
HAL Id: hal-04031165
https://univ-angers.hal.science/hal-04031165

Submitted on 15 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

The PaLM system: explanation-based constraint
programming

Narendra Jussien, Vincent Barichard

To cite this version:
Narendra Jussien, Vincent Barichard. The PaLM system: explanation-based constraint programming.
TRICS: Techniques foR Implementing Constraint programming Systems, a post-conference of CP
2000, Sep 2000, Singapour, Singapore. pp.118-133. �hal-04031165�

https://univ-angers.hal.science/hal-04031165
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

The PaLM system: explanation-based constraint

programming

Narendra Jussien and Vincent Barichard

École des Mines de Nantes, 4 rue Alfred Kastler, BP 20722
F-44307 Nantes Cedex 3, France

Narendra.Jussien@emn.fr

WWW home page: http://www.emn.fr/jussien

Abstract. Explanation-based constraint programming is a new way of
solving constraint problems: it allows to propagate constraints of the
problem, learning from failure and from the solver (thanks to recording
explanations) and finally allows to get rid of backtrack-based complete
searches by allowing more free moves in the search space (while remaining
complete). This paper presents the PaLM system, an implementation of
an explanation-based constraint programming system in choco [16], a
constraint programming layer on top of claire [3].

1 Introduction to PaLM programming

The easiest way to present the PaLM (Propagate and Learn with Move) system
is to show its main three features: it is a constraint programming system, able
to explain its behavior and able to handle dynamic constraint additions and

removals (following code excerpts are written in claire [3]).

The first feature of the PaLM system is that it can be considered as a con-

straint programming system. Let consider a very simple scheduling problem:
it consists in tasks a, b, c, d, e and f to be scheduled following the precedence
constraints states in Table 1. Task f can be considered as the final completion
date of the project. The problem is to determine the earliest ending time of
the project. This problem can be modeled as a constraints system. In the PaLM

system, it is modeled as presented in Figure 1.

Task Duration Ancestors Task Duration Ancestors

a 1 - d 4 a b

b 2 - e 3 c

c 1 - f - d e

Table 1. Data for a simple scheduling problem

2

[schedulingProblem() ->

let pb := makePalmProblem("scheduling", 6),

a := makePalmIntVar(pb, "a", 1, 15), // bounds of the variables

...

f := makePalmIntVar(pb, "f", 1, 15)

in (

post(pb, d >= a + 1), // stating the precedence constraints

post(pb, d >= b + 2),

post(pb, e >= c + 1),

post(pb, f >= d + 4),

post(pb, f >= e + 3),

propagate(pb), // propagate the constraints

f // the result is variable f

)]

Fig. 1. Coding a simple scheduling problem with PaLM

That code is very similar to the one that would be written in any classical
constraint programming language: actually, removing Palm in every term it ap-
pears in would give a valid choco code. Moreover, when interpreting that code,
the PaLM system gives the answer shown in figure 2. The PaLM system as would
have done any other constraint system informs us that our project cannot end
before the date 7.

-- CLAIRE run-time library v 2.5.1 [os: ntw, C++:MSVC] --

-- CLAIRE interpreter - Copyright (C) 1994-97 Y. Caseau (see about())

Choco version 0.23, Copyright (C) 1999-2000 F. Laburthe

Palm version 0.2.10, Copyright (C) 2000 N. Jussien

palm> shedulingProblem()

eval[1]> f:[7..15] // our project cannot end before date 7

palm>

Fig. 2. Answer to a simple scheduling problem

The PaLM system provides much more than a simple propagation mechanism:
it is able to provide explanations for basic events. Suppose that we want to
end the project at date 6. In a classical system, the only way to achieve that
is to study the constraint system and try to determine why the minimal value
of variable f is 7 (that would be easy in our toy problem but not for a real life
problem). The PaLM system provides tools to help the user in that task. The key
concept is the notion of explanation as presented in [13]: an explanation E for
an information I (current lower bound, current upper bound, value removal, ...)
is a set of constraints such that its associated information remains valid as long

3

as all the constraints in E are effectively active in the constraints system. For
example, we can get an explanation of the lower bound of variable f , thanks to
the PaLM method self explain (see figure 3).

palm> let e := PalmSet() in (self_explain(f, INF, e), e)

eval[2]> {d >= a + 1, d >= b + 2, f >= d + 4}

palm>

Fig. 3. An example of the self explain function

self explain modifies its third parameter (a PalmSet) which contains con-
straints in order to add the explanation of the asked event. The result obtained
here shows that the current value of f does not depend on c nor e. The PaLM

system is able to explain the current lower bound of a variable, its current upper
bound or specific value removals.

From the computed explanation, it seems that in order to reduce the lower
bound of f , one should modify the constraints relating a, b, d and f . For example,
to decrease the duration of task d, the easiest way is to remove the constraint
(f >= d + 4) and replacing it by a new one. This can be done in PaLM using
the methods remove and post that both work incrementally: we can add or

remove constraints from the constraint system any time before/during/after
the resolution. Let ct be the constraint f >= d+ 4. Figure 4 shows a sequence
of removal/addition of constraints and its result on our scheduling problem.

palm> remove(ct)

eval[3]> nil // the removal has been dynamically done

palm> f

eval[4]> f: [5..15]

palm> let e := PalmSet() in (self_explain(f, INF, e), e)

eval[5]> {e >= c + 1, f >= e + 3}

palm>(post(pb, f >= d + 2), propagate(pb))

eval[6]> nil

palm> f

eval[7]> f: [5..15]

Fig. 4. Removing and adding constraints in our scheduling problem

When adding the new constraint (f ≥ d+ 2), the value of f is not modified,
f now depends on c and e as shown in the explanation computed after removing
the offending constraint.

The three presented features (constraint propagation, learning by explana-
tions and dynamic adding and removing of constraints) allow us to go further.

4

For example, when a problem has no solution it can provide a constraint relax-
ation system by computing an explanation for the empty domain of the failing
variable1 and selecting from that explanation a constraint to be removed accord-
ing to a given criterion (taking into account weights on constraints, ...). The PaLM
system provides constraint weight management tools and automatic constraint
relaxation mechanisms.

The paper is organized as follows: in Section 2, some theoretical background
is recalled for explanations and insight of adding explanation possibilities in a
constraint system are given2, Section 3 shows that explanations can be used
to provide dynamic constraint removal and section 4 tells more on how pro-
gramming with explanations and without any real backtrack. Next, Section 5
describes the PaLM system and its derivatives: PaLMenum and PaLMschedule.

2 Explanations for constraint systems

The key feature of the PaLM system is the notion of eliminating explanation.
In the following, we consider a csp (V,D,C). In our system, choice constraints
(eg. value assignments – vi = ai) are considered as constraints added to the
system.

2.1 Nogoods and eliminating explanations

A nogood or contradiction explanation is a subset of the current constraint
system of the problem that left alone leads to a contradiction (no feasible solution
can contain a nogood). A nogood can be splitted into two parts: a subset of
the original set of constraints (C ′ ⊂ C in equation 1) and a subset of choice
constraints introduced so far in the search.

C ⊢ ¬ (C ′ ∧ v1 = a1 ∧ ... ∧ vk = ak) (1)

For most nogoods3 (the ones that do contain at least one choice constraint)
a variable vj can be selected and the previous formula rewritten as:

C ⊢ C ′ ∧
∧

i∈[1..k]\j

(vi = ai) → vj 6= aj (2)

The left hand side of the implication constitutes an eliminating explana-

tion for the removal of value aj from the domain of variable vj and is noted
expl(vj 6= aj).

1 Inconsistency of constraint problems is detected when the solver wipes out the do-
main of a variable.

2 Our support language will be choco a constraint programming layer on top of
claire.

3 Note that if a nogood does not contain any choice constraints it means that the
current problem does not have any possible solution.

5

When the domain of variable vj becomes empty during filtering, a new no-
good is deduced from the eliminating explanations of all its removed values:

C ⊢ ¬

∧

a∈d(vj)

expl(vj 6= a)

 (3)

There generally exist several eliminating explanations for a given value re-
moval. One may want to record all of them but this leads to an exponential
space complexity. Another way relies in forgetting (erasing) nogoods that are no
longer relevant4 to the current variable assignment. By doing so, the space com-
plexity remains polynomial. We therefore keep only one explanation at a time
for a value removal. In the worst case, the space required to manage nogoods
is O(n2d) where n is the number of variables and d the maximum size of the
domains in the csp. Indeed, the size of each eliminating explanation is at most
(n− 1) and there are at most n× d eliminating explanations: one for each value
of each domain.

2.2 Integrating explanation mechanisms

The most interesting eliminating explanations are those who are minimal for
the inclusion in order to precisely focus on constraints that really impact the
values of a variable. Unfortunately, computing such precise explanations is very
time consuming. A good compromise between preciseness and easy computation
is to try to use the knowledge embedded in the constraint solver to provide
explanations. Indeed, constraint solvers exactly (but not always explicitly) know
why they do remove values from domains of considered variables. By explicitly
stating that knowledge, very interesting explanations can be computed.

Storing the explanations The first step for integrating explanations within a
constraint system like choco is to define a new variable class inherited from the
one in choco that will allow us storing explanations (see Fig. 5). .

Computing the explanations The second step consists in specializing the
behavior of all the constraints in choco in order to add the explanation compu-
tation code. Let see those modifications on an example.

Figure 6 shows the choco code for awaking a constraint X >= Y + c after
decreasing the upper bound of its first variable (X). If the decreasing of an upper
bound is done on the first variable of the constraint (when idx = 1) then the
upper bound of the second variable (c.v2) should be updated too (c.idx2 gives
the index of constraint c in variable c.v2). The corresponding PaLM code is given
on figure 7.

4 A nogood is said to be relevant if all the assignments in it are still valid in the current
search state [1].

6

// The original choco variable

IntVar <: AbstractVar(

inf:integer,

sup:integer,

value:integer = unknown

)

// The inherited PaLM variable

PalmIntVar <: IntVar(

explanationOnInf:list[PalmExplanation] = nil, // storing structure

explanationOnSup:list[PalmExplanation] = nil

)

Fig. 5. A new variable for PaLM

[awakeOnSup(c:GreaterOrEqualxyc, idx:integer) : void

-> if (idx = 1) updateSup(c.v2, c.v1.sup - c.cste, c.idx2)]

Fig. 6. The choco code for handling X >= Y + c when decreasing X.sup

The only modification is in the adding of a fourth parameter to the updateSup
function allowing the association of an explanation to a solver action (decreasing
the superior value of a variable). The explanation traces the solver behavior.
Indeed, the updating of the superior value of the second variable of the constraint
is due to the applied constraint (comment (a) in figure 7) and to the fact that
the superior value of the first variable of the constraint has been modified earlier
(comment (b) in figure 7).

[awakeOnSup(c:PalmGreaterOrEqualxyc, idx:integer) : void

-> if (idx = 1)

let e := PalmSet() in (

e :add c, // (a)

self_explain(c.v1,SUP,e), // (b)

updateSup(c.v2, c.v1.sup - c.cste, c.idx2, e)

)]

Fig. 7. The PaLM code for handling X >= Y + c when decreasing X.sup

Once all the propagating code has been augmented in order to provide ex-
planation, one gets an explanation-based system. Note that determining good
explanation can be tricky especially for global constraint with tightly tailored
algorithms. One need to get back to the proof of the algorithms in order to pro-
vide interesting explanations. However, our experience shows that sticking with
very simple explanations can still give very interesting results [15].

7

That last statement has recently led us to design a new explanation mecha-
nism that would not need to modify the inner definitions of provided constraints
but rather provide a generic way of computing explanations following patterns.

3 Using explanations for constraint removal

Now that we have an explanation-based constraint system, it is time to see what
can be done with it. Removing a constraint5 needs two main steps:

– getting back values: values whose removal were directly or not due to the
removed constraint need to be put back in their respective domain;

– reachieving consistency: newly restored values could possibly be done in
another way. A consistency-check is to be done in order to get back to locally
coherent state as if the removed constraints never appeared in the constraint
system.

3.1 Getting values back

The first step of a constraint removal is quite easy since all the concerned values
are those whose eliminating explanation contains the removed constraints. In
order to achieve that behavior efficiently, we maintain in each constraint c the
set of eliminating explanations which contains c. When getting back values, those
sets need to be updated for each undone value removal.

3.2 Repropagating

The second step of a constraint removal relies upon checking all related con-
straints when restoring values in the domain of a variable. The easy way is to
completely check the constraints but simple functions handling value restoration
can be easily written: for example, when the upper bound of the second variable
of a constraint X >= Y + c is increased (value restoration), to check if that new
value is compatible with the constraint only needs to pretend that the upper
bound of the first variable has been modified which gives the code of Fig. 8 in
the PaLM system.

[awakeOnRestoreSup(c: PalmGreaterOrEqualxyc, idx: integer) : void

-> if (idx = 2) awakeOnSup(c, 1)]

Fig. 8. Example of repropagation under PaLM

5 Constraint removal in dynamic problems has already been studied [2, 5] but here we
simplify the algorithms thanks to explanations [13].

8

4 Explanation-based constraint programming

Explanation-based constraint systems can be used in various situations. The
following two sections detail some of them.

4.1 High-level usage of explanations

– Handling dynamic problems

As we saw, explanation are useful for dynamically adding or removing con-
straints before/during or after search.

– Providing information to the user

Explanations are a wonderful tool for giving the user information such as:
how come I do not get value x for variable v, how come that problem has
no solution, how come y is only remaining possible value for variable v ? ...

– Handling over-constrained problems

The combination of the two previous usages of explanation-based system
lead to automatic (or user-guided) constraint relaxation system [12]. The
main interest of using such an approach is it does not need to know all the
constraints weights before the beginning of the search.

4.2 Low-level usage of explanations

More low-level usages of explanation-based search come to mind: as search is
often based on early discovery of dead-ends in order to focus on feasible parts
of the search tree, why not use explanations as a hint for future explorations or
for pointing out erroneous previous choices.

Actually, the PaLM system allows an easy constraints addition or removal
while solving a problem. That feature allows us to get rid of backtracking-based
complete search algorithms. For example, ideas such as dynamic-backtracking [7]
can be embedded in our system to provide that new way of solving constraint
problems.

A new search paradigm The first step to get in that new search paradigm
is to consider making a choice during the search6 as a mere constraint addition.
As constraints are added, a contradiction may occur.

In such a situation, there is no need for backtracking: simply consider the
nogood that explains the contradiction (calling self explain(fv, DOM, e) for
example if fv is the failing variable) and select a constraint in it. As shown in
[13] which was derived from [7], in order to remain complete, one needs to select
the more recent choice constraint in the nogood. In order to move from that dead
end, one can remove the considered constraint and add its negation (simulating
setting aside a testing value for csp).

9

[solve(pb: PalmProblem): boolean
-> unassignedVars := pb.vars,

try (
while (size(unassignedVars) != 0) (

let idx := nextVarToAssign(pb),
v := unassignedVars[idx],
a := selectValToAssign(pb, v)

in (
try (

unassignedVars :delete v,
post(pb, v == a, 0),
propagate(pb)

)
catch (PalmContradiction) (// An empty domain has been found

handleContradiction()
)

),
true // A solution was found

)
catch (contradiction) (// A choco contradiction means that
false // there is no solution

)
]

Fig. 9. The PaLM code for exploring the search space

[handleContradiction(): void
-> if knownFailingVariable?() (// A failure occurred ?

let e := PalmSet()
in (

self_explain(getFailingVariable(),DOM,e), // Computing a nogood
if (empty(e)) // The problem itself is unsolvable

contradiction!() // raise a choco contradiction
else (

let ct := selectConstraint(e)
in (

if known?(ct) (
unassignedVars :add ct.v1,
remove(ct), // Relaxing the constraint and removing its effects

try (
e :delete ct,
// posting the associated negation constraint
post(CURRENT_PB, ct.v1 != ct.cste, e),
propagate(CURRENT_PB)) // restoring consistency

)
catch PalmContradiction (

handleContradiction() // Doing it recursively
)

)
else (// no choice constraint appear in the nogood

contradiction!()
)

)
)))]

Fig. 10. The PaLM code for handling a contradiction

10

A search for explanation-based systems Search for explanation-based sys-
tems can be made in a classical way (see figure 9): assignments constraints are
added step by step. When a failure occurs, an explanation is computed and an
assignment constraint is chosen for removal (it was a misleading choice). In order
to avoid unwanted loops in the search, the negation of the removed constraint
is added (the tested value is rejected). Figure 10 shows such a contradiction
handling mechanism.

Of course, that new constraint can remain in the system only if all the other
constraints appearing in the nogood remain active. The PaLM system provides
tools to deal with that kind of constraint (called indirect constraints): an
indirect constraint keeps its validity context (the set of the other constraints in
the nogood that provoked the adding) and the PaLM system makes sure that as
soon as one of those constraints is removed, all its depending constraints are
also removed. When that new constraint is added, a failure may happen, hence
it must be treated recursively.

As we can see, that contradiction handling mechanism appears as a full re-
placement of the standard backtracking schema in classical search. The infor-
mation that can be brought from failures is used in that mechanism.

A point still needs attention. Indeed, when a failure occurs, the propagation
queue may not be empty: the pending events may stay valid even if a previous
choice is dismissed. If as usual when encountering a contradiction, that prop-
agation queue is emptied, those events will not be propagated possibly losing
consistency. In our approach, the queue must not be cleaned in order to remain
consistent.

Variations around a same theme We developed two sets of searches: com-
plete algorithms (that keep most information) and incomplete methods (that
tend to forget information early). Our first attempt was to develop an intelligent
backtrack based on solver given explanation for solving scheduling problems [10].

First results obtained with that intelligent backtracker (we were able to opti-
mally solve a problem from the literature for the first time) led us to go further
and fully integrate constraint propagation in a dynamic-backtracking like algo-
rithm leading to two main algorithms: mac-dbt [13] a complete search method
for solving csp and path-repair [15] an incomplete search method.

The first one (mac-dbt) uses the previous search algorithm and is a search
algorithm for discrete csp. Our experiments comparing it to mac showed that it
could greatly outperform it when dealing with structured problems. A prelimi-
nary version of that algorithm was developed for numeric csp [14] showing the
same results: solving structured problem is beneficial for our method compared
to other algorithms such those of Numerica [11].

The second algorithm that we developed using an explanation-based solver is
the path-repair algorithm [15]. It is a local search technique working on partial

6 In classical csp, this means giving a value to a variable. For numerical csp, this
means splitting a domain. For scheduling problems, this can be adding a precedence
constraint between tasks ...

11

assignments that uses filtering technique to prune the search space. It can be
seen as a modified version of mac-dbt: the choice of the value assignment to
undo is left to a heuristic (we loose completeness but are more able to focus on
annoying constraints). First results on scheduling problems (namely open-shop
problems) show that our general algorithm competes well with highly specialized
recent tabu searches. Moreover, we recently solved for the first time three open
problems from the literature (problems presented in [9]).

5 The PaLM suite

The PaLM system is in fact made of several modules giving a real suite dedicated
to explanation-based constraint programming. The main module is the PaLM

core file which handles variables described by their upper and lower bounds.
The PaLMenum module handles classical variables for csp and the PaLMschedule
module is dedicated to scheduling problems.

5.1 PaLM

The core system of the suite contains all the necessary tools for handling expla-
nations (those tools are shared by all the modules). Variables in the PaLM core
file are described by their upper and lower bounds (during propagation no holes
can be made in the domains).

Classical unary and binary arithmetical constraints are provided as well as a
global constraint handling large linear combinations of variables.

The PaLM system provides several tools through its API:

– object declaration methods
makePalmProblem, makePalmIntVar, ...

– constraint posting methods
classical posting post(pb, ct), weighted posting post(pb, ct, w) and in-
direct posting post(pb, ct, e)

– operators redefinition for easily defining constraints
==, !=, <=, ...

– global constraints for high level constraint programming
alldifferent, general linear combinations of variables, ...

5.2 PaLMenum

PaLMenum is a sub-module dedicated to variables whose domain is described as
a list of values (holes can be made in it).

The same basic constraints as in the PaLM core file have been provided in that
sub-module. Moreover, constraints described as tuples of authorized values are
to be integrated in that module. Such a constraint corresponds to a propagation
schema. As for now PaLMenum provided ac4-like constraints, ac6-like constraints
and pic-like7 constraints.

7 PIC stand s for Path-Inverse Consistency [6].

12

The PaLM API has been extended to be used with PaLMenum (for exam-
ple a makePalmEnumIntVar method is provided). Enumerated domains specific
constraints are given: a specialized version of alldifferent, the element con-
straint, ...

5.3 PaLMschedule

PaLMschedule is a PaLM extension dedicated to scheduling. The variables to
be manipulated are tasks in this module. As for now, unary resources for non-
preemptive problems are handled using task-intervals [4] and the associated edge
finders.

The PaLMschedule API has the following features

– object declaration
makePalmScheduleProblem, makePalmUnaryResource, makeTask,
makePalmTaskInterval

– constraint definition and posting
operator --> for defining precedences, post(pb, resource) for posting in
one instruction necessary constraints for handling unary resources.

A specific application for solving open-shop problems has been designed. It
fully implements ideas presented in [10, 8]

6 Conclusion

In this paper, we presented the PaLM suite: a set of explanation-based constraint
solvers. We showed how to implement such a system on top of a classical con-
straint programming system. Moreover, we presented what could be done with
the PaLM suite and detailed some experimental results obtained using that sys-
tem.

Our current works include: extending PaLMenum (with high order consistency
techniques) and PaLMschedule (with cumulative constraints), providing new
explanations mechanisms, using k-relevance [1], developing applications using
the PaLM suite ...

Acknowledgments

The authors would like to thank François Laburthe for providing us that great
tool that choco is and Romuald Debruyne for his insights for implementing
enumerated-domains variables and constraints.

References

1. Roberto J. Bayardo Jr. and Daniel P. Miranker. A complexity analysis of space-
bounded learning algorithms for the constraint satisfaction problem. In AAAI’96,
1996.

13

2. Christian Bessière. Arc consistency in dynamic constraint satisfaction problems.
In Proceedings AAAI’91, 1991.

3. Yves Caseau, François-Xavier Josset, and François Laburthe. Claire: combining
sets, search and rules to better express algorithms. In D. De Schreye, editor, Proc.
of the 15th International Conference on Logic Programming, ICLP’99, pages 245–
259. MIT Press, 1999.

4. Yves Caseau and François Laburthe. Improving clp scheduling with task intervals.
In P. Van Hentenryck, editor, Proc. of the 11th International Conference on Logic
Programming, ICLP’94, pages 369–383. MIT Press, 1994.

5. Romuald Debruyne. Arc-consistency in dynamic CSPs is no more prohibitive.
In 8th Conference on Tools with Artificial Intelligence (TAI’96), pages 299–306,
Toulouse, France, 1996.

6. E. Freuder and C. Elfe. Neighborood inverse consistency preprocessing. In Pro-
ceedings of AAAI’96, pages 202–208, Portlan, OR, 1996.

7. Matthew L. Ginsberg. Dynamic backtracking. Journal of Artificial Intelligence
Research, 1:25–46, 1993.

8. Christelle Guéret and Narendra Jussien. Combining AI/OR techniques for solving
open shop problems. In Workshop on Integration of Operations Research and
Artifical Intelligence techniques in Constraint Programming (CP-AI-OR), Ferrara,
Italy, 25–26 February 1999.

9. Christelle Guéret and Christian Prins. A new lower bound for the open-shop
problem. AOR (Annals of Operations research), 92:165–183, 1999.

10. Christelle Guéret, Narendra Jussien, and Christian Prins. Using intelligent back-
tracking to improve branch and bound methods: an application to open-shop prob-
lems. European Journal of Operational Research, page to appear, 2000.

11. P. Van Hentenryck, P. Michel, and L. Deville. Numerica, a modeling language for
global optimization. MIT press, 1997.

12. Narendra Jussien and Patrice Boizumault. Best-first search for property mainte-
nance in reactive constraints systems. In International Logic Programming Sym-
posium, pages 339–353, Port Jefferson, N.Y., USA, October 1997. MIT Press.

13. Narendra Jussien, Romuald Debruyne, and Patrice Boizumault. Maintaining arc-
consistency within dynamic backtracking. In Sixth international conference on
principles and practice of constraint programming (CP’2000), Singapore, Septem-
ber 2000.

14. Narendra Jussien and Olivier Lhomme. Dynamic domain splitting for numeric csp.
In European Conference on Artificial Intelligence, pages 224–228, Brighton, United
Kingdom, August 1998.

15. Narendra Jussien and Olivier Lhomme. Local search with constraint propaga-
tion and conflict-based heuristics. In Seventh National Conference on Artificial
Intelligence – AAAI’2000, pages 169–174, Austin, TX, USA, August 2000.

16. François Laburthe. Choco: implementing a cp kernel. In CP00 Post Confer-
ence Workshop on Techniques for Implementing Constraint programming Systems
(TRICS), Singapour, September 2000.

