Narendra Jussien
email: narendra.jussien@emn.fr

Vincent Barichard

The PaLM system: explanation-based constraint programming

Explanation-based constraint programming is a new way of solving constraint problems: it allows to propagate constraints of the problem, learning from failure and from the solver (thanks to recording explanations) and finally allows to get rid of backtrack-based complete searches by allowing more free moves in the search space (while remaining complete). This paper presents the PaLM system, an implementation of an explanation-based constraint programming system in choco [16], a constraint programming layer on top of claire [3].

Introduction to PaLM programming

The easiest way to present the PaLM (Propagate and Learn with Move) system is to show its main three features: it is a constraint programming system, able to explain its behavior and able to handle dynamic constraint additions and removals (following code excerpts are written in claire [START_REF] Caseau | Claire: combining sets, search and rules to better express algorithms[END_REF]).

The first feature of the PaLM system is that it can be considered as a constraint programming system. Let consider a very simple scheduling problem: it consists in tasks a, b, c, d, e and f to be scheduled following the precedence constraints states in Table 1. Task f can be considered as the final completion date of the project. The problem is to determine the earliest ending time of the project. This problem can be modeled as a constraints system. In the PaLM system, it is modeled as presented in Figure 1. That code is very similar to the one that would be written in any classical constraint programming language: actually, removing Palm in every term it appears in would give a valid choco code. Moreover, when interpreting that code, the PaLM system gives the answer shown in figure 2. The PaLM system as would have done any other constraint system informs us that our project cannot end before the date 7. // our project cannot end before date 7 palm> Fig. 2. Answer to a simple scheduling problem

The PaLM system provides much more than a simple propagation mechanism: it is able to provide explanations for basic events. Suppose that we want to end the project at date 6. In a classical system, the only way to achieve that is to study the constraint system and try to determine why the minimal value of variable f is 7 (that would be easy in our toy problem but not for a real life problem). The PaLM system provides tools to help the user in that task. The key concept is the notion of explanation as presented in [START_REF] Jussien | Maintaining arcconsistency within dynamic backtracking[END_REF]: an explanation E for an information I (current lower bound, current upper bound, value removal, ...) is a set of constraints such that its associated information remains valid as long as all the constraints in E are effectively active in the constraints system. For example, we can get an explanation of the lower bound of variable f , thanks to the PaLM method self explain (see figure 3).

palm> let e := PalmSet() in (self_explain(f, INF, e), e) eval [START_REF] Bessière | Arc consistency in dynamic constraint satisfaction problems[END_REF]> {d >= a + 1, d >= b + 2, f >= d + 4} palm> Fig. 3. An example of the self explain function self explain modifies its third parameter (a PalmSet) which contains constraints in order to add the explanation of the asked event. The result obtained here shows that the current value of f does not depend on c nor e. The PaLM system is able to explain the current lower bound of a variable, its current upper bound or specific value removals.

From the computed explanation, it seems that in order to reduce the lower bound of f , one should modify the constraints relating a, b, d and f . For example, to decrease the duration of task d, the easiest way is to remove the constraint (f >= d + 4) and replacing it by a new one. This can be done in PaLM using the methods remove and post that both work incrementally: we can add or remove constraints from the constraint system any time before/during/after the resolution. Let ct be the constraint f >= d + 4. Figure 4 shows a sequence of removal/addition of constraints and its result on our scheduling problem.

palm> remove(ct) eval [START_REF] Caseau | Claire: combining sets, search and rules to better express algorithms[END_REF]> nil // the removal has been dynamically done palm> f eval [START_REF] Caseau | Improving clp scheduling with task intervals[END_REF]> f: [5..15] palm> let e := PalmSet() in (self_explain(f, INF, e), e) eval [START_REF] Debruyne | Arc-consistency in dynamic CSPs is no more prohibitive[END_REF]> {e >= c + 1, f >= e + 3} palm>(post(pb, f >= d + 2), propagate(pb)) eval [START_REF] Freuder | Neighborood inverse consistency preprocessing[END_REF]> nil palm> f eval [START_REF] Matthew | Dynamic backtracking[END_REF]> f: [5..15] Fig. 4. Removing and adding constraints in our scheduling problem When adding the new constraint (f ≥ d + 2), the value of f is not modified, f now depends on c and e as shown in the explanation computed after removing the offending constraint.

The three presented features (constraint propagation, learning by explanations and dynamic adding and removing of constraints) allow us to go further.

For example, when a problem has no solution it can provide a constraint relaxation system by computing an explanation for the empty domain of the failing variable 1 and selecting from that explanation a constraint to be removed according to a given criterion (taking into account weights on constraints, ...). The PaLM system provides constraint weight management tools and automatic constraint relaxation mechanisms.

The paper is organized as follows: in Section 2, some theoretical background is recalled for explanations and insight of adding explanation possibilities in a constraint system are given2 , Section 3 shows that explanations can be used to provide dynamic constraint removal and section 4 tells more on how programming with explanations and without any real backtrack. Next, Section 5 describes the PaLM system and its derivatives: PaLMenum and PaLMschedule.

Explanations for constraint systems

The key feature of the PaLM system is the notion of eliminating explanation.

In the following, we consider a csp (V, D, C). In our system, choice constraints (eg. value assignmentsv i = a i) are considered as constraints added to the system.

Nogoods and eliminating explanations

A nogood or contradiction explanation is a subset of the current constraint system of the problem that left alone leads to a contradiction (no feasible solution can contain a nogood). A nogood can be splitted into two parts: a subset of the original set of constraints (C ′ ⊂ C in equation 1) and a subset of choice constraints introduced so far in the search.

C ⊢ ¬ (C ′ ∧ v 1 = a 1 ∧ ... ∧ v k = a k) (1)
For most nogoods3 (the ones that do contain at least one choice constraint) a variable v j can be selected and the previous formula rewritten as:

C ⊢ C ′ ∧ i∈[1..k]\j (v i = a i) → v j = a j (2)
The left hand side of the implication constitutes an eliminating explanation for the removal of value a j from the domain of variable v j and is noted expl(v j = a j).

When the domain of variable v j becomes empty during filtering, a new nogood is deduced from the eliminating explanations of all its removed values:

C ⊢ ¬   a∈d(vj) expl(v j = a)   (3)
There generally exist several eliminating explanations for a given value removal. One may want to record all of them but this leads to an exponential space complexity. Another way relies in forgetting (erasing) nogoods that are no longer relevant4 to the current variable assignment. By doing so, the space complexity remains polynomial. We therefore keep only one explanation at a time for a value removal. In the worst case, the space required to manage nogoods is O(n 2 d) where n is the number of variables and d the maximum size of the domains in the csp. Indeed, the size of each eliminating explanation is at most (n -1) and there are at most n × d eliminating explanations: one for each value of each domain.

Integrating explanation mechanisms

The most interesting eliminating explanations are those who are minimal for the inclusion in order to precisely focus on constraints that really impact the values of a variable. Unfortunately, computing such precise explanations is very time consuming. A good compromise between preciseness and easy computation is to try to use the knowledge embedded in the constraint solver to provide explanations. Indeed, constraint solvers exactly (but not always explicitly) know why they do remove values from domains of considered variables. By explicitly stating that knowledge, very interesting explanations can be computed.

Storing the explanations The first step for integrating explanations within a constraint system like choco is to define a new variable class inherited from the one in choco that will allow us storing explanations (see Fig. 5). .

Computing the explanations

The second step consists in specializing the behavior of all the constraints in choco in order to add the explanation computation code. Let see those modifications on an example.

Figure 6 shows the choco code for awaking a constraint X >= Y + c after decreasing the upper bound of its first variable (X). If the decreasing of an upper bound is done on the first variable of the constraint (when idx = 1) then the upper bound of the second variable (c.v2) should be updated too (c.idx2 gives the index of constraint c in variable c.v2). The corresponding PaLM code is given on figure 7. The only modification is in the adding of a fourth parameter to the updateSup function allowing the association of an explanation to a solver action (decreasing the superior value of a variable). The explanation traces the solver behavior. Indeed, the updating of the superior value of the second variable of the constraint is due to the applied constraint (comment (a) in figure 7) and to the fact that the superior value of the first variable of the constraint has been modified earlier (comment (b) in figure 7). Once all the propagating code has been augmented in order to provide explanation, one gets an explanation-based system. Note that determining good explanation can be tricky especially for global constraint with tightly tailored algorithms. One need to get back to the proof of the algorithms in order to provide interesting explanations. However, our experience shows that sticking with very simple explanations can still give very interesting results [START_REF] Jussien | Local search with constraint propagation and conflict-based heuristics[END_REF].

That last statement has recently led us to design a new explanation mechanism that would not need to modify the inner definitions of provided constraints but rather provide a generic way of computing explanations following patterns.

Using explanations for constraint removal

Now that we have an explanation-based constraint system, it is time to see what can be done with it. Removing a constraint5 needs two main steps:

getting back values: values whose removal were directly or not due to the removed constraint need to be put back in their respective domain; reachieving consistency: newly restored values could possibly be done in another way. A consistency-check is to be done in order to get back to locally coherent state as if the removed constraints never appeared in the constraint system.

Getting values back

The first step of a constraint removal is quite easy since all the concerned values are those whose eliminating explanation contains the removed constraints. In order to achieve that behavior efficiently, we maintain in each constraint c the set of eliminating explanations which contains c. When getting back values, those sets need to be updated for each undone value removal.

Repropagating

The second step of a constraint removal relies upon checking all related constraints when restoring values in the domain of a variable. The easy way is to completely check the constraints but simple functions handling value restoration can be easily written: for example, when the upper bound of the second variable of a constraint X >= Y + c is increased (value restoration), to check if that new value is compatible with the constraint only needs to pretend that the upper bound of the first variable has been modified which gives the code of Fig. 8 in the PaLM system. Explanation-based constraint systems can be used in various situations. The following two sections detail some of them.

High-level usage of explanations -Handling dynamic problems

As we saw, explanation are useful for dynamically adding or removing constraints before/during or after search. -Providing information to the user Explanations are a wonderful tool for giving the user information such as: how come I do not get value x for variable v, how come that problem has no solution, how come y is only remaining possible value for variable v ? ...

-Handling over-constrained problems

The combination of the two previous usages of explanation-based system lead to automatic (or user-guided) constraint relaxation system [START_REF] Jussien | Best-first search for property maintenance in reactive constraints systems[END_REF]. The main interest of using such an approach is it does not need to know all the constraints weights before the beginning of the search.

Low-level usage of explanations

More low-level usages of explanation-based search come to mind: as search is often based on early discovery of dead-ends in order to focus on feasible parts of the search tree, why not use explanations as a hint for future explorations or for pointing out erroneous previous choices. Actually, the PaLM system allows an easy constraints addition or removal while solving a problem. That feature allows us to get rid of backtracking-based complete search algorithms. For example, ideas such as dynamic-backtracking [START_REF] Matthew | Dynamic backtracking[END_REF] can be embedded in our system to provide that new way of solving constraint problems.

A new search paradigm The first step to get in that new search paradigm is to consider making a choice during the search 6 as a mere constraint addition. As constraints are added, a contradiction may occur.

In such a situation, there is no need for backtracking: simply consider the nogood that explains the contradiction (calling self explain(fv, DOM, e) for example if fv is the failing variable) and select a constraint in it. As shown in [START_REF] Jussien | Maintaining arcconsistency within dynamic backtracking[END_REF] which was derived from [START_REF] Matthew | Dynamic backtracking[END_REF], in order to remain complete, one needs to select the more recent choice constraint in the nogood. In order to move from that dead end, one can remove the considered constraint and add its negation (simulating setting aside a testing value for csp). A search for explanation-based systems Search for explanation-based systems can be made in a classical way (see figure 9): assignments constraints are added step by step. When a failure occurs, an explanation is computed and an assignment constraint is chosen for removal (it was a misleading choice). In order to avoid unwanted loops in the search, the negation of the removed constraint is added (the tested value is rejected). Figure 10 shows such a contradiction handling mechanism.

Of course, that new constraint can remain in the system only if all the other constraints appearing in the nogood remain active. The PaLM system provides tools to deal with that kind of constraint (called indirect constraints): an indirect constraint keeps its validity context (the set of the other constraints in the nogood that provoked the adding) and the PaLM system makes sure that as soon as one of those constraints is removed, all its depending constraints are also removed. When that new constraint is added, a failure may happen, hence it must be treated recursively.

As we can see, that contradiction handling mechanism appears as a full replacement of the standard backtracking schema in classical search. The information that can be brought from failures is used in that mechanism.

A point still needs attention. Indeed, when a failure occurs, the propagation queue may not be empty: the pending events may stay valid even if a previous choice is dismissed. If as usual when encountering a contradiction, that propagation queue is emptied, those events will not be propagated possibly losing consistency. In our approach, the queue must not be cleaned in order to remain consistent.

Variations around a same theme We developed two sets of searches: complete algorithms (that keep most information) and incomplete methods (that tend to forget information early). Our first attempt was to develop an intelligent backtrack based on solver given explanation for solving scheduling problems [START_REF] Guéret | Using intelligent backtracking to improve branch and bound methods: an application to open-shop problems[END_REF].

First results obtained with that intelligent backtracker (we were able to optimally solve a problem from the literature for the first time) led us to go further and fully integrate constraint propagation in a dynamic-backtracking like algorithm leading to two main algorithms: mac-dbt [START_REF] Jussien | Maintaining arcconsistency within dynamic backtracking[END_REF] a complete search method for solving csp and path-repair [START_REF] Jussien | Local search with constraint propagation and conflict-based heuristics[END_REF] an incomplete search method.

The first one (mac-dbt) uses the previous search algorithm and is a search algorithm for discrete csp. Our experiments comparing it to mac showed that it could greatly outperform it when dealing with structured problems. A preliminary version of that algorithm was developed for numeric csp [START_REF] Jussien | Dynamic domain splitting for numeric csp[END_REF] showing the same results: solving structured problem is beneficial for our method compared to other algorithms such those of Numerica [START_REF] Van Hentenryck | Numerica, a modeling language for global optimization[END_REF].

The second algorithm that we developed using an explanation-based solver is the path-repair algorithm [START_REF] Jussien | Local search with constraint propagation and conflict-based heuristics[END_REF]. It is a local search technique working on partial assignments that uses filtering technique to prune the search space. It can be seen as a modified version of mac-dbt: the choice of the value assignment to undo is left to a heuristic (we loose completeness but are more able to focus on annoying constraints). First results on scheduling problems (namely open-shop problems) show that our general algorithm competes well with highly specialized recent tabu searches. Moreover, we recently solved for the first time three open problems from the literature (problems presented in [START_REF] Guéret | A new lower bound for the open-shop problem[END_REF]).

The PaLM suite

The PaLM system is in fact made of several modules giving a real suite dedicated to explanation-based constraint programming. The main module is the PaLM core file which handles variables described by their upper and lower bounds. The PaLMenum module handles classical variables for csp and the PaLMschedule module is dedicated to scheduling problems.

PaLM

The core system of the suite contains all the necessary tools for handling explanations (those tools are shared by all the modules). Variables in the PaLM core file are described by their upper and lower bounds (during propagation no holes can be made in the domains).

Classical unary and binary arithmetical constraints are provided as well as a global constraint handling large linear combinations of variables.

The PaLM system provides several tools through its API:

object declaration methods makePalmProblem, makePalmIntVar, ... -constraint posting methods classical posting post(pb, ct), weighted posting post(pb, ct, w) and indirect posting post(pb, ct, e) -operators redefinition for easily defining constraints ==, !=, <=, ... -global constraints for high level constraint programming alldifferent, general linear combinations of variables, ...

PaLMenum

PaLMenum is a sub-module dedicated to variables whose domain is described as a list of values (holes can be made in it). The same basic constraints as in the PaLM core file have been provided in that sub-module. Moreover, constraints described as tuples of authorized values are to be integrated in that module. Such a constraint corresponds to a propagation schema. As for now PaLMenum provided ac4-like constraints, ac6-like constraints and pic-like7 constraints.

The PaLM API has been extended to be used with PaLMenum (for example a makePalmEnumIntVar method is provided). Enumerated domains specific constraints are given: a specialized version of alldifferent, the element constraint, ...

PaLMschedule

PaLMschedule is a PaLM extension dedicated to scheduling. The variables to be manipulated are tasks in this module. As for now, unary resources for nonpreemptive problems are handled using task-intervals [START_REF] Caseau | Improving clp scheduling with task intervals[END_REF] and the associated edge finders.

The PaLMschedule API has the following features object declaration makePalmScheduleProblem, makePalmUnaryResource, makeTask, makePalmTaskInterval constraint definition and posting operator --> for defining precedences, post(pb, resource) for posting in one instruction necessary constraints for handling unary resources.

A specific application for solving open-shop problems has been designed. It fully implements ideas presented in [START_REF] Guéret | Using intelligent backtracking to improve branch and bound methods: an application to open-shop problems[END_REF][START_REF] Guéret | Combining AI/OR techniques for solving open shop problems[END_REF]

Conclusion

In this paper, we presented the PaLM suite: a set of explanation-based constraint solvers. We showed how to implement such a system on top of a classical constraint programming system. Moreover, we presented what could be done with the PaLM suite and detailed some experimental results obtained using that system.

Our current works include: extending PaLMenum (with high order consistency techniques) and PaLMschedule (with cumulative constraints), providing new explanations mechanisms, using k-relevance [START_REF] Bayardo | A complexity analysis of spacebounded learning algorithms for the constraint satisfaction problem[END_REF], developing applications using the PaLM suite ...

Fig. 1 .

 1 Fig. 1. Coding a simple scheduling problem with PaLM

-

 -CLAIRE run-time library v 2.5.1 [os: ntw, C++:MSVC] ----CLAIRE interpreter -Copyright (C) 1994-97 Y. Caseau (see about()) Choco version 0.23, Copyright (C) 1999-2000 F. Laburthe Palm version 0.2.10, Copyright (C) 2000 N. Jussien palm> shedulingProblem() eval[1]> f:[7..15]

/Fig. 5 .Fig. 6 .

 56 Fig. 5. A new variable for PaLM

[Fig. 7 .

 7 Fig. 7. The PaLM code for handling X >= Y + c when decreasing X.sup

[Fig. 8 .

 8 Fig. 8. Example of repropagation under PaLM

[Fig. 9 .Fig. 10 .

 910 Fig. 9. The PaLM code for exploring the search space

Table 1 .

 1 Data for a simple scheduling problem

	Task Duration Ancestors Task Duration Ancestors
	a	1	-	d	4	a b
	b	2	-	e	3	c
	c	1	-	f	-	d e

Inconsistency of constraint problems is detected when the solver wipes out the domain of a variable.

[START_REF] Bessière | Arc consistency in dynamic constraint satisfaction problems[END_REF] Our support language will be choco a constraint programming layer on top of

claire.[START_REF] Caseau | Claire: combining sets, search and rules to better express algorithms[END_REF] Note that if a nogood does not contain any choice constraints it means that the current problem does not have any possible solution.

A nogood is said to be relevant if all the assignments in it are still valid in the current search state[START_REF] Bayardo | A complexity analysis of spacebounded learning algorithms for the constraint satisfaction problem[END_REF].

Constraint removal in dynamic problems has already been studied[START_REF] Bessière | Arc consistency in dynamic constraint satisfaction problems[END_REF][START_REF] Debruyne | Arc-consistency in dynamic CSPs is no more prohibitive[END_REF] but here we simplify the algorithms thanks to explanations[START_REF] Jussien | Maintaining arcconsistency within dynamic backtracking[END_REF].

In classical csp, this means giving a value to a variable. For numerical csp, this means splitting a domain. For scheduling problems, this can be adding a precedence constraint between tasks ...

PIC stand s for Path-Inverse Consistency[START_REF] Freuder | Neighborood inverse consistency preprocessing[END_REF].

Acknowledgments

The authors would like to thank François Laburthe for providing us that great tool that choco is and Romuald Debruyne for his insights for implementing enumerated-domains variables and constraints.