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Grammatical inference consists in learning a formal grammar as a finite state machine or as a set of rewrite rules. In this paper, we are concerned with inferring Nondeterministic Finite Automata (NFA) that must accept some words, and reject some other words from a given sample. This problem can naturally be modeled in SAT. The standard model being enormous, some models based on prefixes, suffixes, and hybrids were designed to generate smaller SAT instances.

There is a very simple and obvious property that says: if there is an NFA of size k for a given sample, there is also an NFA of size k+1. We first strengthen this property by adding some characteristics to the NFA of size k+1. Hence, we can use this property to tighten the bounds of the size of the minimal NFA for a given sample. We then propose simplified and refined models for NFA of size k+1 that are smaller than the initial models for NFA of size k. We also propose a reduction algorithm to build an NFA of size k from a specific NFA of size k+1. Finally, we validate our proposition with some experimentation that shows the efficiency of our approach.

I. INTRODUCTION

Grammatical inference [START_REF] De La Higuera | Grammatical Inference: Learning Automata and Grammars[END_REF] consists in studying and designing methods for learning formal grammars (as automata or production rules) from a given sample of words. It is useful in numerous applications, e.g., compiler design, bioinformatics, pattern recognition, machine learning, etc.

Let S = S + ∪ S -be a sample of words, made of positive words (the set S + ) and negative words (the set S -): words from S + must be elements of the language, and words from S -must not. The problem we tackle is to learn a finite automaton which accepts words of S + and rejects words of S -. The complexity of such problems is related to the number of states of the automaton, i.e., its size. A deterministic automaton (DFA) for a given language can be (even exponentially) larger than a nondeterministic automaton (NFA) for the same language. Thus, similarly to most of the works on automata inference, we focus here on NFAs. An NFA is represented by a 5-tuple (Q, Σ, ∆, q 1 , F ) where Q is a finite set of states, the alphabet Σ is a finite set of symbols, the transition function ∆ : Q × Σ → 2 Q associates a set of states to a given state and a given symbol, q 1 ∈ Q is the initial state, and F ⊆ Q is the set of final states. Let k_NFA denote an NFA with k states. The generic problem consists in minimizing k. However, since most of the techniques are based on a Boolean model, the problem is simplified to learning a k_NFA, k being given. To minimize k, some lower and upper bounds are determined. For example, an upper bound is given by the size of the prefix tree acceptor (PTA). Then, some algorithms can be used to push up (resp. push down) the lower bound (resp. the upper bound) to find the smallest k (see e.g., [START_REF] Jastrzab | Parallel algorithms for minimal nondeterministic finite automata inference[END_REF]).

The problem has already been tackled from several perspectives (see e.g., [START_REF] Wieczorek | Grammatical Inference -Algorithms, Routines and Applications[END_REF] for a wide panel of NFA inference techniques). Ad-hoc algorithms, such as DeLeTe2 [START_REF] Denis | Learning regular languages using rfsas[END_REF], are based on merging states from the PTA. More recently, a new family of algorithms for regular languages inference was given in [START_REF] Vázquez De Parga | A family of algorithms for non deterministic regular languages inference[END_REF]. Some approaches are based on metaheuristics, such as in [START_REF] Tomita | Dynamic construction of finite-state automata from examples using hill-climbing[END_REF] where hill-climbing is applied in the context of regular languages, or [START_REF] Dupont | Regular grammatical inference from positive and negative samples by genetic search: the GIG method[END_REF] which is based on a genetic algorithm. In contrast to metaheuristics, complete solvers are always able to find a solution if there exists one, to prove the unsatisfiablility of the problem, and to find the global optimum in case of optimization problems. Generally, the problem is modeled as a Constraint Satisfaction Problem (CSP [START_REF]Handbook of Constraint Programming[END_REF]). For example, in [START_REF] Wieczorek | Grammatical Inference -Algorithms, Routines and Applications[END_REF], an Integer Non-Linear Programming (INLP) formulation of the problem is given. Parallel solvers for minimizing the inferred NFA size are presented in [START_REF] Jastrzab | On parallel induction of nondeterministic finite automata[END_REF], [START_REF]Two parallelization schemes for the induction of nondeterministic finite automata on PCs[END_REF]. The author of [START_REF]A comparison of selected variable ordering methods for NFA induction[END_REF] proposes two strategies, based on variable ordering, for solving the CSP formulation of the problem. Reference [START_REF] Jastrzab | Parallel algorithms for minimal nondeterministic finite automata inference[END_REF] proposes a parallel approach for solving the optimization variant of the problem.

In this paper, we do not want to improve a specific solver or to design an ad-hoc solver. On the contrary, we try to improve the SAT models starting from the models of [START_REF] Lardeux | Optimized models and symmetry breaking for the NFA inference problem[END_REF]. More specifically, we focus on the results that can be obtained using a simple property: for a given sample S, if there is a k_NFA, there is also a (k + 1)_NFA. This is obvious, for example by adding a new state with no incoming transition. This property can be used to find a new upper-bound and raise the lower bound (in case of UNSAT answer): this is easy to do using previous models, but this is useless since it is more complicated to infer a (k + 1)_NFA than a k_NFA. However, we can refine this property by requesting more characteristics of the (k + 1)_NFA. Assume that λ ̸ ∈ S. By design, we can request the (k + 1)_NFA to have a single final state without outgoing transitions, and that each incoming transition to the final state is a duplication of a transition of the k_NFA; we call such an NFA a (k + 1) ⋆ _NFA. Moreover, we simplify previous models, which is even more interesting for the suffix and hybrid models that pass from O(σ•k 3 ) clauses to O(σ•k 2 ) with σ = Σ w∈S |w|. Hence, it becomes less complicated to compute a (k + 1) ⋆ _NFA than a k_NFA. The (k + 1) ⋆ _NFA can thus be used to reduce the bounds on k_NFA. Finally, we propose a linear-time algorithm to reduce a (k + 1) ⋆ _NFA to a k_NFA. The experimental results for different models are promising and show the advantage of our approach.

The paper is organized as follows. In Sect. II we present how current models are obtained. In Sect. III, we first present the property leading from a k_NFA to a (k + 1)_NFA. We then show how to improve the models to infer (k + 1) ⋆ _NFA. Section IV presents our reduction algorithm. In Sect. V we report the experimental results and we conclude in Sect. VI.

II. MODELS FOR k_NFA INFERENCE

The models we now present can be used directly to infer k_NFA or (k +1)_NFA. Let Σ = {a 1 , . . . , a n } be an alphabet of n symbols. A sample S = S + ∪ S -is given by a set S + of words from Σ * that must be accepted, and a set S - of words that must be rejected. Let K be a set of integers, K = {1, . . . , k}. We will consider the following variables in our models:

• k, an integer, the size of the NFA we want to learn, • a set of k Boolean variables F = {f 1 , . . . , f k } determining whether state q i is final or not, • and ∆ = {δ a, # » qiqj |a ∈ Σ and (i, j) ∈ K 2 }, a set of nk 2 Boolean variables representing the transitions from state q i to state q j with the symbol a ∈ Σ, for each i, j, and a. The path i 1 , i 2 , . . . , i m+1 for a word w = a 1 . . . a m exists iff d = δ a1, # » qi 1 qi 2 ∧ . . . ∧ δ am, # » qi m qi m+1 is true. We call d a c_path. Let P ref (S) = ∪ w∈S P ref (w), with P ref (w) the set of non-empty prefixes of word w. Similarly, Suf (S) is the set of all non-empty suffixes of the words in S.

We skip the direct model (see [START_REF] Jastrzab | Parallel algorithms for minimal nondeterministic finite automata inference[END_REF], [START_REF]GA and ILS for optimizing the size of NFA models[END_REF]) which has a bad complexity and does not behave well in practice: the space complexity is in q1qi , a Boolean variable, determining the existence of a c_path for w from q 1 to q i . The constraints are:

O(|S + | • (|ω + | + 1) • k |ω+| ) clauses
(λ ∈ S + -→ f 1 ) ∧ (λ ∈ S --→ ¬f 1 ) (1) i∈K δ a, # » q1qi ↔ p a, # » q1qi (2) i∈K (p w, # » q1qi ↔ ( j∈K p v, # » q1qj ∧ δ a, # » qj qi )) (3) i∈K p w, # » q1qi ∧ f i (4) i∈K (¬p w, # » q1qi ∨ ¬f i ) (5) 
where Constraint [START_REF] De La Higuera | Grammatical Inference: Learning Automata and Grammars[END_REF] 

P k = (1) w∈P ref (S)
(2) ∧ (3)

w∈S + (4) 
w∈S -

.

After transformations, P k is converted into CNF, and its space complexity is in O(σ • k 2 ) variables, and O(σ • k 2 ) clauses with σ = Σ w∈S |w|. See [START_REF]GA and ILS for optimizing the size of NFA models[END_REF] for details.

Suffix Model (S k ): The construction starts from any state and terminates in state q 1 . For each w ∈ Suf (S), a Boolean variable p w, # » qiqj determines the existence of a c_path for w:

(i,j)∈K 2 δ a, # » qiqj ↔ p a, # » qiqj ( 6 
) (i,j)∈K 2 (p w, # » qiqj ↔ ( l∈K δ a, # » qiq l ∧ p v, # » q l qj )) (7) 
where Constraint ( 6) is used for suffixes of size 1, and Constraint ( 7) for longer ones. The model is:

S k = (1) w∈Suf (S) (6) ∧ (7) w∈S + (4) 
w∈S -

Although similar to P k , the S k models are in O(σ • k 3 ) variables, and in O(σ • k 3 ) clauses [START_REF]GA and ILS for optimizing the size of NFA models[END_REF].

Hybrid Models: Each word w ∈ S is split into a prefix and a suffix w = uv to obtain two samples

S u = S + u ∪ S - u with S + u = {u | ∃w ∈ S + , w = uv} and S - u = {u | ∃w ∈ S -, w = uv}, and S v = S + v ∪ S - v with S + v = {v | ∃w ∈ S + , w = uv} and S - v = {v | ∃w ∈ S -, w = uv}. Then, Constraints (2), (3) 
are used for prefixes of S u , and ( 6), [START_REF] Dupont | Regular grammatical inference from positive and negative samples by genetic search: the GIG method[END_REF] for suffixes of S v . Finally, for each w = uv, clauses generated for u are linked to clauses generated for v:

(i,j)∈K 2 p u, # » q1qj ∧ p v, # » qj qi ∧ f i ( 8 
) (i,j)∈K 2 (¬p u, # » q1qj ∨ ¬p v, # » qj qi ∨ ¬f i ) (9) 
Constraints ( 8) are used for words from S + and Constraints [START_REF] Jastrzab | On parallel induction of nondeterministic finite automata[END_REF] for words from S -. Efficient decomposition of each word into a prefix and a suffix is crucial. In [START_REF] Lardeux | Optimized models and symmetry breaking for the NFA inference problem[END_REF] and [START_REF]Improved SAT models for NFA learning[END_REF], we proposed various decomposition strategies. Here, we consider three of them: [START_REF] Stützle | Iterated Local Search[END_REF] with the fitness f defined as

• ILS f k (init) is based on an Iterated Local Search (ILS)
f (S u , S v ) = |P ref (S u )| + k • |Suf (S v )|
for optimizing the hybrid model. The search starts with a split init for each word. At each iteration, the best split w = uv is found for the word w selected randomly with a roulette wheel selection based on the weights of words defined by weight w = 75%/|S|+25%•|w|/( wi∈S |w i |). The number of iterations is given and diversification is ensured with word selection.

• the Best suffix model (S ⋆ k ) optimizes constructions of the suffixes by ordering the set Suf (S). Let Ω(u) = {w ∈ S | u ∈ Suf (w)} be the set of words accepting u as a suffix. Then,

u 1 ≽ u 2 iff |u 1 | • |Ω(u 1 )| ≥ |u 2 | • |Ω(u 2 )|.
The set of best suffixes is composed of the best suffixes (w.r.t. to ≽) that cover S (see [START_REF] Lardeux | Optimized models and symmetry breaking for the NFA inference problem[END_REF] for more details).

• the Best prefix model (P ⋆ k ) is built in a similar way as the Best suffix model, starting with a selection of the best prefixes [START_REF] Lardeux | Optimized models and symmetry breaking for the NFA inference problem[END_REF].

III. REFINED MODELS FOR (k + 1)_NFA

We now consider λ ̸ ∈ S + .

A. Building a (k + 1)_NFA from a k_NFA From a k_NFA, we can build a (k + 1)_NFA with a single final state without outgoing transitions, and such that each incoming transition to the final state is a duplication of a transition of the k_NFA.

Let A = (Q A , Σ, ∆ A , q 1 , F ) be a k_NFA. Then, there always exists a (k + 1)

⋆ _NFA A ′ = (Q A ′ , Σ, ∆ A ′ , q 1 , F A ′ ) such that Q A ′ = Q A ∪ {q k+1 }, F A ′ = {q k+1 } and ∆ A ′ : ∀ i,j∈(Q A ) 2 δ A a, # » qiqj ↔ δ A ′ a, # » qiqj ∀ i∈Q A ,j∈F δ A a, # » qiqj ↔ δ A ′ a, # » qiq k+1
Sketch of the proof:

1) For each word w ∈ S + \ {λ}: Let w = va with v ∈ P ref (S) and a ∈ Σ. Then v is recognized by A and can finish in several states T ⊆ Q (not necessary final states). As w ∈ S + , at least one transition δ A a, # » qiqj with i ∈ T and j ∈ F exists. By the rules of transitions creation, δ A ′ a, # » qiq k+1 exists and so word w is recognized by A ′ . 2) For each word w ∈ S -\ {λ}:

Let w = va with v ∈ P ref (S) and a ∈ Σ. There may be a c_path for v in A that terminates in states

T ⊆ Q. As w ∈ S -, if δ A v, # » q1qj exists then δ A a, # » qj qi with j ∈ T , i ∈ F does not exist. Thus, δ A ′ a, # »
q1q k+1 is not created and w is then rejected by A ′ . Note that if λ ∈ S + , we can do a very similar construction by considering q k+1 and q 1 as both final. Then, the construction is identical with only some few more disjunctions between q 1 and q k+1 . main differences with respect to the previous example are that state q 1 remains final in the (k +1) ⋆ _NFA due to λ ∈ S + , and that state q 4 is not the final state for λ, since we assume the NFA has no λ-transitions. Note also that words ab and abba are accepted in both state q 1 and q 4 . So, the only word that requires state q 4 for being accepted is baa. This is in contrast to Example 1, in which all the words in S + were only accepted in state q 4 .

B. Nested NFA

We now constrain more the (k + 1)_NFA in order to obtain fewer candidates. Consider:

• F 1 : the set of (k + 1)_NFA for S • F 2 : the set of (k + 1)_NFA for S with only one final state • F 3 : the set of (k + 1)_NFA for S with only one final state q k+1 and no outgoing transition from the final state • F 4 : the set of (k +1)_NFA for S with only one final state q k+1 and no outgoing transition from the final state, and with the property:

∀u ∈ Suf (S + ) ∩ Σ, ∀i ∈ K, δ u, # » qiq k+1 -→ j∈K δ u, # » qiqj
which means that each incoming transition from q i to q k+1 has a "clone" from q i to at least one q j which we expect to be final in the k_NFA. • A ′ is a (k + 1) ⋆ _NFA built by the algorithm presented before. Then, we have that

A ′ ∈ F 4 ⊆ F 3 ⊆ F 2 ⊆ F 1 .
It is thus interesting to be as close as possible to A ′ : this removes symmetries, and the reduction algorithm, from (k + 1) ⋆ _NFA to k_NFA shown in Sect. IV succeeds more frequently. Example 3: To illustrate the importance of the (k + 1) ⋆ _NFA, let us consider the following scenario. Assume that we know that there is no NFA of size k 1 and that there exists an NFA of size k 2 , k 2 > (k 1 + 2). Now, if we find a (k + 1) ⋆ _NFA of size k 3 , such that k 2 ≥ k 3 > (k 1 + 1), then we know that there exists an NFA of size k 3 -1, which means that we lowered the upper bound on the size of the minimal NFA. If we also find there exists no (k + 1) ⋆ _NFA of size k 4 such that k 2 > k 4 > (k 1 + 1), then we know there is no NFA of size k 4 -1. Hence, we raised the lower bound on the size of the minimal NFA. So, we know now that the size of minimal NFA

k min satisfies k 1 + 1 < k 4 ≤ k min ≤ k 3 -1 < k 2 . Clearly, if k 2 = k 1 + 2,
we can find either k 3 or k 4 but not both. However, it still proves the usefulness of the (k + 1) ⋆ _NFA.

C. Refining and simplifying (k + 1)_NFA models

We cannot model exactly A ′ as described before, but we can generate (k + 1) ⋆ _NFA. The idea here is thus to refine and simplify models to obtain (k + 1) ⋆ _NFA. In what follows, we consider λ / ∈ S + . Since we consider only one final state, q k+1 , we can omit the f i Boolean variables, and Constraints (3) and ( 4 These simplifications are worth with the prefix and suffix models. Moreover, for the suffix model, Constraint (6) can be simplified to:

i∈K δ a, # » qiq k+1 ↔ p a, # » qiq k+1 (12) 
and [START_REF] Dupont | Regular grammatical inference from positive and negative samples by genetic search: the GIG method[END_REF] to:

i∈K (p w, # » qiq k+1 ↔ ( j∈K δ a, # » qiqj ∧ p v, # » qj q k+1 )) (13) 
Finally, the complexity of the suffix model is reduced to

O(σ • k 2 ) instead of O(σ • k 3 ).
For the hybrid model, construction is similar as before, but Constraints (8) and ( 9) are simplified consequently: the index i is removed from and , and changed to k + 1 in paths and transitions:

j∈K p u, # » q1qj ∧ p v, # » qj q k+1 (14) j∈K (¬p u, # » q1qj ∨ ¬p v, # » qj q k+1 ) (15) 
The hybrid model has now the complexity O(σ • k 2 ).

D. Model specific refinements

The models presented thus far allow us to generate (k + 1)_NFA, but they do not guarantee that the obtained automaton is reducible to a k_NFA. Hence, they do not guarantee obtaining the (k + 1) ⋆ _NFA. To improve the number of times we succeed, we now refine again the inference models. However, these refinements are not applicable to each previously presented model, but only to the prefix model of Sect. III-C, which we will call P k+1 .

We now add some constraints to obtain the P R k+1 model. Let f k i be Boolean variables meaning that i is a possible final state of the k_NFA:

• No negative word finishes in a final state of the k_NFA:

i∈K w∈S - (p w, # » q1qi → ¬f k i ). (16) 
• Each final state of the k_NFA is reached by at least one positive word w (w = va, v ∈ P ref (S), and a ∈ Σ).

The paths from state q 1 to q k+1 (the unique final state of the (k + 1)_NFA) and from q 1 to q i (final state of the k_NFA) are the same except for the last transition:

i∈K (f k i → w∈S + j∈K (p v, # » q1qj ∧δ a, # » qj qi ∧δ a, # » qj q k+1 )). ( 17 
)
• Each positive word finishes at least in one final state of the k_NFA:

w∈S + i∈K (p w, # » q1qi ∧ f k i ). (18) 
Note that this refinement, which generates (k + 1) R _NFA, is only worth for the prefix models. For the other models, we still have to compute the suffixes for each pair of states, and we come back to the complexity of the k_NFA models.

IV. A REDUCTION ALGORITHM: FROM (k + 1)_NFA TO k_NFA

Let us consider we have a (k + 1)_NFA of F 4 . Then, each transition δ a, # » qiq k+1 can be removed, and each state j such that there is δ a, # » qiqj must be considered as "possibly" final. In the worst case, it means 2 k possibilities of k_NFA (each of the k states is either final or not). Each of these NFAs must be tested on S to be validated. This is tractable, but we now present a simpler reduction algorithm.

Given a (k + 1)_NFA, we can try to reduce it to a k_NFA with the following procedure:

1) Based on the variables p w, # » q1qi for i ∈ K and w ∈ S -, determine the set of candidate final states as Q A \ {q j }, where j ∈ K and p w, # » q1qj = true. This means that states in which any negative example can be reached cannot be final. 2) If the set of candidate final states is empty, the algorithm terminates, and the k_NFA cannot be obtained from the given (k + 1)_NFA. 3) Otherwise, given a non-empty set of candidate final states, for each word w ∈ S + test whether the word can be reached in any candidate state by investigating variables p w, # » q1qi , for these states. 4) If the test in the previous step returns a negative result for some word w ∈ S + (i.e., the word cannot be reached in any of the candidate final states), the algorithm terminates, and the k_NFA cannot be obtained from the given (k + 1)_NFA. Step 1 determines the singleton set of candidate final states {q 2 } (all words w ∈ S -can be reached in either q 1 or q 3 , so they are excluded). Since the set is not empty, we move to step 3, and test whether each word w ∈ S + is reachable in state q 2 . Hence, we terminate with a k_NFA as shown in Fig. 1.

Example 5: Consider now a (k + 1)_NFA shown in Fig. 3 obtained for the sample S from Example 1. With only one additional transition, δ b, # » q1q2 , the k_NFA cannot be built, since after step 1, the set of candidate states is empty. 

Example 6: Consider now a (k + 1)_NFA shown in Fig. 4 obtained for the sample S = (S + , S -) such that S + = {ab, abba, ba, baa} and S -= {aa, aab, b, bab}. After step 1 the set of candidate states is {q 1 } (words aa and aab are not reachable at all; words b and bab exclude states q 2 and q 3 ).

The tests in step 3 for words ab, abba, and ba succeed, but it turns out that word baa can only be reached in state q 2 which is not a candidate final state. Hence, we conclude that the k_NFA cannot be built from the given (k + 1)_NFA. Let us view Examples 4-6 from the perspective of constraints ( 16)-(18). In Example 3 it is easy to verify that all three constraints are satisfied. In Example 4, after evaluating Constraint [START_REF] Ignatiev | PySAT: A Python toolkit for prototyping with SAT oracles[END_REF], we set all f k i variables to false, thus satisfying also Constraint [START_REF] Audemard | Predicting learnt clauses quality in modern SAT solvers[END_REF]. However, we are then unable to satisfy Constraint (18). A similar observation is made for Example 5, even though we do not initially set all f k i variables to false. In this case, constraint (18) cannot be satisfied for word baa.

V. EXPERIMENTATION

A. Models for k_NFA vs. (k + 1)_NFA inference

The algorithms were implemented in Python using libraries such as PySAT [START_REF] Ignatiev | PySAT: A Python toolkit for prototyping with SAT oracles[END_REF]. The experiments were carried out on a computing cluster with Intel-E5-2695 CPUs, and a fixed limit of 10 GB of memory. Running times were limited to 15 minutes, including model generation and solving time. We used the Glucose [START_REF] Audemard | Predicting learnt clauses quality in modern SAT solvers[END_REF] SAT solver with default options.

In Tables I and II we compare the different models previously presented for k_NFA and (k + 1)_NFA. Note that ILS f k (init) is used with 3 different initial splits: random split (ILS f k (r)), split based on best prefix (ILS f k (P ⋆ k )), and split based on best suffix (ILS f k (S ⋆ k )). These experiments were carried out on state-of-the-art instances, described in [START_REF] Lardeux | Optimized models and symmetry breaking for the NFA inference problem[END_REF]. These instances can be divided into three categories corresponding to the sizes of the alphabet (2, 5, and 10). The number of positive and negative words are the same in each instance and vary from 10 to 100 in increments of 10 for each category. There are thus 30 instances in total. The value of k we used for the experiments is the best known lower bound for each instance found in various papers.

For each type of model, the k_NFA and (k + 1)_NFA approaches were tested. The columns of Table I and Table II show the average number of variables and clauses as well as the number of resolved instances, and among the solved instances, the number of SAT instances. The column Ctime shows the cumulative execution time (generation of the model and solving time). Since the maximum execution time is 900 seconds, each category can consume at most 9000 seconds and thus, 27000 seconds for all the instances.

Based on Table I, we see that the size of the alphabet Σ does not influence much the size of the instances: |Σ| does not appear in the complexity which is upper bounded by σ; but in practice, the number of prefixes (or suffixes) is related to |Σ| (the probability to have common prefixes is higher when |Σ| is small). The size of the instances significantly depends on the models, and on the samples (number of prefixes or suffixes). S k and P ⋆ k generate the largest models, and the difference with other models is significant.

In Table II, we can notice that either ILS k (r), ILS k (S ⋆ k ), or S ⋆ k are able to solve more than half of the instances of the tested samples. S ⋆ k is the fastest model for the total generation time and solving time. It enables us to save 3725 seconds for (k + 1)_NFA which can then be used for the reduction to a k_NFA.

On average, (k +1) models are smaller than k_NFA models in terms of the number of variables. Whatever the model, more (k + 1)_NFA can be inferred than k_NFA. This is due to both smaller instances and more constrained instances. Although (k + 1) models can solve more instances, the cumulative time is always smaller than for k_NFA: this means that solved instances are also solved faster. ILS f k (init) is not very sensitive to the initial splitting of words. However, it seems that the random initialization enables us to obtain smaller SAT instances. It seems that better initialization such as with best prefixes or best suffixes stay stuck in local minima, close to the initialization. The statistical analysis of the k_NFA vs. (k + 1)_NFA models shows no statistically significant differences in the execution times if we assume the execution time of 900 seconds for the unsolved instances. However, when we focus only on the solved instances, we get statistically significant differences based on the Kruskal-Wallis test (p-value = 1.4 • 10 -6 ). The post-hoc Dunn's analysis shows that the significant differences are between all ILS-based models and the rest of the models (in favor of the other models, which have lower mean ranks). There are no significant differences between k_NFA and (k + 1)_NFA for the same model type.

B. (k + 1)_NFA to k_NFA reduction algorithm

The results shown in Tables I and II were obtained for the base and refined models, excluding the refinements of Sect. III-D. Consequently, the vast majority of (k + 1)_NFA could not be reduced to k_NFA. In the second experiment, all instances have been tested with the P k model for k_NFA, (k + 1)_NFA and reducible (k + 1) R _NFA with a maximum running time of 15 minutes (900 seconds).

Table III details the results for instances solved and proved SAT. For each instance, the k column provides three values corresponding to the sizes of the k_NFA, (k + 1)_NFA, and reducible (k + 1) R _NFA, respectively. Columns var. and cl. represent the number of variables and clauses. Column Stime is the generation and solving time, while Rtime is the running time of the reduction algorithm. Finally, T time is the total running time.

For each instance the best time to obtain a k-state NFA (either directly or through reduction) is bolded. A star (⋆) is added when the reduction of the reducible (k + 1) R _NFA permits to find a k_NFA whereas it is not possible directly using the model for k_NFA. When it takes longer to reduce (k + 1) R _NFA to a k_NFA than to find the k_NFA, a bullet (•) is added. When the running time exceeded 15 minutes, nothing is written. Clearly, reduction time is only provided for (k + 1)_NFA and reducible (k + 1) R _NFA.

We can observe in Table III that reducible (k + 1) R _NFA obtains the best total time for 12 of the 14 instances. Moreover, for instances st-2-20 and ww-10-70 NFA is found by reduction of the (k + 1) R _NFA whereas no NFA is found by k_NFA. It proves that it is worth using reducible (k+1) R _NFA rather than k_NFA. We can note that only instances st-5-30 and ww-10-30 can be reduced from (k + 1)_NFA to k_NFA, and the total running time is better only once than for reducible (k + 1) R _NFA.

The number of variables and clauses of reducible (k + 1) R _NFA is bigger than for (k+1)_NFA but it does not impact the efficiency. Moreover, the reduction time is irrelevant with respect to the solving time.

VI. CONCLUSION

Grammatical inference consists in learning a formal grammar, in our case as an NFA. We have presented how we can

Example 1 :

 1 Consider a sample S = (S + , S -), such that S + = {a, ab, abba, baa} and S -= {aab, b, ba, bab}. An example minimal k_NFA and the corresponding (k+1) ⋆ _NFA are shown in Fig. 1, with the additional transitions marked in blue. The transition δ A ′ a, # » q1q4 results from the transition δ A a, # » q1q2 , while the transition δ A ′ b, # » q2q4 results from the transition δ A b, # » q2q2 . Example 2: Consider now a different sample S, where S + = {λ, ab, abba, baa}, and S -= {aa, aab, b, bab}. The k_NFA and its corresponding (k + 1) ⋆ _NFA are shown in Fig. 2. The

Fig. 1 .Fig. 2 .

 12 Fig. 1. Example k_NFA (left) and the corresponding (k + 1) ⋆ _NFA for sample S = ({a, ab, abba, baa}, {aab, b, ba, bab})

  each word w ∈ S + . This removes O(2k • |S + |) constraints and O(k • |S + |) auxiliary variables for Tseitin transformation of (3), and O((k -1) • |S + |) clauses in Constraints (4).Constraint (5) can also be replaced with:¬p w, # » q1q k+1(11)for each word of S -. This replaces k • |S -| binary clauses with |S -| unit clauses.

5 )

 5 Otherwise, the k_NFA can be obtained by removing the transitions leading to state (k + 1) and setting all candidate states to be final. The worst-case complexity of the algorithm is in O(k • |S|), since Step 1 requires k • |S -| tests and Step 3 requires at most k • |S + | tests. Note also, that for a (k + 1) ⋆ _NFA obtained by P R k+1 model the algorithm will always succeed. Example 4: Consider the (k + 1) ⋆ _NFA shown in Fig. 1.

Fig. 3 .

 3 Fig. 3. Example (k + 1)_NFA for sample S = ({a, ab, abba, baa}, {aab, b, ba, bab})

Fig. 4 .

 4 Fig. 4. Example (k + 1)_NFA for sample S = ({ab, abba, ba, baa}, {aa, aab, b, bab})

  , and O(|S + | • k |ω+| ) variables with ω + the longest word of S + .

	Prefix Model (P k ): For each w ∈ P ref (S), we consider
	p w, # »

TABLE I COMPARISON

 I OF THE DIFFERENT MODELS FOR k_NFA AND (k + 1)_NFA. THE TESTED INSTANCES ARE DIVIDED INTO THREE CATEGORIES ACCORDING TO THEIR ALPHABET SIZE. EACH CATEGORY CONTAINS 10 INSTANCES RANGING FROM 20 TO 200 WORDS.

			Size of the alphabet = 2		Size of the alphabet = 5		Size of the alphabet = 10	
			var.	cl.	solved	SAT	Ctime	var.	cl.	solved	SAT	Ctime	var.	cl.	solved	SAT	Ctime
	P k	k k + 1	18 049 19 721	66 282 72 214	2 3	1 2	7 204 6 425	19 797 22 418	70 949 80 100	4 5	3 5	5 930 4 828	10 823 12 836	37 208 43 852	6 7	5 7	3 638 2 836
	S k	k k + 1	162 589 18 447	600 680 67 607	2 3	1 2	7 203 6 309	130 589 19 354	471 852 69 095	2 4	2 4	7 209 5 463	51 103 10 760	177 707 36 641	6 6	5 6	3 618 3 613
	ILS f k (r)	k k + 1	24 586 7 718	94 912 28 059	2 4	1 3	7 220 5 765	22 073 12 987	82 352 46 119	4 5	3 5	5 625 4 551	10 659 8 971	38 354 30 486	5 7	4 7	4 569 2 767
	ILS f k (P ⋆ k )	k k + 1	24 166 7 834	93 393 28 485	2 3	1 2	7 219 6 328	22 045 12 943	82 305 45 961	4 5	3 5	5 594 4 564	10 583 9 051	38 080 30 760	5 7	4 7	4 593 2 782
	ILS f k (S ⋆ k )	k k + 1	15 781 12 891	62 423 47 189	2 4	1 3	7 220 5 468	17 383 17 621	65 431 62 884	4 5	3 5	5 596 4 892	9 280 9 978	33 536 34 003	5 7	4 7	4 595 3 015
	P ⋆ k	k k + 1	107 425 12 402	401 231 45 381	2 3	1 2	7 204 6 305	100 673 15 202	366 869 54 167	3 5	3 5	6 392 4 972	39 232 8 625	138 115 29 271	6 6	5 6	4 762 3 612
	S ⋆ k	k k + 1	15 811 12 962	62 503 47 384	3 3	2 2	6 307 6 315	18 062 17 646	67 697 62 969	4 6	3 6	5 669 3 749	9 890 9 961	35 495 33 949	5 7	4 7	4 559 2 747
			TABLE II													
	SUMMARY OF THE COMPARISON OF THE DIFFERENT MODELS FOR k_NFA									
			AND (k + 1)_NFA.													
			var.	cl.	solved	SAT	Ctime										
	P k	k k + 1	16 223 18 325	58 146 65 389	12 15	9 14	16 772 14 089										
	S k	k k + 1	114 760 16 187	416 747 57 781	10 13	8 12	18 031 15 385										
	ILS f k (r)	k k + 1	19 106 9 892	71 873 34 888	11 16	8 15	17 413 13 083										
	ILS f k (P ⋆ k )	k k + 1	18 931 9 943	71 259 35 069	11 15	8 14	17 406 13 674										
	ILS f k (S ⋆ k )	k k + 1	14 148 13 496	53 797 48 025	11 16	8 15	17 411 13 374										
	P ⋆ k	k k + 1	82 443 12 077	302 072 42 940	11 14	9 13	18 358 14 889										
	S ⋆ k	k k + 1	14 587 13 523	55 232 48 101	12 16	9 15	16 535 12 810										

benefit from a very simple property to refine and improve some already refined models from [START_REF] Lardeux | Optimized models and symmetry breaking for the NFA inference problem[END_REF]. The property says that if there is a k_NFA, there is also a (k + 1)_NFA. This property has been strengthened to bring us closer to the (k + 1) ⋆ _NFA that one could build manually. Thanks to the proposed refinements, we managed to obtain smaller models, with a lower complexity decreasing from

With some experiments, we have shown that the (k +1)_NFA are easier and faster to infer than the k_NFA. We have also presented an algorithm to reduce (k + 1)_NFA to k_NFA. Although the (k + 1) models are closer to the (k + 1) ⋆ _NFA obtainable with the simple algorithm given in this paper, the reduction algorithm does not always succeed. We have shown that given some model specific refinements, we can keep the low complexity of the model and infer (k + 1) R _NFA that can be very quickly reduced to k_NFA.

In the future, we plan to refine again the (k + 1)_NFA models for the reduction algorithm to succeed more often.

For example, we want to add constraints such as the ones for the P k model. We also plan to integrate symmetry breaking techniques to reduce the initial search space. But to this end, we will have to be very cautious and verify that symmetry breaking constraints are compatible with the (k + 1)_NFA models.