencies. The quasi-exponential growth in intensity as the frequency shift tends to zero is 

nevertheless found with the MP2, B3LYP and PM models, albeit at lower frequencies.
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Fig.6. Comparison between the calculated isotropic CILS spectra of Xe2 at T=294.5 K using different 
interatomic potentials (BFW: red; MTT: blue; UP: indigo) and ab initio MP2 pair polarizability 
anisotropy of Maroulis [6] with the experimental measurements of Ref.[2, 5]. The bound and metastable 
pair contributions are represented by dashed lines and the curve making the “synthesis” of all the 
experimental data between 35 cm−1 and 130 cm−1 by black dots. 
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Fig. 7. The same comparison as in Figure 6 between isotropic spectra generated by three potentials but for 
the B3LYP pair polarizability anisotropy computed by Maroulis [6]. 

 

Fig. 8. The same comparison as in Figure 6 between isotropic spectra generated by three potentials but for 
the PM pair polarizability anisotropy proposed in this work. 

 

 
Fig.9. Ratios Mn

calc/Mn
exp of the calculated moments of the isotropic spectrum to the experimental ones 

extrapolated from Refs.[2, 5]. Calculations were performed using BFW (blue), MTT (red) and UP 
(green) interatomic potentials for the three models of trace studied: MP2 (), B3LYP () and PM (�). 
Extrapolated from the experimental uncertainty bars, the upper and lower limit values of the ratios are 
drawn in dash-dot and dash-dot-dot black lines, respectively. 
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The study of the spectral moments confirms the previous considerations, albeit in a more uncertain 

way. The spectral range inaccessible to the experiment is much larger than in the case of the depolarized 

spectrum. The contribution to the spectral moments of the interval [0, 35] cm−1 cannot be determined 

from experimental measurements while it is decisive for the value of M0. However, Fig.8 highlights a 

very good agreement between the isotropic intensities generated by the PM model (and, to a lesser extent, 

by the MP2 model) for BFW or MTT potentials and the “synthesis” curve of the experimental 

measurements of PKF and CR beyond 35 cm−1. This observation led us to hypothesize that it is possible 

to extrapolate the relative contributions of the interval [0, 35] cm−1 to experimental moments from the 

contributions of the same interval for the PM model and both BFW and MTT potentials: ≈96,6% for M0, 

≈0.22% for M1 and M2, ≈0.03% for M3 and M4 (MP2 model gives similar results). Based on this 

assumption, the experimental spectral moments are listed in Table 4 next to the calculated moments for 

the three models MP2, B3LYP and PM and the three potentials BFW, MTT and UP. The ratios Mn
calc/Mn

exp 

between the successive calculated and experimental spectral moments are given in Fig.9. This figure 

confirms that the three trace models studied are compatible with the experiment given the very large 

uncertainty bars. Of course, and this is the effect of the previously described hypothesis for the interval 

[0, 35] cm−1, we find M0
calc/M0

exp≈1 for the PM model of trace whatever the potential is, but it is also 

checked for the MP2 model and to a lesser extent for the B3LYP model. For the higher order moments, to 

which the interval [0, 35] cm−1 contributes little, it is the PM model of the trace that appears to be in best 

agreement with the experimental measurements, both for the BFW potential and the MTT potential. 

 
Table 4: Experimental and computed spectral moments of the isotropic CILS spectrum of Xenon. Experimental moments 
are extrapolated from the experimental intensities published by PKF [2] and CR [5]. Three potentials (BFW, MTT, UP 
[8]) and three anisotropy models (PM, B3LYP [6], MP2 [6]) are considered.  

 Mini Experiment Maxi PM/BFW PM/MTT PM/UP units 

M0 0.202 0.385 0.725 0.385 0.386 0.387 Å9 

M1 0.98 2.21 5.00 2.29 2.30 2.69 1010 Å9 s−1 

M2 0.76 1.72 3.89 1.78 1.80 2.09 1024 Å9 s−2 

M3 1.05 2.84 7.14 3.05 2.97 3.19 1036 Å9 s−3 

M4 0.82 2.22 5.59 2.39 2.32 2.50 1050 Å9 s−4 
        
 B3LYP/BFW B3LYP/MTT B3LYP/UP MP2/BFW MP2/MTT MP2/UP units 

M0 0.356 0.357 0.357 0.387 0.387 0.388 Å9 

M1 1.66 1.66 1.82 1.83 1.83 2.09 1010 Å9 s−1 

M2 1.29 1.29 1.41 1.42 1.43 1.62 1024 Å9 s−2 

M3 1.83 1.79 1.86 2.22 2.17 2.29 1036 Å9 s−3 

M4 1.43 1.41 1.46 1.74 1.70 1.79 1050 Å9 s−4 
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4. Conclusion 

In this paper, we applied the methods we developed in previous papers [9-11, 60] to determine the 

potential and polarizability of xenon from the available experimental data. The BFW and MTT 

potentials thus defined and the parametrized model of the anisotropy and trace of the polarizability 

tensor of Xenon allowed us to calculate its depolarized and isotropic CIS spectra. The comparison of 

these theoretical spectra with the experimental spectra measured by several groups [2-5] confirms the 

validity of our approach. In particular in the case of the isotropic CIS spectrum, it is remarkable that 

the theoretical spectrum deduced from our models coincides quite exactly with a polynomial fit of 

degree 2 of the logarithms of all experimental intensities in the interval [0, 35] cm−1. Indeed, both the 

BFW and MTT potentials and the trace and anisotropy analytical models (PM) presented in this work 

are able to account for the available experiments. 
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