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Abstract 

Isotropic and anisotropic binary collision-induced light scattering spectra of gaseous krypton obtained at 
room temperature are analyzed in terms of different interatomic potentials, both reference and recent, and 
trace and anisotropy models of interaction-induced polarizability. The spectral intensities obtained 
numerically at low frequencies are determined by bound and free transitions. At intermediate and high 
frequencies, the spectra are sensitive to both the attractive part of the potential and to short-range values of 
the trace or anisotropy. An empirical interatomic potential for the krypton gas interaction is developed by 
simultaneously fitting the Barker et al. (BFW) and modified Tang-Toennies (MTT) potentials to 
thermophysical and transport properties over a wide temperature range. The quality of the present potentials 
was checked by comparison between the calculated and experimental vibrational energy levels. The results 
show that these are the most accurate potentials reported to date for this system, both for the reproduction of 
spectral line shapes and spectral moments. 
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1. Introduction 

Collision-induced light scattering (CILS) spectra that are scattered by a dense fluid or gas have a 

power spectrum which is shaped by two functions of the intermolecular separation r: the interaction 

potential V(r), and, respectively, the trace α(r) and anisotropy β(r) of the induced polarizability tensor of 

the interacting pair of atoms or molecules [1–4]. Recently, detailed analysis of the bulk properties of 

hydrogen, nitrogen, methane and of the inert gases helium, neon, argon, krypton, xenon, and mixtures 

has led to accurate estimates of the pair potential for the interaction of ground-state atoms and molecules 

[5–15]. These estimates have been confirmed rather dramatically by experimental data on the spectra of 

gas dimers and on the differential and total scattering cross sections of molecular beams [16–18]. In 

particular, the different interatomic potentials [5–15] determined from the second pressure virial 

coefficients, viscosity, thermal conductivity, diffusion coefficients and thermal diffusion factors 

provided a very satisfactory verification of all the experimental data and methods of analysis. 

From this point of view, no accurate potential is available for krypton. We calculate an 

approximate interatomic potential for the krypton interaction using mostly the methods outlined in 

previous papers [8–15]. Since the details of the methods are given there and the references therein, we 

will only restate the equations when it is necessary for the sake of continuity. To reiterate, the basic 

strategy in this paper is to include isotropic and anisotropic light scattering data (CILS) in addition to 

the data on thermo-physical, transport and spectroscopic properties to fit the Barker, Fisher and Watts 

(BFW) and Modified Tang-Toennies (MTT) potential models for interatomic krypton interactions. 

Different experiments are sensitive to different regions of the interatomic potential. Collision-

induced light scattering (CILS) intensities are most sensitive to the attractive potential from rm at 

which the potential has its minimum out to the asymptotic long range region, and the rainbow and 

supernumerary oscillations give detailed information about that part of the potential [18]. The 

pressure virial coefficients reflect the size of rm and the volume of the attractive well [19]. The 

viscosity, self-diffusion, thermal conductivity and thermal diffusion factors data are most sensitive 

to the wall of the potential from rm inward to a point where the potential is repulsive [20]. Thus, 

these six properties with the spectroscopic data can, in principle, be used to develop a potential over 

a fairly broad range of interatomic distances. 

The paper is organized as follows: the interatomic potential models adopted from multiproperty 

analysis are presented in Sections 2 and 3. The analysis of the theoretical method for calculating the 

parameters of the trace and anisotropy models of the pair-polarizability is given in Section 4. The 

light scattering induced by collision of two krypton atoms is briefly given in Section 5, together 

with the computational implementation. Results are discussed in the same Section 5 and the 

concluding remarks are given in the last Section. 
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2. The interatomic potentials and multi-property analysis  

The interatomic potentials we provide here is obtained through the analysis of the pressure 

second virial coefficients [21-35] and a set of gaseous transport properties [36-63] and 

spectroscopic properties [64-69]. For the analysis of all these experimental data, we consider the 

BFW and MTT interatomic potentials which in all region of interactions can be represented by the 

following formula: 

- for the BFW potential [70], 
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where x=r/rm is the reduced distance, ε is the potential depth, rm is the distance at the minimum 

potential and the rest (ξ, d) are fitting parameters; 

- for the MTT potential [71],
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where the f2n(r) are the appropriate damping functions, given by the expression derived by Tang and 
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Even at the present (BFW) level, there are really thirteen parameters (ε, rm, A0, A1, A2, A3, A4, A5, 

ξ, d, C6, C8, C10) and in the (MTT) level, there are seven free parameters (ε, rm, A, B, C6, C8, C10) 

which are far too many to determine from the present data. Accordingly we proceeded as follows: 

the coefficients A0, A1, A and B are determined from the conditions of continuity and the long-

range dispersion coefficients were taken from theoretical calculations of Fransson et al. [73] for C6 

and Thakkar et al. [74] for C8 and C10, leaving rest parameters in these models that were varied to 

fit the second pressure virial coefficient, B. This minimization is further supported by calculating 

δη, δλ, δD, δαiso, and δV the rms deviations calculated from viscosity, thermal conductivity, diffusion 

coefficients, thermal diffusion factor and vibrational energy levels, respectively. This decision leads 

to the potentials parameters in Table 1 as our best estimate of interatomic potentials. 
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Table 1. Parameters of the different interatomic potentials and the associated values of δj.  

For krypton interactions, d=0.01. Besides, δj is defined by, ( )22 2

1

1 jn

j ji ji ji

ij

P p
n

−

=
δ = ∆ −∑  

where Pji and pji are, respectively, the calculated and experimental values of property j at a 
temperature i and ∆ji is the corresponding experimental uncertainty. The subscripts B, η, λ, D, αiso 
and V refer, respectively, to the interaction second pressure virial coefficient, viscosity, thermal 
conductivity, diffusion coefficient, thermal diffusion factor and vibrational energy levels.  

The overall rms deviation was obtained from 2

1

1
( )

N

o j

jN =

δ = δ∑ , with N=6. 

Pots. ε/kB[K] rm[Å] σ[Å] ξ A0 A1 A2 A3 A4 A5 A B     

BFW 201.0 4.015 3.59 9.3 1.08538 −4.98471 10.8602 −23.0 9.5 −36.0 - - 

MTT 201.2 4.0175 3.584 - - - - - - - 51.3221 1.05587 

 δB δη δλ δD δαiso δV δo

 BFW 0.68 0.43 0.67 0.71 0.89 0.24 0.64 

MTT 0.57 0.49 0.69 0.73 0.87 0.18 0.63 

3. Multi-propertyAnalysis 

In this section the calculations of the experimental quantities are described. The Monchick-

Mason approximation [75] which neglects the effect of inelastic transitions on the relative kinetic 

energy is applied in the computations of the thermo-physical and transport properties. 

3.1 Analysis of pressure second virial coefficients 

An effective means for checking the validity of the different potential parameters can be made 

using the second pressure virial coefficient data [21-35] at different temperatures. The interaction 

second pressure virial coefficient B  at temperature T was calculated classically with the first three 

quantum corrections from [76]: 

(T)
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B 3(T)
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B 2(T)
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B (T)
cl

BB(T) λλλ +++=
 

(5) 
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o
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B π
 

(6)

 

and the first three quantum corrections Bqm,1(T), Bqm,2(T) and Bqm,3(T) are given in Ref.[76], with, 

λ=ħ2/(12mkBT), ħ=h/2π, m and No are the atomic mass and Avogadro’s number. The calculated B

including the first three quantum corrections were compared with the experimental results [21-35] 

which are seen in Table 1 and Fig. 1.  
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Fig. 1. Temperature dependence of the Krypton gas interaction pressure second virial coefficients 

B in -13 mol cm  versus temperature in K. Comparison is made with previously available 
experimental results [21-35]. The calculations were performed using the present BFW interatomic 
potential.  

3.2 Analysis of traditional transport properties  

An additional check on the proposed potential consists of the calculation of the transport 

properties i.e. viscosity η, thermal conductivity λ, diffusion coefficient D and thermal diffusion 

factor αiso at different temperatures of Krypton . These are obtained via the formulae of Monchick 

et al. [75] and their comparison to the accurate experimental and theoretical results [36-63] which 

are clear by calculating the associated values of δj as shown in Table 1. The agreements for this 

system under consideration are excellent in the whole temperature range. 

In this respect, according to the kinetic theory of gases at low density and the Chapman-Enskog 

solution of the Boltzmann equation, the transport properties can be expressed with the help of a series 

of collision integrals that depend on the intermolecular potential energy and are defined as: [77] 
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where θ is the scattering angle, )()(
E

l
Q , the transport collision integral, b, the impact parameter, E, 

the relative kinetic energy of colliding atoms and r0, the closest approach of two atoms. Thus, three 

successive numerical integrations are required to obtain a collision integral. The reduced collision 

integral is defined by 

2
)(

),(
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T
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T
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=Ω  (10) 

Where σ is the length scaling factor such that V(σ)=0. 

The potential energy would serve as the input information required in calculating the collision 

integrals and consequently the transport properties. Kinetic-theory expressions for the transport 

properties (viscosity, thermal conductivity, diffusion coefficient and thermal diffusion factor) in 

terms of the collision integrals for the binary gas are given by the following equations: [48] 
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(14) 

with the molecular weights M1 and M2 in grams, the pressure P in atm and the reduced temperature 

T*=T/ε. The expressions for the second-order correction ∆ as well as the values of C12
*, S and Q are 

listed in Appendix C of Ref. [48]. The correction term K2 is small in magnitude and may be 

neglected in the present calculations. 

3.3 Vibrational Energy Spacings 

With the above obtained interaction potentials the vibrational energy spacings can be calculated 

by solving the radial one-dimensional Schrödinger equation. In the present paper this equation is 

solved numerically. The interaction potentials of Kr with the internuclear separation between 3.0 

a.u. and 200 a.u. are used to do the calculation. The size of the grid points is 1600. Table 2 presents 

the calculation results for krypton dimers. It is seen from Table 2 that the agreement of the two sets 

of spacings predicted by the MTT and BFW is good.  
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The experimental and other theoretical results are also listed in the Table 2 for comparison [64-

69]. It is gratifying to find that the spacings of the homonuclear rare-gas dimers predicted by the 

MTT and BFW potential models are in excellent agreement with the experimental results if the 

experimental error bar are taken into consideration.  

Table 2: Comparison of our computed vibrational energy spacings for Kr gas dimers with experimental and 
other theoretical data. All values are given in cm−1. 

Transition MTT BFW Sheng Jäger  Ogilvie Aziz Waldrop Exp.      
 [66] [67] [68] [65] [64]  [69] 

0-1 21.52 21.49 21.2633 21.434 21.53 21.41 21.466±0.081 21.56±0.54 

1-2 19.32 19.23 19.1528 19.26 19.38 19.3 19.307±0.077 19.09±0.57 

2-3 17.12 17.03 17.0580 17.105 17.22 17.2 17.166±0.073 16.76±0.60 

3-4 14.98 14.89 14.988 14.979 15.07 15.11 15.053±0.069 14.76±0.75 

4-5 12.89 12.81 12.9590 12.897 12.95 13.02 12.98±0.065 12.23±0.51 

5-6 10.87 10.83 10.9900 10.875 10.9 10.97 10.963±0.062 10.49±0.50 

6-7 8.94 8.92 9.0954 8.938 8.95 9.01 9.026±0.06 8.92±0.44 

7-8 7.14 7.13 7.2952 7.117 7.14 7.17 7.199±0.063 6.92±0.63 

8-9 5.49 5.48 5.6228 5.445 5.48 5.49 5.517±0.064 5.54±0.30 

 

4. Analysis of CILS spectral moments to determine the trace α(r) and anisotropy β(r) 

The method of detailed analysis of the first three even moments of the depolarized light 

scattering spectrum (CILS) has been used by Barocchi-Zoppi [78,79], and Chrysos-Dixneuf [80-82] 

for the determination of the extra-dipole-induced dipole (EDID) contribution to the pair- 

polarizability anisotropy of neon and argon. This consists of establishing an appropriate 

parameterized model form for anisotropy and then searching by means of a computer for the sets of 

parameters that are consistent with the experimental values of the moments. 

For the sake of comparison and discussion, for the present calculations we considered three 

models of the pair-polarizability trace and anisotropy which are:  

- the two-term dipole-induced dipole models (DID), [83]  

3 4
0 0

6 9

4 4
( )r

r r

α αα = +
 

(15) 

2 3
0 0

3 6

6 6
( )r

r r

α αβ = +
 

(16) 

where α0 is the polarizability of the individual isolated atoms;  
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- the ab initio self-consistent field (SCF) and the second-order Møller–Plesset (MP2) trace and 

anisotropy polarizability models of Maroulis; [84] 

- the analytical models of Buckingham et al. [85], hereafter referred to as parameterized models 

(PM), [86-88]   

2
3 6 0
0 16 8

0 1

5 201
( ) 4 exp
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(18) 

Here, α0 and γ designate atomic polarizability and hyperpolarizability respectively, C6 is the 

dispersion force coefficient and C is the quadrupole polarizability. The values of the parameters 

used for the pair Kr-Kr are given in Table 3. 

Table 3. Experimental and fitted parameters used in Eqs. (17, 18) for the pair Kr-Kr (atomic units). 

α C6 C γ g1 r1 g2 r2 σ (au) 

17.26a 136a 95.02b 2233.0b 0.5159 0.9189 0.9448 0.6055 6.784 

a: Ref.[73] for ADC(3/2); b: Ref.[84];  

We shall use Eqs. (17-18) below to see if the trace and anisotropy can be approximated by such 

simple models which will be seen to provide a useful empirical basis to describe diatom 

polarizabilities. 

In order to make the presentation of our results to be comparable with those given by other 

authors, it is convenient to rewrite α(r) and β(r) of Eqs.(17-18) in terms of the reduced variable 

x = r/rm where rm is the separation at the minimum of the interatomic potential V(r). In this case,  
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The substitutions of Eq. (19) into the moment expressions of Moraldi, [89] with L=0 for the 

isotropic spectrum, and of Eq. (20) into the same expressions, with L=2 for the anisotropic 

spectrum, make it possible to rewrite them in the form of quadratic equations for the unknown g1* 

and g2* with coefficients which are parametric functions of x1 and x2. The equations those one 

obtains from the moments of the isotropic and anisotropic spectra respectively are of the form: 

)F(Y
i

yDYY i

1-

1i1i −=+  (21) 

)F(ZzDZZ i

-1

2i1i i
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where the Jacobian matrices are given by 
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and the two column vectors Y and F(Y) for isotropic moments and Z and F(Z) for anisotropic 

moments are defined as 
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where ∆Mn are the difference between theoretical and experimental moments of the isotropic and 

anisotropic light scattering spectra. 

Once convergences are obtained, the column vectors solutionsY and Z  have to satisfy ( ) 0F Y =  

for the isotropic moments and ( ) 0F Z =  for the anisotropic moments. Each element of the matrices 

D1 and D2 reads 

∫
∞

−=
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V(r)/k(Y)exp(
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(30) 

where a,b=1,2 and 3 stand for the line and column numbers of the matrices D1 and D2 respectively. 

For the specific functional forms of α(r) and β(r) given by Eqs. (17-18), the nine elements aab(Y ) 

and bab(Z ) are calculated. 

The great advantages of this method for calculating the parameters of the models for α(r) and 

β(r) are the speed of computation and that the trial-and-error approach is avoided. The method of 

moments analysis has been applied to the collision-induced light scattering (CILS) spectra of Ne, 

Ar, Kr, Xe and CH4 [81, 82, 86, 90]. Because the correction to the first-order DID expression is 

quite small over most of the interatomic separations probed by the atomic motions, and the two 

correction terms to a large extent cancel out the effects of each other, the numerical values derived 

for the parameters g1 of the trace and g2 of the anisotropy, are quite sensitive to the input values of 

the moments. 

For the calculation of the theoretical values of the moments with the empirical models of the 

trace and anisotropy polarizabilities the empirical pair potential BFW and MTT with the parameters 

in Table 1, was used. Also, the calculations were done using a HFD-B2 potential which is a 

reference in the literature [65] and the recent ab initio CCSD(T) interatomic potential [91]. 
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The experimentally determined values of the moments, with error limits, now each define a 

range of acceptable values for the parameters. This approach to the construction of an empirical 

models for α(r) and β(r) is acceptable if all moments define a common range of g1 and g2, r1 and r2 

values. As we will see below in Tables 4 and 5, the agreement between the experimental values and 

the theoretical ones using our empirical potential is good and we have verified that it remains 

acceptable for r1 = 0.486±0.009 Å and g1 = 0.0766±0.005 Å3, in the case of the trace, and 

r2 = 0.32±0.01 Å and g2 = 0.14±0.06 Å3, in the case of the anisotropy models. 

5. Light scattering induced by collision of two krypton atoms 

5.1 Experimental and theoretical backgrounds 

In this subsection, we simply recall what is collision-induced light scattering (CILS) and its 

analysis in order to evaluate the polarizability tensor induced by the interactions between two atoms 

or molecules. Experimentally, by illuminating a gas sample with a laser beam and varying its 

pressure, it is possible to extract from the scattered light the contribution I(ν) due to binary 

interactions, where ν is a frequency shift from the laser beam frequency c/λ0. This binary intensity 

I(ν) is proportional to the square of the density of the gas [17]. Moreover, by using a polarizer, it is 

possible to distinguish a “polarized” scattering spectrum I⊥(ν) (when the polarization of the incident 

laser beam is perpendicular to the scattering plane) and a “depolarized” scattering spectrum I//(ν) 

(when this polarization is parallel to the scattering plane). These two intensities are functions of the 

polarizability tensor of the pair of atoms or molecules considered. More precisely, I//(ν) results from 

the anisotropy β(r) of the tensor while I⊥(ν) is generated by both its anisotropy and its trace α(r), 

where r stands for the interatomic or intermolecular distance. This double dependency can be 

simply expressed as [1] 

 0

// 2

( ) ( )1 7 45

( ) 0 2 15 ( )

I I

I I

⊥ ν ν    
=    ν ν    

, (31) 

Where the intensity IL(ν) is said to be “isotropic” when it is due to the trace (L=0) and “anisotropic” 

when it is due to the anisotropy (L=2). Nevertheless, slight numerical corrections must be made to 

the coefficients involved in Eq.(31) since the experimental collection angle of the scattered light is 

not exactly zero [92]. In addition, it is usual to plot the depolarized spectrum I//(ν) rather than the 

spectrum I2(ν) to which it is proportional. 

Three groups of researchers have published the experimental depolarized binary CILS spectrum 

of the Krypton atom pair (Proffitt et al. [4], Zoppi et al.[79] and Dixneuf, Chrysos and Rachet [93]). 

Their results are very close. Two of these groups (Proffitt et al. [4] and Chrysos et al. [94]) have 
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also published the isotropic spectrum, which is much more difficult to obtain. Their results differ 

significantly. This is partly due to the fact that the measurement uncertainties are very large in this 

case: the isotropic contribution is obtained from Eq. (31) by the difference I0(ν)≈I⊥(ν)−7I//(ν)/6 

even though it is, relatively, a very small contribution at low frequencies. In this work, we privilege 

the more recent experimental work of the Chrysos team (referred to below as DCR). Indeed, the 

experimental CILS set-up of Angers that this group used allows the detection of very weak signals 

and has already permit, since its development by Le Duff’s group thirty years ago, to detect several 

isotropic spectra of atomic or molecular pairs. 

For a pair of krypton atoms, several models of α(r) and β(r) can be tested. They can be derived 

from ab initio quantum calculations or from semi-empirical models. In what follows, we consider 

the two models computed ab initio by Maroulis, [84] on the basis of the self-consistent field theory 

(SCF) and the second-order Møller–Plesset perturbative method (MP2), and the parameterized 

model (PM) of the trace and the anisotropy described by Eqs. (17-18). 

The two polarizability models of Maroulis have been used by DCR in order to reproduce by 

quantum computational methods the experimental depolarized [93] and isotropic [94] spectra that 

these authors had measured. Maroulis models can thus serve as a reference for our own calculations 

of a semi-classical nature, for these two models as well as for the parameterized model defined by 

Eqs. (17-18). 

We have already described in previous papers the semi-classical method we use for the 

calculation of CILS spectra [95-97]. The intermolecular potential V(r) being given, we calculate the 

trajectories of the interacting atoms whether the pair of atoms is in a free state (FR) or in a bound or 

metastable state (BM) of the effective potential well. For free pairs, using Posch's formulas [98], we 

compute what are equivalent to Fourier transforms of the trace or anisotropy autocorrelation 

functions. We then integrate these transforms with respect to the impact parameters and velocities, 

in the approximation of a Maxwell-Boltzmann velocity distribution. After multiplying by the fourth 

power of the wave vector k0=2π/λ0, we obtain the contributions of the free pairs to spectral 

intensities. For the contributions of bound or metastable pairs, we follow the method initiated by 

Meinander in the anisotropic case [99]. The only difficulty lies in the presence of some Dirac 

functions which are not eliminated by integration. However, we can replace them by equivalent 

continuous functions, and this is all the more justified since the input slits of any monochromator 

used experimentally have a finite width (anyway, because of the presence of the Rayleigh line, it is 

hardly possible to determine experimentally the CILS intensity in the immediate vicinity of ν=0). 
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The sum of the two contributions, FR and BM, provides the classical isotropic I0
cl(ν) and anisotropic 

I2
cl(ν) intensities. We then check that, for n=0, 2 and 4, the spectral classical moments 

 ( )( ) 4 ( )
0

0

2 ( ) 2
nL L

n ck I d

∞
−Κ = ν πν ν∫  (32) 

are equal (to within one percent) to the corresponding moments obtained analytically by the sum 

rule for the corresponding intermolecular potential [100]. We also verify that the proportion of the 

intensity attributable to bound and metastable dimers is indeed that which can be predicted by 

Levine's statistical method [101], in both the isotropic and anisotropic cases. For a pair of heavy 

atoms, this verification is all the more important as the BM contribution is not negligible, at least in 

the vicinity of the Rayleigh line. For krypton, this proportion is about 20% for the anisotropic 

spectrum and 10 to 20% for the isotropic spectrum. 

Unfortunately, the spectra Ic(ν)  obtained at this stage are “classical”, and thus symmetrical with 

respect to the Rayleigh line. In order to compare them to the experimental asymmetric spectra, they 

must be desymmetrized in such a way that the computed asymmetric spectra I(ν)  respect the 

detailed balance principle: I(ν) / I(–ν) = exp(4πντ0), where τ0=ħ/2kBT. Thus, it is necessary to use a 

‘‘desymmetrization function’’ D(ν)=I(ν)/Ic(ν) such that D(–ν) = exp(–4πντ0)D(ν). We show in 

Appendix A that this function can be written as D(ν)=(1+δΛ(ν))exp(2πντ0), where δΛ(ν) is an 

even function of quantum origin. In fact, as Frommhold pointed out in his book on collision-

induced absorption [102], the different desymmetrization procedures found in the literature lead to 

substantially different semiclassical spectral profiles. In previous papers [96, 97], we proposed to fit 

a linear combination of the three most commonly used desymmetrization functions 

exp(2πντ0)/cosh(2πντ0), 2πντ0exp(2πντ0)/sinh(2πντ0) and exp(2πντ0). The coefficients ϕ0, ϕ1 and 

ϕ2 of this combination were adjusted so that the spectral moments M0, M1 and M2 of the 

semiclassical spectrum are equal to those deduced from the classical moments K0, K2 and K4 and 

their Wigner-Kirkwood (WK) quantum corrections δK2n obtained by the sum rule. Here we used a 

method giving similar results, but on a more theoretical basis, by directly deducting an approximate 

expansion of δΛ(ν) up to ν4 from the values of δK0, δK2 and δK4. This new method is presented in 

Appendix A. In the studied case of krypton, it results in a desymmetrization function close to 

exp(2πντ0), generally taking very slightly lower values at low frequencies (by a few ‰) and 

slightly higher at higher frequencies (by a few %).  

5.2. Results and discussion 

The objective of this work was to test our empirical models of trace and anisotropy of 

polarizability, defined by equations (17-18) and Table 3, and to evaluate the influence of available 
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intermolecular potentials of Krypton on the computed isotropic and depolarized spectra. In order to 

do so, we considered four potential models: the “old” HFD-B2 potential of Aziz and co-workers 

[65], a “CCSD” potential recently computed by Fakhardji et al. at the CCSD(T) level with an aug-

cc-pV5Z basis set, including relativistic effects (ECP10MDF) of the inner core electrons, [91] and 

the two potentials MTT and BFW described above. 

a) Depolarized spectrum 

First, we tested our semi-classical calculations by comparing the depolarized spectra obtained for 

the SCF and MP2 anisotropies of the interaction polarizability of two Kr Atoms calculated by 

Maroulis [84] and the HFD-B2 potential with the corresponding computed spectra obtained by 

DCR [93] using quantum means. For the SCF and MP2 anisotropies, we find within a few percent 

the intensities calculated by DCR over the whole width (from 0 to 140 cm−1) of the experimental 

spectrum: our depolarized spectral profiles and those of DCR are difficult to distinguish on a 

logarithmic scale. This confirms in our opinion the relevance of our semiclassical calculations for 

the pair of relatively heavy atoms that are those of Krypton and in the limited frequency domain 

that is that of the available experimental measurements. 

Next, we calculated the depolarized spectra for each of the above mentioned potentials and for 

three polarizability models: SCF and MP2 of Maroulis and the parameterized one (PM) described 

by Eq. (18). The results are summarized in Table 4 and in figures 2 to 5. Table 4 and Fig. 2 allow 

the reader to compare the spectral moments that can be deduced from experimental DCR 

measurements and those that can be deduced from the different calculated spectra. The three figures 

3 to 5 show the depolarized (anisotropic) spectra: experimental (DCR) and calculated for each of 

the three polarization models (each time for the four selected potentials). 

Table 4 shows the values of the moments Mn (n=0 to 4) calculated for each of the four potentials 

and the three anisotropy models against the corresponding values we were able to deduce from the 

experimental DCR spectrum [93]. The latter starts only at 4 cm−1. However, we could see that, 

whatever the anisotropy and potential models used in this work, the fractions of moments 

attributable to the interval [−4, 4] cm−1 are systematically 42% for M0, 2% for M1 and M2, 0.02% for 

M3 and M4. We were thus able to deduce the values of the experimental moments from the portions 

of moments attributable to the intervals [4, 135] cm−1 (measured experimentally) and [135, ∞[ cm−1 

(extrapolated thanks to a decreasing exponential function). In the table, we also give the minimum 

and maximum values of these experimental moments, considering the uncertainty bars provided by 

DCR. 
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Table 4. : Experimental and calculated spectral moments of the depolarized CILS spectrum of krypton. The 
experimental moments are extrapolated from the experimental spectrum published by DCR [93]. 

 Mini Experiment Maxi PM/BFW PM/CCSD PM/HFD PM/MTT units 

M0 197.3 221.6 246.0 217.47 213.59 221.29 218.98 Å9 

M1 0.920 1.036 1.151 1.079 1.056 1.099 1.087 1013 Å9 s−1 

M2 7.136 8.020 8.905 8.349 8.169 8.508 8.410 1026 Å9 s−2 

M3 3.291 3.717 4.142 3.763 3.555 3.726 3.727 1038 Å9 s−3 

M4 2.567 2.899 3.232 2.925 2.778 2.894 2.896 1052 Å9 s−4 

 SCF/BFW SCF/CCSD SCF/HFD SCF/MTT MP2/BFW MP2/CCSD MP2/HFD MP2/MTT units 

M0 161.92 159.23 164.57 162.98 196.09 192.79 199.37 197.40 Å9 

M1 0.7388 0.7243 0.7564 0.7457 0.9117 0.8937 0.9334 0.9203 1013 Å9 s−1 

M2 5.718 5.605 5.854 5.771 7.056 6.916 7.224 7.122 1026 Å9 s−2 

M3 2.620 2.417 2.593 2.586 3.248 3.000 3.222 3.207 1038 Å9 s−3 

M4 2.042 1.886 2.02 2.014 2.527 2.338 2.513 2.494 1052 Å9 s−4 

Figure 2 allows a more immediate comparison between the experimental and calculated 

moments. For each of the twelve calculated spectra (four potentials and three anisotropies), the 

moments are divided by the corresponding experimental moments.  

 

Fig. 2. Evolution of the ratio Mn
cal/Mn

exp of calculated to experimental depolarized moments when n 
varies from 1 to 4. Three anisotropy models (PM, MP2 and SCF [84]) and four intermolecular 
potential models (BFW in red, CCSD in blue, HFD in brown, MTT in indigo) are considered. Due 
to experimental uncertainties reported by DCR [93], the values of these ratios must be contained in 
the vicinity of one between the two black curves (dash and dash-dot). 

Only the parameterized model (PM) provides moment ratios close to one and in the range 

determined by the uncertainty bars. The moments associated with the MP2 model and especially 

SCF are too low, as expected. In their paper [93], DCR had already noted the insufficient spectral 

intensities of these two models provided by Maroulis with respect to their own experimental 

measurements. In the case of the SCF model, the lack of intensity is accentuated by not taking into 

account the dynamic electron correlation effects. The influence of the potential on the values of the 
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moments can also be appreciated from figure 2. The “old” HFD-B2 potential of Aziz et al. [65] is 

the one that generates the largest values of M0 (low frequencies), M1 and M2 (medium frequencies) 

while the largest values of M3 and M4 (high frequencies) are generated by the BFW potential. The 

recent CCSD potential [91] is the one that consistently generates the lowest moments. In view of 

the experimental uncertainties, it is difficult to decide between the different potentials. 

Nevertheless, we note that the BFW potential is the one for which the deviation of the calculated 

moments from the successive experimental moments undergoes the least relative variations. 

Unfortunately, the analysis of Mn moments is not sufficient because it is increasingly uncertain 

as n grows. Figures 3 to 5 provide further evidence. Concerning the potentials, the MTT potential 

and especially the BFW potential systematically produce slightly higher intensities than the HFD-

B2 potential at higher frequencies (beyond 90 cm−1). Conversely, the CSSD potential generally 

produces slightly lower intensities. Nevertheless, these potentials produce similar and even very 

similar intensities at the lowest frequencies. Due to its error bars, the CIS experimental spectra 

cannot really discriminate between them. Figures 3 and 4 confirm what had already been observed 

by DCR: the SCF model and to a lesser extent the MP2 model generate lower intensities than those 

measured experimentally. In the case of the MP2 model, one can nevertheless notice that, if it 

seems to underestimate the absolute intensities as they were measured (from 16% at 70 cm−1 to 38% 

at 135 cm−1), it reproduces rather well the general profile of the scattered spectrum. Unfortunately, 

this is not always the case for the parameterized model (PM), even though this model is the one that 

the analysis of spectral moments gives as the best. The agreement with the experimental results is 

almost perfect up to 90 cm−1: the calculated curve falls within all the experimental uncertainty bars, 

whatever the potential considered. Beyond 100 cm−1, however, it deviates significantly (the BFW 

potential being the one that deviates the least). While the experimental curve continues to present a 

positive concavity, the calculated curve adopts a negative concavity. Moreover, the latter appears to 

be more sensitive to the potential used. In fact, this PM curve presents a secondary minimum 

around 160 cm−1 (depending on the chosen potential) followed by a secondary maximum 20 to 

30 cm−1 further (this rebound explains why the values of M3 and M4 are not penalized by the drop in 

intensity that precedes it). In our opinion, this type of behavior is associated with the exponential 

damping term present in Eq. (18): it is such that the derivative of the anisotropy cancels at 3.20 Å 

(short range effects, below the intermolecular diameter of about 3.6 Å) and becomes negative below 

(which is not the case for the SCF and MP2 models). This kind of disagreement shows the difficulty 

of fitting an empirical curve that accounts for both low and high frequency spectral intensities. But 

it confirms in any case the interest of obtaining experimental spectra in wide frequency ranges. 



17 
  

 
Fig. 3. Comparison between the calculated depolarized CILS spectra of Kr2 at T=294.5 K using 
different interatomic potentials (BFW: red; CCSD: blue; HFD-B: brown; MTT: indigo) and ab 

initio SCF pair polarizability anisotropy of Maroulis [84] with the experimental measurements. The 
bound and metastable pair contributions are represented by dashed lines. 

 

 
Fig. 4. The same comparison as in Figure 3 between depolarized spectra generated by four 
potentials but for the MP2 pair polarizability anisotropy of Maroulis [84]. 
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Fig. 5. The same comparison as in Figure 3 between depolarized spectra generated by four 
potentials but for the PM pair polarizability anisotropy defined by Eq. (18). 

b) Isotropic spectrum 

The difficulties encountered in the depolarized spectrum are even greater in the case of the 

isotropic spectrum. Because of much lower intensities at low frequencies and the large uncertainties 

that necessarily accompany the evaluation of such a spectrum (from the difference between two 

quantities of similar amplitudes), the experimental spectrum cannot really constitute a reliable basis 

for discriminating between the PM, MP2 and SCF models. Besides, the frequency range explored 

experimentally by Chrysos and Rachet [94], from 80 to 135 cm−1, is responsible for only a small 

fraction of the successive spectral moments. Moreover, unlike what can be seen in the anisotropic 

case, the fractions attributable to the [80, 135] cm−1 interval diverge in a non-negligible way 

depending on the anisotropy model used in the calculations; in particular, the SCF model differs 

clearly from the other two. For PM and MP2, we found that the interval [80, 135] cm−1 contributes 

≈3.4% of the moment M0 (SCF: 2.4%), ≈27% of M1 and M2 (SCF: 20%) and ≈62% of M3 and M4 

(SCF: 54%). The values of the experimental moments reported in Table 5 are extrapolated from the 

averages between MP2 and PM and the four potentials considered. In any case, the experimental 

uncertainties are so large (between +150% and −60% at 100 cm−1) that the reported moments can 

only be considered as orders of magnitude rather than measurements. 

  



19 
  

Table 5. Experimental and calculated spectral moments of the isotropic CILS spectrum of krypton. The 
experimental moments are extrapolated from the experimental spectrum published in [94]. Since 
the latter starts only at 80 cm−1, the portions of moments attributed to [−80, 80] cm−1 are those that 
can be roughly deduced from the calculated spectra. 

 Mini Experiment Maxi PM/BFW PM/CCSD PM/HFD PM/MTT units 

M0 1.09 2.72 6.80 1.72 1.71 1.91 1.80 10−2 Å9 

M1 0.57 1.42 3.55 1.07 1.04 1.18 1.11 1010 Å9 s−1 

M2 0.44 1.10 2.76 0.84 0.81 0.92 0.87 1024 Å9 s−2 

M3 0.84 2.11 5.27 2.09 1.83 2.06 2.04 1036 Å9 s−3 

M4 0.66 1.65 4.12 1.65 1.45 1.63 1.61 1050 Å9 s−4 

 SCF/BFW SCF/CCSD SCF/HFD SCF/MTT MP2/BFW MP2/CCSD MP2/HFD MP2/MTT units 

M0 5.85 5.73 6.65 6.17 3.94 3.94 4.18 4.04 10−2 Å9 

M1 3.29 3.18 3.55 3.38 2.07 2.00 2.27 2.15 1013 Å9 s−1 

M2 2.56 2.48 2.76 2.63 1.62 1.57 1.77 1.68 1026 Å9 s−2 

M3 5.40 4.74 5.27 5.25 4.41 3.89 4.34 4.31 1038 Å9 s−3 

M4 4.26 3.74 4.15 4.14 3.49 3.07 3.42 3.40 1052 Å9 s−4 

As can be seen in Figure 6, the model closest to these evaluations remains the parameterized 

model (PM) for which the Mn
cal/Mn

exp ratios are closest to one. The SCF model is the furthest from 

this value, as in the anisotropic case, approaching or exceeding the upper limit of the experimental 

moments.  

 

Fig. 6.Evolution of the ratio Mn
cal/Mn

exp of calculated to experimental isotropic moments when n 
varies from 1 to 4. Three trace models (MP, MP2 and SCF [84]) and four intermolecular potential 
models (BFW in red, CCSD in blue, HFD in brown, MTT in indigo) are considered. Due to 
experimental uncertainties reported in [94], the values of these ratios must be contained between 
the two black curves (dash and dash-dot). 

Curiously, while the increasing order of the depolarized moment intensities is SCF-MP2-PM, it 

is exactly the reverse order that is displayed in Fig. 6. The same observation can be deduced from 
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the comparison of figures 7 to 9. The two Maroulis models, SCF in particular, generate higher 

intensities than those measured, while the parameterized model (PM) produces generally lower 

intensities. All three models remain consistent with the measurements due to the large uncertainty 

bars. Nevertheless, none of the three models sufficiently reproduces at the highest frequencies the 

strong negative concavity of the experimental curve, either due to experimental uncertainty or 

associated with short-range effects in the vicinity of the potential wall. We certainly noted that the 

curves generated by each of the three models also curved quite strongly beyond 250 cm−1, 

presenting a minimum and then a secondary maximum, but at much higher frequencies and 

depending strongly on the potential used. This leads us to think that the three trace models must be 

described more finely at very short distances, below the molecular diameter. 

 

 

Fig. 7. Comparison between the calculated isotropic CILS spectra of Kr2 at T=294.5 K using 
different interatomic potentials (BFW: red; CCSD: blue; HFD-B: brown; MTT: indigo) and ab 

initio SCF pair polarizability trace of Maroulis [84] with the experimental measurements. The 
bound and metastable pair contributions are represented by dashed lines. 
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Fig. 8. The same comparison as in Figure 7 between isotropic spectra generated by four potentials 
but for the MP2 pair polarizability trace of Maroulis [84]. 
 
 

 

Fig. 9. The same comparison as in Figure 7 between isotropic spectra generated by four potentials 
but for the PM pair polarizability trace defined by Eq. (17). 
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5. Conclusion 

The empirical krypton potentials presented in this work, MTT and especially BFW, as well as 

the parameterized anisotropy model of krypton pair polarizability, provide the best agreement 

between the experimental krypton light scattering spectrum measured by Dixneuf-Chrysos-Rachet 

[93] and the numerical calculation, both for the first Mn spectral moments (n=0 to 4) and for the 

spectral line shape. However, the agreement is less good at higher frequencies with respect to the 

parameterized anisotropy model. Beyond the experimental uncertainties which can partly explain 

such a disagreement, this one underlines the need to refine the models at very short distances, in the 

vicinity of the potential wall, and to minimize the effect of the propagation of numerical 

uncertainties in the numerical calculations at high frequencies (this numerical problem has been 

studied for quantum approaches but, to our knowledge, not in such a thorough manner in the 

semiclassical case [103-105]). As for the depolarized spectrum, we also evaluated the spectral 

moments of the isotropic spectrum of krypton measured by Chrysos-Rachet [94] from a comparison 

of the experimental data with our theoretical spectra. Nevertheless, the narrowness (due to the fact 

that the isotropic spectrum cannot be measured directly but by subtracting two spectra of similar 

intensities) of the frequency interval explored as well as the amplitude of the experimental 

uncertainties prevent to discriminate between the trace models used in this work (MP2 and SCF of 

Maroulis [84] and parameterized model). Here again, the values taken by the trace at short distances 

appear to be decisive at high frequencies. In summary, however, we obtain good overall agreement 

between experimental measurements and calculations based on the combined use of parameterized 

models of the pair polarizability and the BFW interatomic potential of krypton, which in our 

opinion grounds the interest of the method we have developed.  
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APPENDIX A: New determination of a desymmetrization function 

As defined in Eq.(32), the successive classical moments K2n
(L) can be computed from the 

computed classical spectrum Ic
(L)(ν) (with L=0 for the trace and L=2 for the anisotropy of the 

polarizability tensor). If the calculation of this spectrum is well done, the moments K0, K2 and K4 

should be equal to the corresponding values obtained by the sum rule. The hypothetical 

desymmetrization function D(ν)=I
(L)(ν)/Ic

(L)(ν) transforms this symmetric spectrum into a 

dissymmetric I
(L)(ν) respecting the detailed balance principle: I

(L)(ν)=exp(4πντ0)I
(L)(−ν), where 

τ0=ħ/2kBT. By positing D(ν)=exp(2πντ0)(1+δΛ(ν)), the function to determine becomes an even 

function δΛ(ν). This function of quantum origin must be equal to zero at the classical limit τ0=0 

and thus is proportional to a positive power of τ0 . We will see later that this function must be 

proportional to τ0
2 . Under these conditions, the spectral moments of even or odd order 
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At the classical limit, cosh(2πντ0)(1+δΛ(ν))=1 and M2n
(L)=K2n

(L), whereas sinh(2πντ0)=0 and 

M2n+1
(L)=0. Besides, the radii of convergence of the expansions of cosh(x) and sinh(x) being 

infinite, we can use these expansions inside the integrals of Eqs.(A2). For a given value of L, 
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are quantum corrections specifically related to the system studied. By combining the equations of 

(A3), since 1/(2p+1)!=1/(2p)!−2p/(2p+1)!, we get also: 
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Therefore, up to the second-order in power of τ0 (which eliminates the subtraction 

δK2n+1/τ0−δK2n+2): 
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

 (A6) 

At order two in τ0 , the semiclassical spectral moments can be expressed in terms of the classical 

K2n spectral moments, the dynamical quantum corrections in τ0
2K2n, and the specific quantum 

corrections δK2n.
1 These three contributions can also be computed by using the sum rule. 

Expressions for the K2n moments are given for example in [100] for 2n=0, 2 and 4 using the 

classical pair correlation function g(r)=exp(−V(r)/kBT), where V(r) is the value of the 

intermolecular potential at distance r (considered as isotropic in first approximation). The 2nd-order 

in τ0 Wigner-Kirkwood (WK) expansion of the pair correlation function in the case of an isotropic 

potential [106], 

22 2
0

2

1 ( ) 2 ( ) ( )
( ) ( )

3 2 B

dV r dV r d V r
g r g r

m k T dr r dr dr

 τ  δ = − −     
, (A7) 

where m is the reduced mass of the molecular pair, does not intervene in the writing of these 

classical K2n moments. Conversely, we assume that this WK expansion generates the δK2n 

corrections defined by Eq. (A4). To obtain them, we simply replace the classical pair correlation 

function g(r) with the corrective δg(r) in the sum rule expressions of the K2n moments. As long as 

corrections in power of τ0 limited to order 2 remain valid, the values of δK0, δK2 and δK4 defined 

by Eq. (A4a) can be posited equal to the WK corrections of the moments K0, K2, and K4, 

respectively. Moreover, in accordance with the initial assumptions on the even-function δΛ(ν), the 

                                                 
1 This expansion shows that dynamical corrections must be taken into account even for M0 contrary to what was 
asserted by Hartye et al. [106] and taken up by Frommhold [102] and ourselves in a previous paper [97]. However, this 
dynamical correction of M0 is very small, at least in the case of Krypton (less than one per thousand). The relative 
importance of dynamical corrections increases with the order n. 
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latter and the integrals δK2n are proportional to τ0
2 (the δ-symbol used here implies proportionality 

to τ0
2). Since the K6 moment can be deduced from the computed classical spectrum,2 we obtain 

from Eqs.(A6) and the WK corrections the values of the five first spectral moments M0, M1, M2, M3 

and M4. Moreover, we can make an approximation of the even function δΛ(ν) up to order 4 in 

power of ν. By positing δΛ(ν)≈τ0
2(ϕ0+ϕ1ν2+ϕ2ν4) within Eq. (A4a), for 2n=0, 2 and 4, we obtain 

a system of 3 equations involving δK0, δK2, and δK4 with 3 unknowns (ϕi) that is simple to solve 

and can be considered as valid for the limited frequency domain of the study (of course, this limited 

development ceases to be valid at higher frequencies). The spectral intensity 

I
(L)(ν)=Ic

(L)(ν)exp(2πντ0)(1+δΛ(ν)) is then completely determined within the approximations used. 

 
  

                                                 
2 An analytical expression for the K6 moment of the anisotropic spectrum has been published in Ref. [107] and 
reproduced recently in Ref. [81]. Unfortunately, one term of this complex expression does not have the physical 
dimension of the other terms, which makes it questionable. Even if it is numerically more inaccurate, it is simpler to use 
the value of K6 calculated from the classical depolarized spectrum, especially in the Krypton case since the uncertainty 
on this value has a small impact on the value of M4 (the corresponding dynamical correction is then of the order of 
1.5%; the uncertainty on it is a priori negligible). 
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Figure captions 
 
 

Fig. 1. Temperature dependence of the Krypton gas interaction pressure second virial coefficients 
B in -13 mol cm  versus temperature in K. Comparison is made with previously available 
experimental results [21-35]. The calculations were performed using the present BFW interatomic 
potential.  

 
Fig. 2. Evolution of the ratio Mn

cal/Mn
exp of calculated to experimental depolarized moments when n 

varies from 1 to 4. Three anisotropy models (PM, MP2 and SCF [84]) and four intermolecular 
potential models (BFW in red, CCSD in blue, HFD in brown, MTT in indigo) are considered. Due 
to experimental uncertainties reported by DCR [93], the values of these ratios must be contained in 
the vicinity of one between the two black curves (dash and dash-dot). 

 
Fig. 3. Comparison between the calculated depolarized CILS spectra of Kr2 at T=294.5 K using 
different interatomic potentials (BFW: red; CCSD: blue; HFD-B: brown; MTT: indigo) and ab 

initio SCF pair polarizability anisotropy of Maroulis [84] with the experimental measurements. The 
bound and metastable pair contributions are represented by dashed lines. 

 
Fig. 4. The same comparison as in Figure 3 between depolarized spectra generated by four 
potentials but for the MP2 pair polarizability anisotropy of Maroulis [84]. 

 
Fig. 5. The same comparison as in Figure 3 between depolarized spectra generated by four 
potentials but for the PM pair polarizability anisotropy defined by Eq. (18). 

 
Fig. 6.Evolution of the ratio Mn

cal/Mn
exp of calculated to experimental isotropic moments when n 

varies from 1 to 4. Three trace models (MP, MP2 and SCF [84]) and four intermolecular potential 
models (BFW in red, CCSD in blue, HFD in brown, MTT in indigo) are considered. Due to 
experimental uncertainties reported in [94], the values of these ratios must be contained between 
the two black curves (dash and dash-dot). 

 
Fig. 7. Comparison between the calculated isotropic CILS spectra of Kr2 at T=294.5 K using 
different interatomic potentials (BFW: red; CCSD: blue; HFD-B: brown; MTT: indigo) and ab 

initio SCF pair polarizability trace of Maroulis [84] with the experimental measurements. The 
bound and metastable pair contributions are represented by dashed lines. 

 
Fig. 8. The same comparison as in Figure 7 between isotropic spectra generated by four potentials 
but for the MP2 pair polarizability trace of Maroulis [84]. 

 
Fig. 9. The same comparison as in Figure 7 between isotropic spectra generated by four potentials 
but for the PM pair polarizability trace defined by Eq. (17). 

 
 




