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For complex processes whose evolution is described by partial differential equations, the identification of failures is often difficult. In thermal systems, for example, when one or more heating sources fail, the sensors placed at a distance perceive the effect with delay. From these noisy observations, it is then necessary to determine with precision the moment of failure and the possible restart of the heating. As the inverse heat conduction problems are ill-posed, a regularization method has been developed and implemented for non-linear parabolic systems. It allows to detect failures and restarts of one or more sources. In the following, the whole problematic and the method of resolution is presented. Particular attention is paid to the effect of measurement noise on fault identification.
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INTRODUCTION

In the context of complex physical systems, many phenomena are described by models of knowledge based on partial differential equations. In thermal engineering, for example, heat exchange is described by Fourier's law, which leads to a system of parabolic partial differential equations (PDEs) that may be non-linear. The development of predictive numerical simulation tools is an important issue. It can allow the optimization of processes, the identification of key parameters or even define optimal control strategies.

In regard of parametric identification, it is natural to consider that the search for failures in a system whose "fault-free" behaviour is modelled by a system of PDEs can be treated as an inverse problem. Thus, in the thermal framework, solving an inverse heat conduction problem (IHCP) leading to a minimization of the output error from observations of the faulty system can identify the failure instances. Several difficulties must be mentioned. Firstly, non-linear PDEs are difficult to deal with but are still essential for realistic physical situations. Secondly, the illposed nature of IHCPs makes them particularly sensitive to measurement errors; see for example [START_REF] Alifanov | Iterative regularization of inverse problems[END_REF].

Finally, the failures discussed below are of the "on-off" type and such discontinuous switching associated with the heat transport phenomenon places the framework of the study close to that of hybrid systems with delay. In this circumstance, [START_REF] Bidou | Kalman smoother for detection of heat sources defects[END_REF] proposed a methodology that allows the estimation of failures and restarts instances of heat sources. This is done by applying the Kalman smoother and search strategy into different candidate signals from the source.

In order to solve this problem and successfully identify the failures of one or more heat sources from noisy observations, the conjugate gradient iterative regularization method has been developed and implemented. In the next section, the direct problem formulation is detailed. Particular attention is paid to the definition of the failure and restart instants of heating sources. The inverse problem is then presented. Its resolution requires the iterative determination of the temperature, the gradient of the criterion and the depth of the descent. Various configurations are studied, and the effect of measurement noise is particularly analyzed. Finally, an assessment and some perspectives close this document.

DESCRIPTION OF THE DIRECT PROBLEM

The following notations are considered. The geometric domain is Ω ⊂ R 2 and each point in space has coordinates (x, y) ∈ Ω. In what follows Ω = [-0.5, 0.5] 2 is a plate of 1 m edge length whose thickness e is negligible. The boundary of Ω is denoted as Γ. The time variable is

t ∈ T = [0, t f ]
. The temperature at any point in space is denoted as θ(x, y, t). As in [START_REF] Vergnaud | Quasionline parametric identification of moving heating devices in a 2d geometry[END_REF] the time evolution of temperature in the Ω domain is described by the following set of equations:

∀(x, y, t) ∈ Ω × T ρC ∂θ ∂t -div λ(θ) ---→ grad θ = Φ -2h (θ -θ 0 ) e (1)
where ρC is the heat density (product of the specific heat in J • kg -1 • K -1 and the volumetric mass density in kg

• m -3 ), λ is the thermal conductivity (in W • m -1 • K -1 ), Φ(x, y, t) is the heating flux (in W • m -2 ), h the convective exchange coefficient (in W • m -2 • K -1
) and θ 0 (x, y) the ambient temperature (in K). The boundary conditions on Γ are of the homogeneous Neumann type and correspond to adiabatic exchanges (a realistic situation given the extremely thin thickness e of the considered plate)

∀(x, y, t) ∈ Γ × T -λ(θ) ∂θ ∂ - → n = 0. ( 2 
)
The operator ∂ ∂n is the normal derivative at the Γ boundary and directed outwards. The following equation describes the initial state of the temperature in the Ω domain:

∀(x, y) ∈ Ω θ(x, y, 0) = θ 0 (x, y).

(3)

The direct problem is formulated as follows:

knowing the set of parameters {e, t f , ρC, λ, Φ, h, θ 0 }, find θ(x, y, t) solution of ( 1)-( 3).

The direct problem can be solved using the finite element method [START_REF] Pepper | The finite element method: basic concepts and applications, hemisphere pub[END_REF], [START_REF] Zimmerman | Multiphysics modeling with finite element methods[END_REF], [START_REF] Baker | Finite elements: computational engineering sciences[END_REF]). In the following, the Comsol code interfaced with Matlab has been implemented.

The heating flux Φ(x, y, t) is provided by several heating sources:

Φ(x, y, t) = n heat i=1 Φ i (x, y, t) (4) 
Each heating source is defined as follows:

Φ i (x, y, t) = f i (x, y)g i (t)χ i (t) (5) 
The function f i (x, y) is the spatial support of the heating source i. In the following a gaussian spatial distribution is taken into account as follows:

f i (x, y) = exp - (x -x i ) 2 + (y -y i ) 2 (5 × 10 -2 ) 2 (6)
The function g i (t) describes the heating flux provided normally (without failure) by the source i.

The function χ i (t) describes the possible failures of the heating source i:

χ i (t) = 1 without failure 0 in case of failure (7)
The function χ i (t) is a discontinuous function consisting of steps at 1 or 0 . A step of 1 is followed by a step of 0 in case of failure. A step of 0 is followed by a step of 1 in case of restarting the source i after an unwanted failure. It is assumed that the heating sources operate at t = 0 and at t = t f :

χ i (0) = χ i (t f ) = 1 , ∀i = 1, • • • , n heat .
This assumption implies that there are as many switch-offs (failure modes) as there are switch-ons for each heating source. Consider that the source i has experienced n i failures then the function χ i (t) is continuously described by the following function: The instants t i nok,j correspond to the instants when the source i fails ( χ i (t) goes from 1 to 0 : falling edge) while t i ok,j are the instants when χ i (t) goes from 0 to 1 (rising edge). The η parameter is a regularization parameter whose effect is shown in Fig. 1.

χ i (t) = 1 - 1 π ni j=1 atan t -t i nok,j η -atan t -t i ok,j η (8) 
The smaller η is, the more correctly the discontinuous nature of the all-or-nothing failure is modelled. In Fig. 1, the failures occurred at times 240s, 840s, 1440s and 3360s. They lasted 240s, 360s, 480s and 360s. An example of configuration for a direct problem and numerical results are shown hereafter considering the following parameters: The objective is to determine from the noisy observations at the three sensors, the time when the source 1 failed. This problem is not trivial.

• volumic heat : ρC = 2.421 × 10 6 J • K -1 • m -3 • conductivity : λ(θ) = 178 -0.08θ W • m -1 • K -1 • thickness : e = 2 × 10 -3 m • convective transfer coefficient : h = 10 W•m -2 •K -1 • initial temperature : θ 0 (x, y) = 293 K • final time : t f =

IDENTIFICATION OF FAILURE INSTANTS

The inverse problem

For each source i = 1, • • • , n heat , it is necessary to identify the switching times t i nok,j and t i ok,j (for j = 1, • • • , n i where n i is the number of failure and restarts for each source). Such parameters are occurring in the definition of the functions χ i (t), see equation ( 8). In what follows, it is assumed that the number of failures n i for each source is known. If this is not the case, this is an additional difficulty, but one that will be easily solved by an adaptation of the method presented below. The vector of unknown parameters is denoted as:

τ = τ 1 , • • • , τ n heat with τ i = t i nok ,1 , t i ok,1 , • • • , t i nok ,ni , t i ok,ni (9) 
The number of unknown parameters is

N = n heat i=1   ni j=1 2n j   : τ = τ i j i=1,••• ,n heat j=1,••• ,2n i
. The odd j components of τ correspond to failures, while the even components of j correspond to restarts. In the illustration below, two sources are considered (n heat = 2) with 4 failures for each (n 1 = n 2 = 4) . Thus, it is necessary to identify 16 switching times (8 of which correspond to failures: 4 for each source). In order to carry out this parametric identification, a method based on the minimization of the output error is implemented. It consists of varying the unknown parameters τ until the data predicted by the mathematical model matches the observations. In such a aim, let us consider the quadratic criterion:

J(τ ) = 1 2 3 i=1 t f 0 θ (C i , t, τ ) -θi (t) 2 dt (10) 
In (10), θ (C i , t, τ ) is the simulated temperature at the sensor C i and θi (t) is the measured temperature at the sensor C i (see continuous curves in Fig. 4). Inverse heat conduction problem (IHCP) is then written as : knowing all the parameters {e, t f , ρC, λ, Φ, h, θ 0 }, find τ such that the criterion ( 10) is minimum, under the constraint: θ(x, y, t) is a solution of the direct problem (1)-( 3).

IHCPs are ill-posed problems because small measurement noises can lead to large errors in the estimated parameters. Therefore a suitable method such as the conjugate gradient iterative regularization method [START_REF] Jarny | A general optimization method using adjoint equation for solving multidimensional inverse heat conduction[END_REF]) should be implemented. This descent method is based on the successive resolution of three well-posed problems (at each iteration k of the algorithm):

• the direct problem (1)-(3) to calculate the criterion (10) • the adjoint problem for estimating the gradient of the criterion

• the sensitivity problem for determining the descent depth in the descent direction.

The sensitivity problem

Let us consider a variation of the unknown parameters: τ + = τ + εδτ . This leads to the following variation:

χ + i (t) = χ i (t) + 2ni j=1 εδτ i j d χ i d τ i j = χ i (t) + ε 2ni j=1 δτ i j 1 π η(-1) j+1 η 2 + t -τ i j 2
The varied temperature θ + (x, y, t) is then a solution of:

∀(x, y, t) ∈ Ω × T ρC ∂θ + ∂t -div λ(θ + ) -----→ grad θ + = n heat i=1 f i g i χ + i -2h (θ + -θ 0 ) e (11) ∀(x, y, t) ∈ Γ × T -λ(θ + ) ∂θ + ∂n = 0 (12) ∀(x, y) ∈ Ω θ + (x, y, 0) = θ 0 (x, y) (13) 
The difference between equations ( 11)-( 13) and ( 1)-( 3) leads to the following equations:

∀(x, y, t) ∈ Ω × T ρC ∂(θ + -θ) ∂t -div λ(θ + ) -----→ grad θ + -λ(θ) ---→ grad θ = n heat i=1 f i g i (χ + i -χ i ) -2h (θ + -θ) e (14) ∀(x, y, t) ∈ Γ × T -λ(θ + ) ∂θ + ∂n + λ(θ) ∂θ ∂n = 0 (15) ∀(x, y) ∈ Ω θ + (x, y, 0) -θ(x, y, 0) = 0 (16) 
Considering that θ + = θ + εδθ, when ε → 0 then λ(θ + ) = λ(θ) + εδθ ∂λ(θ) ∂θ . Equations ( 14)-( 16) then become:

∀(x, y, t) ∈ Ω × T ρC ∂δθ ∂t -div λ(θ) ----→ grad δθ = div δθ dλ dθ ---→ grad θ +   n heat i=1   f i g i η π 2ni j=1 (-1) j+1 δτ i j η 2 + t -τ i j 2     -2hδθ e (17) ∀(x, y, t) ∈ Γ × T - ∂(λ(θ)δθ) ∂n = 0 (18) ∀(x, y) ∈ Ω δθ(x, y, 0) = 0 (19)
The descent depth is calculated so as to minimize the criterion in the descent direction d k+1 at each iteration:

γ k+1 = arg min γ k ∈R 2 J τ k -γd k+1 = 3 i=1 t f 0 θ C i , t; τ k -θi (t) δθ C i , t; τ k dt 3 i=1 t f 0 (δθ (C i , t; τ k )) 2 dt
(20)

The adjoint problem

The purpose of this problem is to calculate the gradient of the functional:

∂J ∂τ i j i=1,••• ,n heat j=1,••• ,2n i
. To do this we introduce the Lagrangian multipliers ψ(x, y, t) and the Lagrangian:

L = J + Ω×T ρC ∂θ ∂t -div λ(θ) ---→ grad θ + • • • • • • - Φ -2h(θ -θ 0 ) e ψdxdydt ( 21 
)
The variation of the Lagrangian is:

δL = ∂L ∂θ δθ + n heat i=1   2ni j=1 ∂L ∂τ i j δτ i j   + ∂L ∂ψ δψ (22)
The Lagrange multiplier ψ is fixed in order to satisfy ∂L ∂θ δθ = 0. In addition, since the temperature θ is a solution of ( 1)-( 3) then δJ = δL. In order to determine ψ(x, y, t), it is necessary to develop the equation ( 22) from ( 21). The latter includes several terms:

∂L ∂θ δθ = Ω×T 3 i=1 θ (C i , t) -θi (t) δθD i dxdydt + ρC Ω×T ∂δθ ∂t ψdxdydt (23) + Ω×T -∆ (λ(θ)δθ) + 2h e δθ ψdxdydt
In equation ( 23), the term D i represents the Dirac distribution at the sensor C i . Thus, we can decompose ( 22) as follows:

δL = Ω×T E dxdydt + ρCδL 1 + δL 2 + n heat i=1   2ni j=1 ∂L ∂τ i j δτ i j   (24)
where

E(x, y, t) = 3 i=1 θ (C i , t) -θi (t) δθD i δL 1 = Ω×T ∂δθ ∂t ψdxdydt δL 2 = Ω×T ∆ (λ(θ)δθ) + 2h e δθ ψdxdydt
Several integrations by parts, the use of Green's theorem as well as the formulation of the sensitivity problem allow to simplify:

δL 1 = Ω δθ(x, y, t f )ψ(x, y, t f )dxdy - Γ×T δθ ∂ψ ∂t dxdydt δL 2 = - Ω×T λ(θ)∆ (ψ) δθdxdydt + Γ×T λ(θ)δθ ∂ψ ∂n dxdydt + Ω×T 2h e δθψdxdydt
As ψ is fixed so that ∂L ∂θ δθ = 0, then ψ is solution of the following system (adjoint problem):

∀(x, y, t) ∈ Ω × T ρC ∂ψ ∂t + λ(θ)∆ψ = E + 2h e ψ (25) ∀(x, y, t) ∈ Γ × T ∂ψ ∂n = 0 (26) ∀(x, y) ∈ Ω ψ(x, y, t f ) = 0 ( 27 
)
If ψ is a solution of the adjoint problem described by the PDEs ( 25) -( 27) while θ is a solution of the direct problem described by the PDEs ( 1) -( 3) equation ( 22) becomes:

δL = n heat i=1   2ni j=1 ∂L ∂τ i j δτ i j  
In addition, as δJ = δL and:

∂L ∂τ i j δτ i j = Ω×T f i g i η πe (-1) j δτ i j η 2 + t -τ i j 2 ψdxdydt ( 28 
)
the expression of the gradient is then:

∂J ∂τ i j = Ω×T f i g i η πe (-1) j η 2 + t -τ i j 2 ψdxdydt (29) 

Algorithm

The conjugate gradient iterative regularization method is implemented as follows:

i. choose an initialization τ k for the iteration k = 0 for the switching instants (failures and restarts) ii. solve the direct problem (1)-( 3) to estimate the temperature θ k and estimate the criterion J θ k according to (10) iii. resolution of the adjoint problem ( 25)-( 27) to calculate the gradient

--→ ∇J k = ∂J k ∂τ i j i=1,••• ,n heat j=1,••• ,2n i
according to (29). Deduce the descent direction:

d k+1 = - --→ ∇J k + β k d k with β k = --→ ∇J k 2 ----→ ∇J k-1
2 (except at iteration k = 0 for which β 0 = 0 ) iv. solving the sensitivity problem ( 17)-( 19) to calculate the sensitivity functions δθ k and deduce the descent depth γ k+1 according to (20).

v. determination of the new estimator for the switching times : τ k+1 = τ k -γ k+1 d k+1 then return to step (ii.)

The algorithm is stopped in step (ii) when the criterion is deemed sufficiently small. The stopping criterion is chosen according to the measurement noise on the observations θi (t), temperatures measured at the sensors C i . The whole identification method has been successfully implemented in [START_REF] Autrique | Mobile source estimation with an iterative regularization method[END_REF], [START_REF] Beddiaf | Simultaneous determination of time-varying strength and location of a heating source in a three-dimensional domain[END_REF], [START_REF] Beddiaf | Parametric identification of a heating mobile source in a three-dimensional geometry[END_REF]). In the original context of the identification of switching times, the results are presented in the following section.

NUMERICAL RESULTS

First configuration -influence of measurement noise

Let us consider the previous illustrative context where the identification of the failure of source 1 has to be performed from the observations obtained in Fig. 4. In this section, the measurements at the three sensors are subject to an uncertainty described by a Gaussian noise of zero mean and different standard deviations σ are taken into account. In Fig. 4, standard deviation σ = 1 • C has been taken into account. The stopping criterion to stop the iterative minimization of the criterion is chosen according to the criterion proposed by [START_REF] Alifanov | Iterative regularization of inverse problems[END_REF] and [START_REF] Morozov | Methods for solving incorrectly posed problems[END_REF]:

J stop = ∆t N c N t σ 2
where N c = 3 is the number of sensors, N t = 400 is the number of measurements per sensor, ∆t = 9 s is the time sampling step between each measurement and σ 2 is the variance of the Gaussian measurement noise.

In what follows we consider the results obtained with an initialization of the failure time of t 1 nok ,1 = 500s and a linearized sensitivity problem with λ = 178 W.m -1 .K -1 . This last hypothesis introduces a model error but allows to reduce the calculation time. Indeed, the sensitivity problem requires a finer discretization.

The following table shows the results of the identification process for different noise levels : The last row of the previous table corresponds to the identification of the failure time for the data in Fig. 4.

Second configuration -identifying failure and restart

For this configuration, we consider that the first source fails at t 1 nok,1 = 1000s then restarts at t 1 ok,1 = 2500s.

Using the same parameters as before, we obtain the results presented in the table below, starting from the initialization t 1 nok,1 = 500s and t 1 ok,1 = 500s. When the measurement noise is more important, the switching instants are a little less well identified (up to 3.6% of relative error). However, the previous table shows that the method is relevant to identify the failure and restart instants for this problem described by a non-linear parabolic partial differential equation.

Third configuration -source separation

For this last configuration, we consider that the first source fails at t 1 nok,1 = 1000s and that the second source fails at t 2 nok,1 = 2000s.

Using the same parameters as before, we obtain the results presented in the table below, starting with the initialization t 1 nok,1 = 500s and t 2 nok ,1 = 500s. In the previous table, it can be seen that when the measurement noise is more important, the failure instants of the two sources are less well identified (in the worst case relative error is about 5%). However, the previous table shows that the method is relevant for identifying the failure instants of two distinct sources.

CONCLUDING REMARKS

In this work, an original method for identifying switching instants has been proposed and implemented in the framework of a physical system described by a set of non-linear parabolic partial differential equations.

From noisy observations of the temperatures measured by 3 fixed sensors, the aim is to determine when and which heating source has failed. The whole identification procedure, formulated as a problem of minimization of a quadratic criterion, has been solved by an iterative regularization method. This is made necessary by the ill-posedness character of the inverse heat conduction problems. It is based on three well-posed problems: a direct problem to determine the simulated temperature and the criterion, an adjoint problem to determine the gradient of the criterion and finally a sensitivity problem that allows to calculate the descent depth in the descent direction. The results obtained showed that it was possible to identify the failure of a source, its restart and to determine the failure times of two sources despite significant measurement noise.

Many perspectives can be cited following this work. Firstly, in order to identify more complex dynamics (see Fig. 5), it would be interesting to have more sensors and to choose them judiciously so as not to add unnecessary and prohibitive noise. Naturally, the study could be continued with mobile sources and mobile sensors that would have to be moved to better identify failures. In this context, decision support methods could be developed on the basis of pre-established scenarios. Finally, quasi-online methods are perfectly suited to the situations studied and will make it possible to envisage fallback strategies with several mobile sources.
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 1 Fig. 1. Examples of failures χ i (t) (in blue η = 10, in red η = 0.1).

  Fig. 2. Location of the three sensors (stars) and the two sources (circles).

Fig. 3 .

 3 Fig. 3. Heating fluxes g 1 (t) and g 2 (t) of the two sources. It is assumed that a failure of source 1 occurred at t = 1500s. The evolution of the temperatures at the three sensors C 1 , C 2 , C 3 are shown in Fig. 4, assuming that the observations are subject to a Gaussian noise of mean zero and standard deviation σ = 1 • C.

Fig. 4 .

 4 Fig. 4. Temperatures: without failure and without noise (continuous) and with failure and noise (points), η = 0.1.

Fig. 5 .

 5 Fig. 5. Failures of both sources (η = 0.1).

Table 1 .

 1 Identification of the time of failure for different noise levels.

		Jstop	Number of	Instant
			iterations	t 1 nok ,1
	σ = 0.1 • C	108	4	1503.2
	σ = 0.5 • C	2700	4	1499.4
	σ = 1 • C	10800	4	1521.4

Table 2 .

 2 Identification of failure and restart times for different for different noise levels.

		Jstop	Failure	Restart
			t 1 nok ,1	t 1 ok,1
	σ = 0.1 • C	108	999.2	2503.1
	σ = 0.5 • C	2700	995.4	2504.7
	σ = 1 • C	10800	964.1	2446.9

Table 3 .

 3 Identification of the failure times of the two sources for different noise levels.

		Jstop	Failure	Failure
			t 1 nok ,1	t 2 nok ,1
	σ = 0.1 • C	108	998.5	1999.6
	σ = 0.5 • C	2700	994.0	1997.9
	σ = 1 • C	10800	1049.9	1979.9