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Abstract—Resting State Functional Magnetic Resonance Imag-
ing (rs-fMRI) technique is gaining more attention among medical
practitioners because, it allows recognition of functional brain
networks and is very suitable for complex situations where the
participation of the patients is not required. This approach is
also interesting for non-invasive medical imaging where healthy
subjects can be enrolled very easily during the data acquisition
process. However, one of its limitations is that the clinicians must
manually annotate the image data. While no clinical use of this
annotation is needed at any stage of neurosurgical procedure,
this process is often time consuming and can only be carried
our by domain experts. We investigate the possibility to perform
self-supervision from healthy subject data without the need of
image annotation, followed by transfer learning from the models
trained on some pretext task. The result of self-supervision is
shown to bring about 3% increase in performance without the
effort and time of manual annotation of fMRI data by expert.

Index Terms—Self-supervision, image classification, medical
imaging, functional brain network, fMRI, transfer learning

I. INTRODUCTION

Supervised machine learning experiences a large success in
computer vision driven medical imaging nowadays [1]. How-
ever, there are some well-known limitations in the application
of these data driven methods. One of these limitations is the
usual lack of large annotated data sets which may not be
available because they correspond to rare disease, or because
the international community maintain limited distribution of
public dataset, or because human expertise for the annotation
of the dataset is limited.

There are several workarounds to compensate for the limited
availability of dataset [2], [3]. These include few-shot learning,
creation of artificial data, generative models, or data enhance-
ment. Transfer learning, another common strategy, makes use
of models that have already been trained on comparable
dataset. Very recently [4], we showed the possibility to use
such transfer learning from healthy subjects to unhealthy
patients. This is very interesting indeed for medical imaging
modalities which are purely non-invasive and therefore for
which it is rather easy to enroll healthy control. This was
illustrated in [4] for a task of functional brain network identi-
fication in resting state functional magnetic resonance imaging
(fMRI). A significant gain in classification performance was

obtained because the brain tumour of the unhealthy patients
was found to have very limited impact on the resting state
fMRI (rs-fMRI) signals.

We propose a follow up of the recent study of [4] in this
communication. A limitation in the transfer learning from
healthy patients to unhealthy patient is the need of manually
annotation of the healthy patients. This annotation is time
consuming while it has to be performed on patients for which
there is clearly no clinical interest. To avoid this unnecessary
step while trying to take benefit from the similarity between
healthy subjects and unhealthy patients by transfer learning,
we propose to investigate the possibility of self-supervision
for the task targeted in [4].

Self-supervision, is a machine learning method which learns
from unlabeled sample data [5]. It can be regarded as an inter-
mediate form between supervised and unsupervised learning. It
is usually based on an artificial neural networks. The training
of the network is performed in two stages. First, a pretext
task is solved based on pseudo-labels which contributes to
initialize the network weights. Secondly, the target task is
performed with supervised learning but with much fewer need
of annotation due to the initialisation from the weights trained
on the pretext task. Self-supervision is now applied in all fields
of computer vision but recently, began to receive consideration
for fMRI related data [6], [7]. In [6] a regression task to
predict the fatigue from patient based on their fMRI patterns
is targeted. In [7] images are generated from fMRI patterns
after visualisation of the images by healthy patients. In this
work, we explore the value of self-supervision from healthy
to unhealthy data in the use case of [4] where functional brain
networks have to be identified.

II. MATERIALS AND METHODS

Database

This study is a single-center prospective, open-label trial
that adheres to regulations and ethical standards for clinical
research and has been approved by the local ethics committee
(Comité de protection des personnes Ouest II, decision ref-
erence CPP 2012-25). We collected data from 55 unhealthy



patients and 81 healthy people. The data from healthy par-
ticipants were collected from regular volunteers, whereas the
data from unhealthy patients were collected from people with
brain tumors. The given binary lesion mask shows where
the lesion is. In [8], a thorough overview of the unhealthy
population is given. Eighty-one healthy participants, ranging in
age from 23 to 38, including 36 women and 45 men, completed
written informed consent forms. Fifty-five patients with brain
lesions received preoperative fMRI language mapping and
perioperative cortical mapping of brain regions involved in
eloquent brain language under awake settings at the University
Hospital of Angers, the Department of Neurosurgery (CHU
Angers). Before enrolling participants in this study, participant
permission was acquired.

For both healthy and unhealthy data, we retrieved 55
features from independent component analysis (ICA) with a
focus on 7 brain features. Determining the total number of
components (TNC) to use in ICA in resting-state fMRI is
one of the main challenges, which can result in suboptimal
decompositions with the fusion of multiple networks in low
TNC cases or, in high TNC situations, the division of a
functional network into several components. [9], [10]. Based
on earlier research, we examined 55 ICs across all patients to
establish functional brain networks. [11], [12].

The primary Intrinsic Connectivity Network (ICN) found
and reported in resting-state fMRI literature is represented by
the seven chosen brain characteristics. These brain features
correspond to 7 biological networks of the brain, which are the
Salience Network (SAL), Language Network (LANG), Default
Mode Network (DMN), Ventral Attention Network (VAN),
Right Fronto-parietal Control Network (rFPCN), Left Fronto-
parietal Control (lFPCN), Dorsal Attention Network (DAN).
These particular networks were chosen for the DMN based on
their inter-individual variability, which makes them difficult to
find using detection techniques, to serve as a control for the
others. These networks match links in well-known cognitive
networks that have been used to the design of preoperative pro-
cedures. [10], [13]. The connection networks between rs-fMRI
and different fMRI data collecting and processing approaches
were also shown to be consistent [14]. In the algorithm training
and automatic identification processes, functional networks
with fixed locations, such as the visual cortex, sensory, or
motor were not taken into account. Domain experts assigned
labels to each healthy and unhealthy data file, and these labels
were utilized to categorize each image into the appropriate
network class. In addition to the two network picture variations
offered for both healthy and unhealthy data, as shown in figure
2, unhealthy data also contains information about the brain
tumor, as seen in figure 1 and explained in table I.

Data acquisitions and preprocessing

All fMRI data acquisitions were performed using a 3
Tesla MRI (Siemens Medical Systems, Magnetom Skyra, and
Erlangen) with a slice thickness of 4mm each, resulting in
voxel sizes of 3×3×4 mm3 and consequently a multichannel
3-D image of 42px × 51px × 34channels. For each subject,

TABLE I: Description of Unhealthy patient database
Description of the Image Data for the Unhealthy Patient

Files Description

1 Lesion.nii This file contains the binary mask for each patient’s
specific brain tumor.

2 Grey Matter mask (mrwp1) It is the grey matter mask (helpful since all activation
occurs in the grey matter).)

3 White Matter mask (mrwp2)

It serves as the white matter mask (no activation inside
the white matter, but it may be a useful method for
estimating the deformations of the brain caused by the
tumor and the peritumor edema.)

4 Cerebrospinal fluid mask (mrwp3)
The cerebrospinal fluid mask (similar to white matter,
no activation within, but perhaps useful to measure
brain deformations))

5 Whole brain-white grey matter (wms)
White and gray matter across the whole brain in a
T1 anatomical MRI sequence with the patient’s skin
and skull clipped

6 Whole brain (wmrs) This is a depiction of the complete cerebrospinal fluid
of the brain, together with the skull and skin.

Fig. 1: (Visualization of components from unhealthy data: a
represents the lesion, b represents the grey matter, c represents
the white matter, d represents the cerebrospinal fluid, e repre-
sents the whole brain (white and grey matter), and f represents
the cerebrospinal fluid alone).

the following fMRI sequences were acquired: one anatomical
3D T1, one resting-state acquisition, and two task-induced
activity. At the time of the fMRI acquisition and throughout the
surgery, neither any of the patients nor the healthy volunteers
who were included had any linguistic impediment. In order to
allow for the auto-adjustment of the magnetic field gradients,
the first three volumes recorded in each series were dropped.
The Anatomy, SPM8, and VBM 12 toolboxes of MatLab
(The MathWorks, Natick, MA) were used for data preparation.
Realignment to the first volume of the first session, slice-
timing correction, and unwrapping to correct head motions and
magnetic distortions were the processes used in the preparation
of the fMRI data. After segmenting the images, the template
from the Montreal Neurological Institute [15] was used to
normalize them. Each patient’s rs-fMRI data was segmented
into 55 spatial independent components (ICs) using an intrinsic
connection network spatial independent component analysis
(SICA) technique that employed a modified version of the
infomax algorithm running in Matlab. [16], [17]. ICs are
3D fMRI activation volumes of brain regions that exhibit
spontaneous synchronized activity. Without any dispute, the
reference fMRI identification of brain networks was completed



manually for each participant by two experienced and inde-
pendent reviewers. We chose seven key networks of LANG,
DMN, SAL, VAN, lFPCN, DAN, and rFPCN from the 55
produced ICs for each patient based on fMRI spatial distribu-
tion and activation peaks of these activations. There were two
versions of the annotated photos: complete gray level images
(connectivity map) and equivalent thresholded image copy.
Figure 2 illustrates a DMN network picture sample. At the
cluster level, individual spatial components were thresholded
at z = 2, corresponding to the 5% most active voxels in
each intrinsic connection network. This approach is consistent
with the literature and enables for the identification of the
anatomical location of active brain regions despite background
activation noise. [18].

(a) gray level image (b) Thresholded image

Fig. 2: Visualization of image data variants with Example from
Default Mode Network (DMN)

Identification of functional networks through machine learning
algorithms

Fewer than half of the 55 ICs discovered using the SICA
method are found in functional networks. In reality, a few
of ICs were background noise with few voxels that were
triggered. Typically, functional networks have 1200 to 3000
active voxels. Fewer activated voxels were discovered to be
just noise and not connection networks of relevance during the
manual analysis by both professional reviewers. To decrease
the number of ICs and enhance the effectiveness of functional
network identification, an additional preliminary step was
carried out to eliminate ICs from each patient with active
voxels of fewer than 850. This threshold was set in order to
define the bare minimum of active voxels above that may be
regarded as a network. This threshold was designed to specify
the bare minimum of active voxels over which a network
can be considered. This approach proves critical in removing
”noise” networks and enhance the sensitivity of our algorithm.
Furthermore, before feeding the data into algorithms, we
identified the coordinates of each cluster’s greatest activation
peak in order to reduce the number of variables evaluated for
training.

Transfer learning strategies

We use SimCLR [19], a method based on contrastive learn-
ing, to efficiently learn visual representations from unlabeled

images. Through a contrastive loss in a hidden representa-
tion of neural networks, SimCLR learns representations by
maximizing agreement [20] between many augmented views
of the same data sample. Given a mini-batch of images
that were chosen at random, each image xi is augmented
twice using random rotation, Gaussian blur, and random crop
resulting in two views of the same example both x2k1 and x2k.
To construct representations h2k1 and h2k, the two images
are encoded using an encoder network f() (ResNet). After
that, the representations are altered again using a non-linear
transformation network g(), yielding z2k1 and z2k that are
used for the contrastive loss. The contrastive loss between
two positive cases i, j (augmented from the same image) is
presented using a mini-batch of encoded samples as follows

lNT−Xnet
i,j = −log

exp(sim(zi, zj)/τ))∑2N
k=1 ⊮[k ̸=i]exp(sim(zi, zj)/τ)

(1)

where ⊮[k ̸=i] ∈ {0, 1} is an indicator function evaluating to 1
iff [k ̸= i], sim(, ) is cosine similarity between two vectors,
and τ is a temperature scalar. We trained the model at a
learning rate of 1e−5 with 100, 000 epochs. To reduce model
over-fitting, we adopt an early stopping method which uses
the value of increase in validation error to make decision.
Furthermore, we used grid-search algorithm to select optimal
hyper-parameters for the SimCLR model related to increased
precision of training data. The halting point of the training
model was after 10, 000 validation failures and then a model
checkpoint. For contrastive learning, we employed image
augmentations including cropping, which pushes the model
to encode various portions of the same image, as well as
random translation, Gaussian blur, and random zoom layers.
We concurrently loaded a large batch of unlabeled data from
healthy subject images and a smaller batch of anotated samples
from unhealthy subject images during training. We also used
random horizontal flips as the second image augmentation
method. To prevent overfitting on the few labeled samples,
stronger augmentations, such cropping, are used for contrastive
learning together with weaker ones, such horizontal flips, for
supervised classification. The encoder model was pretrained
on unanotated images with a defiend contrastive loss. The
encoder’s top is equipped with a nonlinear projection head,
which enhances the quality of encoder representations. We
employed the NT-Xent loss (Normalized Temperature-scaled
Cross Entropy), which has the following meaning: Each image
in the batch is treated as if it were its own class. Then, for
each ”class,” we have two instances (a pair of augmented
views). The representation of each perspective is compared to
the representation of every possible pair (for both augmented
versions). As logits, we employ the temperature-scaled cosine
similarity of comparing representations. Finally, as the ”clas-
sification” loss, we employ categorical cross-entropy. In order
to monitor the pretraining performance, we used two metrics
of contrastive accuracy [19] and linear probing accuracy. We
fine-tuned the encoder on the annotated subjects, by adding



a single, fully connected classification layer with a random
initialization on top.

III. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we provide details of outcomes from our
experiments by using data collection procedure and training
techniques explained in section II and recalled in 3. The values
in table II display the experimental accuracy numbers that
were recorded from different experiments organized from the
adopted self-supervised model as well as a comparison with
the proposed model in [4]. Data sizes that are utilized for
testing and training were specified in each case. It is important
to note that neither during training nor during hyper-parameter
adjustment does the trained model ever view testing data.

TABLE II: Result of fMRI brain network classification with
healthy and unhealthy data (7 fMRI network activation image
corresponds to single patient in all cases).

No. of
training subjects

No. of
testing subjects SimCLR CNN [4]

Healthy to Healthy 71 (labeled healthy) 10 81.74% 86%
Unhealthy to Unhealthy 45 (labeled unhealthy) 10 73.48% 75%
Healthy to Unhealthy 81 (labeled healthy) 55 69.21% 74%
Unhealthy to Unhealthy
With unlabeled healthy

81(unlabeled healthy)
+ 45 (labeled unhealthy) 10 76.39% —

Fine-tune on Unhealthy data from
Healthy data 45 (labeled unhealthy) 10 — 78%

We performed data randomization at several points in the
model training pipeline to provide a more consistent and
reliable output, and we make sure the model has never seen test
data before. Although the use of cross-validation techniques
could be an alternative, we were unable to consider this option
in order to keep our model simple and avoid further training
complexity, which would have increased the computing re-
sources needed for our contrastive learning model.

Initially, we trained and evaluated our model using data
from healthy control subjects. This approach gave an absolute
limit of performance with the highest accuracy of 81%, which
is almost 5% less than the CNN model proposed in [4]. The
accuracy evaluation in this case is very encouraging owing
to the known spatial consistency in of healthy image data. In
this experiment, the CNN model proposed in [4] reached the
best performance on the CNN model compared with SimSLR.
However, it has to be mentioned that a CNN method has a high
cost of annotation of the data. In contrast, the self-supervised
method can perform similarly with less annotated data.

In similar experiment, where training and testing of our
model was organized with solely unhealthy patients, a re-
duction of about 8% compared to our previous result was
recorded, which created a second baseline with fewer data.
The same behavior was observed in [4] between the classi-
fication of unhealthy patients and healthy subjects, where a
performance drop was around 11%. Although the performance
on this baseline is less than the first experiment, the results
are more important as this performance is achieved with fewer
annotated unhealthy data, which is more interesting for clinical
purposes.

On the brute-transfer strategy (learned from Healthy sub-
jects without fine-tuning on unhealthy data), as shown in

table II row 3, we trained both our self-supervised and
supervised model with 81 annotated healthy control subjects
and conducted testing on 55 unhealthy patients data. This
time, we recorded an average accuracy of 69% for different
ranges of test data sizes. It can be agreed that the brute-
transfer learning does not introduce any accuracy enhancement
in this case, similar to what was observed in [4]. Although,
this observation highlights a significant difference between
healthy and unhealthy patient data which quantifies its impact
on transferability.

The fourth row of table II shows the performance of a
new experiment where the SimCLR model is trained on a
portion of unhealthy patients (45) and all unlabelled healthy
data, which is fed to the model during the training among
augmented images (pretext task). This experiment shows the
most important result as its performance is more than the CNN
model on unhealthy patients (2nd row) and the brute-transfer
learning (3rd row) with about 3% and 7% respectively. The
advantage of the SimCLR model in this experiment compared
with other models in [4] is the use of non-labeled and few
labeled data to train a model, while for CNN and transfer
learning models, a large amount of label data is required.

The last row of the table II indicates the best performance
of the transfer learning model in [4] while the CNN model
has been trained once on all annotated healthy data. Then the
model weights have been transferred and fined-tuned on un-
healthy data. Although this model has the maximum accuracy
among other experiments, the cost of the training model is
too high as we need to use all 81 annotated healthy subjects
and 45 annotated unhealthy subjects during the training. This
cost can reduce the method’s applicability for clinical purposes
as we always lack annotated database in this domain, while
the self-supervised method can gain similar performance with
fewer data.

IV. CONCLUSION

An intriguing technique to accelerate learning in medical
imaging, where healthy patients can be easily enrolled, is
transfer learning with self-supervision. In contrast to tradi-
tional fine tuning following supervised learning, it does not
require annotation of data from healthy subjects and data from
unhealthy patients since there is no therapeutic interest. In this
work, we provided an illustration on how to identify functional
biological networks, and fortunately, the same method can be
used for any non-invasive medical imaging task. Finally, these
results further clarify the initial observation in the difference
between healthy and unhealthy data.
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Fig. 3: Pipeline of Self-Supervised Learning with fMRI functional brain network classification of healthy and unhealthy image
data.
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