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Abstract
Purpose This study aimed to investigate the impact of several ComBat harmonization strategies, intra-tumoral sub-volume 
characterization, and automatic segmentations for progression-free survival (PFS) prediction through radiomics modeling 
for patients with head and neck cancer (HNC) in PET/CT images.
Methods The HECKTOR MICCAI 2021 challenge set containing PET/CT images and clinical data of 325 oropharynx HNC 
patients was exploited. A total of 346 IBSI-compliant radiomic features were extracted for each patient’s primary tumor vol-
ume defined by the reference manual contours. Modeling relied on least absolute shrinkage Cox regression (Lasso-Cox) for 
feature selection (FS) and Cox proportional-hazards (CoxPH) models were built to predict PFS. Within this methodological 
framework, 8 different strategies for ComBat harmonization were compared, including before or after FS, in feature groups 
separately or all features directly, and with center or clustering-determined labels. Features extracted from tumor sub-volume 
clustering were also investigated for their prognostic additional value. Finally, 3 automatic segmentations (2 threshold-based 
and a 3D U-Net) were also compared. All results were evaluated with the concordance index (C-index).
Results Radiomics features without harmonization, combined with clinical factors, led to models with C-index values of 
0.69 in the testing set. The best version of ComBat harmonization, i.e., after FS, for feature groups separately and relying 
on clustering-determined labels, achieved a C-index of 0.71. The use of features extracted from tumor sub-volumes further 
improved the C-index to 0.72. Models that relied on the automatic segmentations yielded close but slightly lower prognostic 
performance (0.67–0.70) compared to reference contours.
Conclusion A standard radiomics pipeline allowed for prediction of PFS in a multicenter HNC cohort. Applying a specific 
strategy of ComBat harmonization improved the performance. The extraction of intra-tumoral sub-volume features and 
automatic segmentation could contribute to the improvement and automation of prognosis modeling, respectively.
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Introduction

Head and neck cancer (HNC) is the seventh most common 
cancer worldwide [1]. Early prognosis/outcome prediction 
would be beneficial for tailoring individualized treatment 
strategies.  [18F]FDG PET/CT is a powerful tool in manag-
ing HNC patients, thanks to the complementary nature of 
both anatomical and functional information [2]. Quantitative 
analysis by extracting high-dimensional features from medi-
cal images, known as radiomics, has shown some poten-
tial in improving clinical decision-making [3]. However, it 
still suffers from several limitations and is yet to translate 
to clinical routine. These limitations include (i) insufficient 
automation, (ii) issues with multicentric data harmoniza-
tion, (iii) modeling unresolved issues, and (iv) the “black 
box effect,” i.e., the lack of interpretability of the resulting 
multiparametric models [4–6]. Although the field of radi-
omics is currently quickly evolving toward the use of deep 
learning methods, the standard radiomics workflow relying 
on the extraction of handcrafted features from a delineated 
tumor volume still has potential value, especially for the 
easier explainability of the resulting models and the capabil-
ity to learn on limited size datasets [7].

Multicenter modeling is crucial in facilitating the clini-
cal translation of radiomics, because it can allow producing 
high level of clinical proof regarding their added value with 
respect to the usual clinical factors relied upon for clinical 
decision. However, it is a challenging task because the image 
properties (e.g., intensity, spatial resolution, textures) are 
affected by the variations of imaging devices, acquisition 
protocols, and reconstruction algorithms [8]. First, standard-
izing the procedures of image acquisition and quantitative 
analysis, such as following the EANM EARL initiative for 
PET/CT imaging [9], is recommended for multicentric clini-
cal trials; however, it can only be exploited in prospective 
data collection and has been shown to be insufficient [10]. 
Moreover, some post-processing techniques (i.e., intensity 
mapping [11], generative adversarial networks [12]) have 
been used to harmonize images. Instead of processing 
images, statistical harmonization of features (e.g., ComBat 
[13]) is widely used for multicenter dataset, with the advan-
tage of not requiring feature re-extraction and being appli-
cable to retrospectively collected data [14, 15]. Still, 18% 
of studies using ComBat reported no benefit after harmo-
nization [16]. Thus, more efficient versions of ComBat for 
radiomics feature harmonization need to be further explored 
[17].

Standard engineered radiomic features have been used 
extensively in previous studies. They are typically calcu-
lated across the entire tumor 3D volume or a selected 2D 
slice. This approach may not be sufficient to characterize 
intra-tumoral regional variations and capture the underlying 

biological process [18]. A finer quantification of intra-
tumoral spatial heterogeneity in sub-volume level was 
reported with potential to better predict outcome [19, 20]. 
Moreover, a vast majority of current radiomics studies are 
based on semi-automatic or even fully manual contours of 
tumor volume, which is time-consuming and error-prone and 
hinders the processing of very large datasets [5, 21]. It is 
thus useful to investigate the application of faster and more 
reproducible automatic segmentation toward building fully 
automated radiomics pipelines.

Overall, this study had 3 main objectives within the 
context of prognosis prediction for HNC patients through 
a radiomics pipeline, namely to investigate (i) various strat-
egies for ComBat harmonization of radiomic features, (ii) 
complementary value of intra-tumoral sub-volume char-
acterization beyond classical radiomics features, and (iii) 
impact of relying on automatic segmentation. We decided 
to carry out these analyses in a publicly available dataset 
containing a large, well-curated, and annotated multicentric 
HNC cohort. This dataset was made available in the HEad 
and neCK TumOR segmentation and outcome prediction 
challenge (HECKTOR) organized in 2021, hosted by the 
International Conference on Medical Image Computing 
and Computer Assisted Intervention1 (MICCAI) [22]. This 
ensures a higher reproducibility of our work, and it allows 
a comparison of our performance with those obtained by 
challengers in the 2021 edition.

Materials and methods

The overall study design is shown in Fig. 1.

Dataset

This study used the entire dataset from the HECKTOR 2021 
challenge, which contains 325 patients (224 training and 101 
testing) from six centers (Table 1) with pre-treatment  [18F]
FDG PET/CT images (imaging protocols in Supplementary 
Material E1), manually (by clinical experts) delineated gross 
tumor volume (GTV), bounding box coordinates locating the 
oropharynx region containing the tumor, and clinical infor-
mation. The data from one center, CHUP (Poitiers, France), 
were split into the training and testing sets. The predicted 
endpoint is progression-free survival (PFS) and the evalua-
tion metric is the concordance index (C-index). Clinical data 
without missing values is provided in Table 2. The dataset 
is available upon request through the challenge website.2

1 www. micca i2021. org.
2 https:// www. aicro wd. com/ chall enges/ miccai- 2021- heckt or.
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Fig. 1  Overview of the study design and the radiomics pipeline (a). Detailed illustration for the characterization of tumor sub-volumes (b)

Table 1  The statistics of 
multicenter datasets

Center Device No. of patients Set

HGJ Discovery ST, GE Healthcare 55 Training
CHUS Gemini GXL 16, Philips 72 Training
HMR Discovery STE, GE Healthcare 18 Training
CHUM Discovery STE, GE Healthcare 56 Training
CHUP Biography mCT 40 ToF, Siemens 23/48 Training/testing
CHUV Discovery D690 ToF, GE Healthcare 53 Testing
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Pre‑processing and feature extraction

PET/CT images were acquired by the various scanners used 
in each center (Table 1). Details of imaging protocol and 
GTV delineation are provided in [22]. All CT scans were 
acquired without contrast agent. PET images were converted 
to standardized uptake values (SUV). PET images were resa-
mpled to the same resolution as CT images by linear inter-
polation for utilizing the provided GTV contours. Radiom-
ics features were extracted from both PET and CT images 
using the open-source Imaging Biomarker Standardization 
Initiative (IBSI) compliant package of Standardized Envi-
ronment for Radiomics Analysis (SERA) [23]. In total, 346 
features were calculated from the provided GTV contours 
(or the mask of automatic segmentations, see “Impact of 
automatic segmentation”) for each patient after resampling 
images to isotropic voxel of 2 × 2 × 2  mm3 through linear 

interpolation and a fixed bin number (FBN) discretization 
with 64 bins. Radiomics features are summarized in Sup-
plementary Table S1.

Prognosis analysis

Radiomics model construction

Feature selection (FS) and model building (Fig. 1a) exploited 
the training set only to maintain the independence of exter-
nal testing. Twenty percent of the training data was randomly 
selected as an internal validation set for FS. First, the non-
meaningful features with variance of zero were removed, 
and Z-score normalization was performed for each feature. 
Second, features were ranked according to the C-index in the 
univariate Cox proportional-hazards (CoxPH) model, and 
those with a C-index equal to 0.50 or lower were removed. 

Table 2  Clinical information of 
HNC cohorts

Characteristic All (N = 325) Training (N = 224) Testing (N = 101) p

Age, year
  Median (range) 61 (34–90) 63 (34–90) 62 (40–84) 0.176
  Mean ± SD 62.3 ± 9.4 62.8 ± 9.5 61.2 ± 9.1

Gender, no. (%)
  Male 249 (76.6%) 167 (74.6%) 82 (81.2%) 0.191
  Female 76 (23.4%) 57 (25.5%) 19 (18.8%)

T stage, no. (%)
  T1 34 (10.5%) 26 (11.6%) 8 (7.9%) 0.063
  T2 121 (37.2%) 94 (42.0%) 27 (26.7%)
  T3 102 (31.4%) 58 (25.9%) 44 (43.6%)
  T4 68 (20.9%) 46 (20.5%) 22 (21.8%)

N stage, no. (%)
  N0 45 (13.8%) 33 (14.7%) 12 (11.9%) 0.101
  N1 46 (14.2%) 26 (11.6%) 20 (19.8%)
  N2 208 (64.0%) 150 (67.0%) 58 (57.4%)
  N3 26 (8.0%) 15 (6.7%) 11 (10.9%)

M stage, no. (%)
  M0 316 (97.2%) 220 (98.2%) 96 (95.1%) 0.108
  M1 9 (2.8%) 4 (1.8%) 5 (4.9%)

TNM stage
  I 8 (2.4%) 4 (1.8%) 4 (4.0%) 0.306
  II 26 (8.0%) 19 (8.5%) 7 (6.9%)
  III 48 (14.8%) 29 (13.0%) 19 (18.8%)
  IV 243 (74.8%) 172 (76.8%) 71 (70.3%)

Treatment
  Radiotherapy 37 (11.4%) 27 (12.1%) 10 (9.9%) 0.572
  Chemo-radiotherapy 288 (88.6%) 197 (87.9%) 91 (90.1%)

PFS, days
  Median (range) 999 (37–3067) 1170 (106–3067) 596 (37–2451)  < 0.05
  Mean ± SD 1067 ± 626 1224 ± 602 721 ± 536
  Progression 96 (29.5%) 56 (25.0%) 40 (39.6%) 0.072
  Censoring 229 (70.5%) 168 (75.0%) 61 (60.4%)
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Spearman rank correlation analysis was then relied upon to 
identify redundant features. For features with a correlation 
of 0.60 or above, the feature with the lower C-index was 
removed. The optimal subset was ultimately determined by 
the least absolute shrinkage and selection operator (LASSO) 
Cox regression algorithm, which was adopted to construct 
multivariate CoxPH models for PFS prediction. Associations 
between features and PFS were reported as hazard ratio (HR) 
and 95% confidence intervals (CIs).

ComBat harmonization strategies

ComBat is a data-driven method initially developed to cor-
rect for the batch-effect in genomics [13], and then used in 
radiomics studies to harmonize multicentric data [14, 15]. 
We explored several strategies by applying ComBat before 
(“B”) or after (“A”) FS, to all features (“A”) or to different 
feature groups separately (“G”), and with center (“C”) or 
auto-derived labels through unsupervised K-means cluster-
ing (“K”). This led to eight models denoted BAC, BAK, 
BGC, BGK, AAC, AAK, AGC, and AGK. For models AGC 
and AGK, one and two features respectively were elimi-
nated due to their correlation of more than 0.6 (criterion 
of FS); then, the features were replaced by the correspond-
ing primary features without harmonization to generate two 
derived models, namely AGC * and  AGK*. Thus, 10 ComBat 
models were investigated in this study. Clustering labels of 
the training set were obtained by a K-means clustering algo-
rithm. The number of clusters was determined in the range 

[2, 10] by the optimal Silhouette score. Clustering labels of 
the testing set were generated through label propagation by 
linear discriminant analysis (Fig. 2), which maintained the 
independence of testing. The one-way ANOVA test with a 
significant level set as p < 0.001 was adopted to split features 
into different groups which were affected by center-effect 
to different degrees (Fig. 3). Non-parametric estimation 
was used for ComBat harmonization, and no covariate was 
introduced.

Hybrid clinical‑radiomics model construction

Feature selection for clinical features was performed by 
univariate CoxPH models together with correlation analysis 
with the same threshold parameters described above. Hybrid 
clinical-radiomics models were constructed by combining 
the selected clinical and radiomics features via multivariate 
CoxPH models.

Tumor sub‑volume characterization

The characterization of intra-tumoral spatial heterogeneity in 
sub-volumes of the tumor consisted of three steps (Fig. 1b). 
First, a two-stage voxel clustering performed at both indi-
vidual and population levels was used to split each tumor 
into 3 non-overlapping sub-volumes, taking PET, CT, and 
their corresponding local entropy-filtered images as inputs 
(details in Supplementary Material E2). Second, based on 
the generated sub-volume maps, 19 quantitative metrics 

Fig. 2  The process of clustering 
label identification. K-means 
clustering algorithm identi-
fies the clustering labels of the 
training set (a, b), while label 
propagation is used to obtain 
the labels of testing set (c, d)
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were calculated for each patient to depict their spatial rela-
tionships (see Supplementary Table S2). Absolute counts 
and the physical volume of each sub-volume were firstly 
extracted (6 metrics). Then, gray-level co-occurrence matrix 
(GLCM) was constructed to depict the spatial interactions of 
different sub-volumes and peri-tumoral region. Here, three 
diagonal elements represented the connected size of each 
sub-volume; six off-diagonal elements represented the size 
of border where different sub-volumes intersect (9 metrics). 
Moreover, 4 statistical metrics of GLCM, namely contrast, 
correlation, energy, and homogeneity, were extracted. Third, 
principal component analysis (PCA) was applied to reduce 
the dimensionality of these metrics due to their high cor-
relations. The mean and principal component coefficients 
of the training set were used to transform the testing set into 
the same domain. Two uncorrelated principal components 
were extracted and concatenated into one signature by the 
CoxPH model to characterize intra-tumoral spatial hetero-
geneity. The complementary value in predicting PFS of the 

sub-volume signature beyond the classical clinical-radiomics 
model was evaluated.

Impact of automatic segmentation

The entire workflow described above was first applied by 
relying on the provided GTVs, which were manually con-
toured by experts. To investigate whether the manual deline-
ation could be replaced by a fully automated pipeline, we 
implemented three fully automatic segmentation methods 
and then repeated the entire pipeline described above, using 
the different segmented volumes as inputs. A relative thresh-
old of 41% of SUV

max
 and a fixed threshold of SUV

above2.5
 

were separately applied to the provided bounding box in the 
PET image to extract the tumor volume (the correspond-
ing volume was replicated on the CT image). Additionally, 
a deep convolutional neural network based on 3D U-Net 
architecture [24] was trained for fully automatic tumor seg-
mentation with both PET and CT modalities as inputs (see 

Fig. 3  Kaplan–Meier curves for radiomics (a), clinical (b), and clin-
ical-radiomics (c) model in the training and testing set, respectively. 
Kaplan–Meier curves for the sub-volume signature (d), clinical-radi-

omics model combined with the sub-volume signature (CRS model) 
without ComBat harmonization (e), and CRS model with ComBat 
strategy of AGK (f)
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Supplementary Material E3). The Dice coefficient was used 
to assess the overlap between the provided GTV and the 
resulting automated contours.

Statistics and model evaluation

Differences in clinical characteristics between the training 
and testing sets were assessed by the unpaired t-test or chi-
square test (Table 2). In-Group Proportion (IGP) statistic [25] 
was used to measure the reproducibility of tumor sub-vol-
ume partitioning. The differences of imaging characteristics 
among three sub-volumes were measured by the ANOVA 
test. All models were evaluated on the external testing set 
using the C-index, integrated Brier score (IBS). Further eval-
uation consisted in selecting the median value of the prognos-
tic signature in the training set and using it to stratify patients 
of the testing set into high- and low-risk groups, evaluating 
the difference by the log-rank test and Kaplan–Meier curves. 
For each model with or without harmonization, all training 
data were bootstrapped with 1000 repetitions to obtain the 
confidence intervals of each assessment metric [26], and 
tested on one independent testing set. C-index value differ-
ences between manual and automatic segmentation were 
evaluated by the paired non-parametric t-test. We also com-
pared our results with the best ranked challengers in MIC-
CAI HECKTOR 2021 challenge Task 2 (i.e., the reference 
contours not available) and Task 3 (i.e., with the reference 

contours available) [22]. The corrected p-value by Bonferroni 
correction below 0.05 was considered statistically significant. 
This study followed the guideline of Transparent Reporting 
of a multivariable prediction model for Individual Prognosis 
or Diagnosis (TRIPOD) [27], and was evaluated using the 
Quality Radiomics Score.3 A completed checklist and score 
table are provided in Supplementary Tables S3 and S4.

Results

Patients’ characteristics

The clinical characteristics of the 325 HNC patients are sum-
marized in Table 2. There were no significant differences 
between the training and testing sets for all characteristics 
(corrected p = 0.063–0.572) except for the PFS (p < 0.01).

Performance of prognostic models

With no harmonization, four radiomic features (PET_
IS_range, CT_Morph_admvee, CT_LI_local_peak, CT_
DZM_sde) were ultimately selected to construct a radiom-
ics model with a C-index of 0.649 in testing (Table 3). Five 

Table 3  Univariate and multivariate analysis of clinical, radiomics, and their combined model, respectively

Abbreviation: Morph, morphology; IS, intensity-based statistics; LI, local intensity; DZM, gray-level distance zone matrix; admvee, area density 
(minimum volume enclosing ellipsoid); sde, small distance emphasis; HR, hazard ratio; CI, confidence interval; NA, not applicable. The 95% CIs 
of HR and C-index are shown in parentheses

Characteristics Univariate analysis Multivariate analysis

Univariate model Clinical/radiomics model Clinical-radiomics model

HR (95%CI) C-index HR (95%CI) C-index HR (95%CI) C-index

Age 1.01 (0.97–1.04) 0.524 0.97 (0.51–1.86) Training: 0.671 (0.596–
0.715)

1.13 (0.85–1.49)

Gender 1.21 (0.62–2.40) 0.527 1.02 (0.99–1.05) Testing: 0.654 (0.599–
0.701)

0.82 (0.62–1.08)

T stage 1.66 (1.22–2.29) 0.609 1.57 (1.15–2.13) 1.11 (0.82–1.50)
N stage 1.07 (0.72–1.59) 0.561 1.08 (0.76–1.54) 1.02 (0.74–1.42)
M stage 41.6 (8.27–209) 0.592 29.5 (8.13–107) 1.41 (1.01–1.98) Training: 0.694 

(0.628–0.738)
TNM stage 1.11(0.72–1.71) 0.545 NA
Treatment 1.24 (0.48–3.21) 0.522 NA Testing: 0.690 

(0.623–0.729)
PET_IS_range 1.37 (1.05–1.78) 0.649 1.28 (0.99–1.66) Training: 0.630 (0.573–

0.686)
34.3 (8.67–136)

CT_Morph_admvee 0.87 (0.65–1.15) 0.630 0.81 (0.61–1.06) Testing: 0.649 (0.590–
0.670)

1.11 (0.77–1.60)

CT_LI_local_peak 1.30 (0.99–1.72) 0.544 1.06 (0.82–1.39) 1.02 (0.99–1.05)
CT_DZM_sde 0.86 (0.64–1.16) 0.515 0.89 (0.65–1.20) 0.99 (0.51–1.90)

3 https:// www. radio mics. world/ rqs.
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clinical features (age, gender, and T, N, and M stages) were 
selected in a clinical model achieving a C-index of 0.654 
in testing. The hybrid clinical-radiomics model yielded 
higher performance with a C-index of 0.690. Details of 
model building and correlation analysis of features are 
provided in Supplementary Material E4. These models 
could significantly distinguish patients between high and 
low survival risk (log-rank test, p < 0.05), except for the 
clinical model (log-rank test, p = 0.057). Kaplan–Meier 
curves of radiomics, clinical, and the hybrid model are 
displayed in Fig. 3a to c.

Effect of ComBat harmonization

Table 4 provides the overall results of 11 models including 
one model without harmonization and ten models with 
different ComBat strategies using three evaluated met-
rics (C-index, log-rank test, and IBS) in both training and 
testing sets, and their confident intervals are provided in 
Table S5. Each strategy under comparison is provided for 
radiomics (R), clinical-radiomics (CR), and clinical-radi-
omics with sub-volume signature (CRS) models, respec-
tively. The number of included features after FS is listed 
in Table 4. Based on K-means clustering, two clusters 
were identified as optimum to take as batches for three 
models (BAK, BGK, and AAK), while seven and two 
clusters were identified in model AGK for feature group 
with p ≥ 0.001 and p < 0.001, respectively (Supplementary 
Fig. S1). An example of feature distribution before and 
after ComBat in model AGK was plotted in Fig. 4 and 
Supplementary Fig. S2.

Overall, the variability of C-index values on the testing 
set across all strategies and models under comparison was 
relatively large, with values ranging between 0.544 and 
0.719, a median of 0.679, and a mean of 0.668 ± 0.045 A 
similar observation can be made on the IBS from 0.191 to 
0.248 with a median of 0.203 and a mean of 0.209 ± 0.017. 
Harmonization led to unchanged or slightly decreased prog-
nostic performance of models, except for a few strategies, 
namely after FS (rather than before), harmonizing by fea-
ture groups (instead of harmonizing all types of features 
together), and using labels automatically obtained through 
clustering rather than the center labels. The best performance 
of the clinical-radiomics model was achieved by model AGK 
with the C-index of 0.713 in testing compared to 0.690 with-
out harmonization (Table 4). A similar improvement was 
observed with the model further combining sub-volume 
signature (model  AGK* with C-index 0.719 vs. 0.699 with-
out harmonization). Note that although these improvements 
can be considered small in absolute terms, they could mean 
moving up or down several ranks in the HECKTOR chal-
lenge ranking (see next sections for comparison).

Sub‑volume characterization

Three intra-tumoral sub-volumes were consistently identi-
fied in both training and testing sets, with IGP values of 
0.89, 1.00, and 0.97. Four imaging inputs in each sub-
volume showed consistent distribution between the train-
ing (Fig. 5a) and testing sets (Supplementary Fig. S3). As 
displayed by Fig. 5b, we observed that sub-volume 1 (green 
label) was associated with the highest PET SUV and local 
entropy values, and is usually located in the core of the 
tumor. Sub-volume 3 (red label) had moderate PET SUV 
and high PET and CT entropy values and is usually located 
at the edges of the tumor, whereas sub-volume 2 (blue label) 
is usually located at the contralateral border of the tumor 
with the lowest PET SUV and local entropy.

Individual performances of 19 metrics are provided in 
Supplementary Table S6. The first two principal compo-
nents that depicted a total variance of 83.3% and 14.6% were 
extracted to build the sub-volume signature. This signature 
showed low correlations with clinical features (Spearman 
rank correlation < 0.5), and potential prognostic power 
(C-index, 0.602 in testing set). The median value of the sub-
volume signature determined in the training set led to signifi-
cant risk stratification for testing patients (HR = 2.02, 95% 
CI: 1.09–3.77, log-rank p = 0.039; Fig. 3d). We observed 
that the predictive power of the established clinical-radi-
omics model was consistently improved after combining 
sub-volume signature (Fig. 3e, f), whether it used ComBat 
harmonization or not (C-index 0.663–0.713 vs. 0.676–0.719 
in testing; Table 4).

Impact of alternative contours through automatic 
segmentation

The U-Net had a good performance for tumor segmenta-
tion compared to the reference GTV contours by experts, 
with averaged Dice of 0.75 and 0.72 in training and test-
ing sets respectively. By comparison, the two threshold-
based approaches led to completely inappropriate delinea-
tion (averaged Dice, 0.114–0.311). Indeed, because it was 
applied automatically without specific constraints in the 
bounding box, it often included brain and node tissues 
(examples in Fig. 6a). Prognostic performances of models 
obtained using automatic segmentations with/without har-
monization are detailed in Supplementary E5 and Tables 
S7, S8, and S9. The best result for each segmentation is 
presented in Table 5. Boxplots of Dice and C-index are 
displayed in Fig. 6b and c. Surprisingly, despite relying 
on inappropriate volumes of interest (extracting features 
from non-tumoral tissues in addition to the tumor vol-
ume), the models based on 41% SUV

max
 demonstrated 

better performance with a C-index of 0.704 achieved. 
Using the SUV above 2.5 segmentations, the C-index was 
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0.685. Finally, the U-Net segmentation, despite providing 
a good overlap with the expert contours, led to a C-index 
of 0.674. Although the performance of models through 
automatic segmentations did not outperform the manual 
GTV (C-index 0.719), they still demonstrated their poten-
tial in prognosis prediction.

Comparison with other challengers’ results

Table 5 lists the best results obtained in the HECKTOR 2021 
challenge by other participants, relying on either a standard 
radiomics machine learning (ML) approach or deep learn-
ing (DL) models. Our best model (C-index, 0.719) reached 

Fig. 4  The distribution of four selected features among six centers 
before (a–d) and after (e–h) ComBat harmonization. After ComBat 
strategy of AGK, the “batch-effect” was decreased for three features 

(decreased p-value of one-way ANOVA test), except one feature 
(CT_LI_local_peak). ComBat strategy of AAC reduced batch-effect 
for all four features, which is provided in Fig. S2

Fig. 5  Four imaging inputs in each of three sub-volumes in the training set (a). Results of intra-tumoral partitioning of three patients (b). Sub-
volumes 1, 2, and 3 are indicated by green, blue, and red, respectively
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Fig. 6  Results of three auto-
matic segmentations (Patient 
ID: CHGJ-018), with the Dice 
of 0.326, 0.147, and 0.898 
respectively (a). Dice distribu-
tions of the training and testing 
sets (b). Boxplot of C-index 
values with and without Com-
Bat strategies in the context 
of automatic segmentations 
and the manual GTV (c). 
Significance was calculated by 
the paired non-parametric t-test 
(ns, not statistically significant, 
**p < 0.01)

Table 5  Comparison with the results of automatic segmentation and HECKTOR challenge on the same dataset

Abbreviation: GT, ground truth segmentation that was manual delineated by clinicians; Dice, the mean values across the training or testing set; 
p-value, log-rank test; IBS, integrated Brier score

Model Clinical 
features

Harmonization GT Cohort Dice C-index p-value IBS

Manual GTV ML Yes Yes Yes Training – 0.698 1.11e − 05 0.146
Testing – 0.719 7.20e − 04 0.193

41% SUVmax ML Yes Yes No Training 0.276 0.750 5.65e − 06 0.133
Testing 0.311 0.704 0.022 0.193

SUV 2.5 ML Yes Yes No Training 0.118 0.681 1.22e − 04 0.144
Testing 0.114 0.685 0.002 0.201

U-Net ML Yes Yes No Training 0.750 0.693 1.25e − 04 0.146
Testing 0.720 0.674 0.014 0.205

Saeed et al. [30] DL Yes No No (Task 2) Testing – 0.720 – –
Naser et al. [32] DL Yes No Yes (Task 3) Testing – 0.698 – –
Salmanpour et al. [28] ML Yes No No (Task 2) Testing 0.680 0.683 – –
Murugesan et al. [31] DL Yes No No (Task 2) Testing 0.780 0.660 – –
Starke et al. [29] ML Yes No Yes (Task 3) Testing – 0.659 – –

1730 European Journal of Nuclear Medicine and Molecular Imaging  (2023) 50:1720–1734

1 3



superior performance compared to the ML approaches simi-
lar to ours (0.683 [28] and 0.659 [29]), whereas it was found 
close to the best result (C-index, 0.720 [30]) and better than 
the other DL approaches (0.660 [31] and 0.698 [32]).

Discussion

The present study investigated the use of a radiomics pipe-
line applied to PET/CT images combined with different 
ComBat strategies to build prognostic models in a multi-
centric HNC cohort. Our results suggest that the standard-
ized radiomics features without any harmonization showed 
relatively good robustness with respect to multicentric varia-
tions, providing models with predictive power slightly higher 
than relying on clinical factors alone. However, some of the 
investigated harmonization strategies could further improve 
the predictive ability of the resulting models. Although 
this improvement was moderate, it would still be enough 
to win the challenge (Task 3) or at least be among the best 
results (Table 5). We also evaluated a previously proposed 
approach to characterize intra-tumoral spatial heterogeneity 
and the resulting sub-volume signature could provide com-
plementary prognostic information beyond the established 
clinical-radiomics model, and consistently improve the accu-
racy of risk stratification. Finally, automatic segmentations 
were applied to evaluate the feasibility of a fully automated 
radiomics pipeline, which exhibited close but slightly lower 
performance than relied on manually contours.

In this work, we only used IBSI standardized features 
[23] without any complex filtering. Deep features and more 
sophisticated modeling algorithms were also not consid-
ered, such as DeepCox [33] and random survival forest 
[34]. They are promising, however are more time-con-
suming and potentially increase the burden of parameter 
optimization and model interpretation, especially given the 
fact we had numerous models to compare. Our modeling 
process we chose to implement is computationally efficient 
and relatively stable. When randomly selecting other vali-
dation sets (20% of the training set), the same four features 
were finally selected, which suggests a good stability. We 
emphasize that simplicity is potentially an important factor 
to build reliable predictive models as well as to improve 
the generalization ability of the trained model. This point 
echoes the opinion in the overview of the 2021 HECK-
TOR challenge [22]. Previous studies further compared the 
performance of PET and CT separately [35], and showed 
equally good discriminative power for the two modalities 
with complementary prognostic information. Our results 
are also in line with this observation (see Supplementary 
Table S10 for results using only CT or PET), and we only 
reported resulting combining features from the two modal-
ities since it led to the best performance.

This study is a relatively comprehensive investigation for 
the potential impact of ComBat harmonization, which had 
not been specifically addressed by most of the participants 
during the challenge [22]. The key point we observed is that 
ComBat harmonization led to either degraded or improved 
performance, depending on the chosen strategy. This sug-
gests it should be performed separately for specific tumor 
type or patient population, but also separately for specific 
features or feature groups. In this study, we first detected 
multicentric effect in features (i.e., ANOVA test) and then 
split them into different groups for ComBat separately. Our 
results suggest that applying ComBat to feature groups 
separately improves performance compared to harmoniz-
ing all features together. In the latest guideline on the use of 
ComBat [16], it was stated that the ComBat transformation 
should be applied to the data affected by an imaging effect 
in the same way. Moreover, we found that applying ComBat 
before FS did not yield satisfactory results (Table 4), which 
is consistent with a recent study [36]. One hypothesis is that 
the features affected by heterogeneous imaging effects were 
put together to determine an identical transformation, so 
an adjustment appropriate for each feature cannot easily be 
determined. In our study, only four features were identified 
after FS; thus, we could easily observe their distributions 
separately and then adjust them by feature-specific trans-
formation. That may partially explain why previous stud-
ies applying ComBat directly failed to obtain better results 
[16]. Both of ComBat decisions (i.e., for feature groups 
separately and after FS) indicated that applying ComBat in 
a relatively small feature group seems to be more effective. 
When taking this to the extreme, i.e., each feature is its own 
group, this basically comes down to z-standardization per 
center that was explored by previous studies [37, 38]. We 
also compared this strategy with our methods (Supplemen-
tary Material E6). It was shown that the performance of 
z-standardization per center (testing C-index, 0.587, 0.672, 
and 0.687 for radiomics, CR, and CRS model, respectively) 
was somewhere between the performance of the ComBat 
applied before FS and after FS, and between all features 
and feature groups (Table 4). This suggests that the Com-
Bat strategy exploiting shared information between features 
is beneficial to reduce the batch-effect while maintain the 
biological variability of the dataset. Furthermore, given 
the imaging effect exists between and within centers, the 
labels determined by unsupervised clustering algorithms 
(i.e., K-means, hierarchical clustering) showed potential, 
which was also observed by a previous study where the 
imaging properties were highly heterogeneous [39]. In addi-
tion, the quantitative contributions of our ComBat strategies 
were assessed. The results showed that each choice (i.e., 
applying ComBat after FS, for feature groups and with clus-
tering-determined labels) improved the C-index by 8.9%, 
10.9%, and 4.4% compared to its alternative, respectively 

1731European Journal of Nuclear Medicine and Molecular Imaging  (2023) 50:1720–1734

1 3



(Supplementary Material E7). Both parametric and non-
parametric ComBat [13] were tested, but we only report 
the results of the non-parametric version since it produced 
the best results.

Fully automated segmentations were implemented to 
investigate their potential impact in PFS prediction. A satis-
fying finding was that the segmentations generated through 
a U-Net model led to a slightly decreased but close perfor-
mance compared to the reference manual contours, despite 
overlap coefficients below 0.8. A recent study explored the 
benefit of cleaning the contours specifically for radiomics in 
the same dataset, and reported that using dedicated contours 
performed the best in prediction [40], which is consistent 
with our results. However, a surprising finding was that com-
pletely inappropriate contours obtained through threshold 
approaches leading to include in the analysis non-tumoral 
areas (lymph nodes, but also brain or other physiological 
uptakes in the bounding box) led to models with good per-
formance, in some cases even better than the ones focus-
ing on the tumor only. This suggests that prognosis relevant 
information could be detected by automatic segmentation to 
a certain degree, which may exist not only in primary tumor 
but also in other metabolically active regions (i.e., lymph 
nodes). Moreover, several studies in the HECKTOR chal-
lenge reported simple segmentation methods, such as thresh-
old and bounding box, outperforming the models obtained 
when using the provided reference contours (Task 3), either 
within the context of standard radiomics approaches or deep 
learning frameworks [22]. Sepehri et al. had similar findings 
in a lung cancer–related study [41]. These results potentially 
emphasize on the “non-essential” nature of dedicated tumor 
contours or overall delineation accuracy prior to extracting 
features. Nevertheless, our results based on the U-Net seg-
mentation show the entire process can be fully automated, 
allowing for reproducible and large-scale radiomics studies.

Another objective of this study was to explore the intra-
tumoral spatial heterogeneity characterization at subregional 
level through tumor volume partitioning. This step utilized 
patient information derived from both individual and pop-
ulation levels, and incorporated the multi-modality infor-
mation [19, 20]. The volume of each sub-volume and their 
mutual relationships also with peri-tumor tissue were con-
sidered to develop an imaging signature. As shown in Fig. 5, 
it is an interesting finding that sub-volume 3 (red label) with 
high PET and CT entropy values is usually located in the 
border of the tumor, which may indicate the invasive bor-
der and expansive direction of tumor. Also, we found that 
tumors in the high-risk group were associated with a larger 
volume of sub-volume 3 and a larger size of its interaction 
with the tumor border (Supplementary Fig. S4). This finding 
is in line with the well-established biology research related 
to tumor aggressiveness [42]. Our prognostic analysis indi-
cated that the sub-volume imaging signature could provide 

complementary information beyond the classical clinical-
radiomics model. Especially for models without adequate 
predictive power of risk prediction, the sub-volume signa-
ture could help them to achieve significant risk stratification 
(Table 4).

Our study also presents some limitations. First, a signifi-
cant difference regarding PFS was highlighted between the 
training and testing sets, which is a specific challenge of 
HECKTOR 2021. We therefore carefully checked the con-
ditions of batch normalization, and plotted the calibration 
curves of our models (see Supplementary Material E8). It 
should be emphasized on that most of the models trained 
by us and other challengers did not exhibit a very large drop 
of performance between training and testing. The dataset 
has ~ 30% of patients with progression, which is consistent 
with the real-world population after radiotherapy treatment. 
Second, when constructing clinical and radiomics models, 
several features without strict significance in univariate 
analysis were included into the model, since they were auto-
matically selected by the Lasso-Cox algorithm. Third, we 
only included textural features computed with a fixed bin 
number discretization, which may have been suboptimal for 
some features [21]. Moreover, although the proposed sub-
volume signature showed consistently improved performance 
in prognosis, this improvement was small and not significant. 
Finally, compared to the results of the 2021 HECKTOR chal-
lenge, our models never exceeded the first place of Task 2 
[34] (C-index, 0.720) which was obtained with a deep learn-
ing model with no segmentation. However, the advantage of 
our model is the use of standard features within classical radi-
omics pipeline, which could provide a better explainability 
and interpretability than a black box deep learning technique. 
In future work, we intend to replicate the present investiga-
tions in the larger datasets of the next HECKTOR editions.

Conclusion

The classical radiomics pipeline combined with the specific 
ComBat strategies was beneficial to predict PFS in a multi-
center HNC cohort using pre-treatment PET/CT images. The 
intra-tumoral sub-volume characterization could provide 
complementary prognostic information beyond the estab-
lished clinical-radiomics model. Furthermore, automatic 
segmentations embedding in radiomics pipeline exhibited 
the potential for prognosis that may obviate the need for ded-
icated tumor contours toward large-scale radiomics studies.
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Acknowledgements We thank the organizers of the HECKTOR 2021 
challenge for authorizing the use of the dataset.

1732 European Journal of Nuclear Medicine and Molecular Imaging  (2023) 50:1720–1734

1 3

https://doi.org/10.1007/s00259-023-06118-2


Author contribution Hui Xu, Nassib Abdallah, Jean-Marie Marion, 
Pierre Chauvet, Clovis Tauber, and Thomas Carlier searched relevant 
literatures and collected the data. Hui Xu, Lijun Lu, and Mathieu Hatt 
designed this study. Hui Xu, Nassib Abdallah, and Mathieu Hatt per-
formed the data analysis and interpretation. Hui Xu and Mathieu Hatt 
drafted the primary manuscript, and all authors edited and reviewed it.

Funding This work was partly funded by (1) regions Bretagne, Pays 
de la Loire et Centre through the project HARMONY of the Cancero-
pole Grand Ouest; and (2) the National Natural Science Foundation of 
China under grants 81871437 and 12026601, and the China Scholar-
ship Council under grant 202108440348.

Data availability Datasets are available through the challenge website 
of https:// www. aicro wd. com/ chall enges/ miccai- 2021- heckt or.

Code availability Codes are available from the corresponding author 
on reasonable request.

Declarations 

Ethics approval This is a retrospective study of a publicly available 
dataset. The requirement of informed consent was waived.

Conflict of interest The authors declare no competing interests.

References

 1. Chow L. Head and neck cancer. N Engl J Med. 2020. https:// doi. 
org/ 10. 1056/ NEJMr a1715 715.

 2. Hatt M, Majdoub M, Vallieres M, Tixier F, Le Rest CC, Groheux 
D, et al. 18F-FDG PET uptake characterization through texture 
analysis: investigating the complementary nature of heterogeneity 
and functional tumor volume in a multi-cancer site patient cohort. 
J Nucl Med. 2015. https:// doi. org/ 10. 2967/ jnumed. 114. 144055.

 3. Lambin P, Leijenaar R, Deist TM, Peerlings J, de Jong E, van Tim-
meren J, et al. Radiomics: the bridge between medical imaging 
and personalized medicine. Nat Rev Clin Oncol. 2017. https:// doi. 
org/ 10. 1038/ nrcli nonc. 2017. 141.

 4. Hatt M, Krizsan AK, Rahmim A, Bradshaw TJ, Costa PF, Forgacs 
A, et al. Joint EANM/SNMMI guideline on radiomics in nuclear 
medicine. Eur J Nucl Med Mol I. 2022. https:// doi. org/ 10. 1007/ 
s00259- 022- 06001-6.

 5. Hatt M, Cheze LRC, Antonorsi N, Tixier F, Tankyevych O, Jaouen 
V, et al. Radiomics in PET/CT: current status and future AI-based 
evolutions. Semin Nucl Med. 2021. https:// doi. org/ 10. 1053/j. 
semnu clmed. 2020. 09. 002.

 6. Hatt M, Le Rest CC, Tixier F, Badic B, Schick U, Visvikis D. 
Radiomics: data are also images. J Nucl Med. 2019. https:// doi. 
org/ 10. 2967/ jnumed. 118. 220582.

 7. Papadimitroulas P, Brocki L, Chung NC, Marchadour W, Vermet 
F, Gaubert L, et al. Artificial intelligence: deep learning in onco-
logical radiomics and challenges of interpretability and data har-
monization. Physica Med. 2021. https:// doi. org/ 10. 1016/j. ejmp. 
2021. 03. 009.

 8. Yan J, Chu-Shern JL, Loi HY, Khor LK, Sinha AK, Quek ST, 
et al. Impact of image reconstruction settings on texture features 
in 18F-FDG PET. J Nucl Med. 2015. https:// doi. org/ 10. 2967/ 
jnumed. 115. 156927.

 9. Boellaard R, Delgado-Bolton R, Oyen WJ, Giammarile F, Tatsch 
K, Eschner W, et al. FDG PET/CT: EANM procedure guidelines 
for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging. 
2015; https:// doi. org/ 10. 1007/ s00259- 014- 2961-x.

 10. Pfaehler E, van Sluis J, Merema BB, van Ooijen P, Berendsen 
RC, van Velden FH, et al. Experimental multicenter and multi-
vendor evaluation of the performance of PET radiomic features 
using 3-dimensionally printed phantom inserts. J Nucl Med. 
2020. https:// doi. org/ 10. 2967/ jnumed. 119. 229724.

 11. Llera A, Huertas I, Mir P, Beckmann CF. Quantitative intensity 
harmonization of dopamine transporter SPECT images using 
gamma mixture models. Mol Imaging Biol. 2019. https:// doi. 
org/ 10. 1007/ s11307- 018- 1217-8.

 12. Marcadent S, Hofmeister J, Preti MG, Martin SP, Van De Ville 
D, Montet X. Generative adversarial networks improve the 
reproducibility and discriminative power of radiomic features. 
Radiol Artif Intell. 2020. https:// doi. org/ 10. 1148/ ryai. 20201 
90035.

 13. Johnson WE, Li C, Rabinovic A. Adjusting batch effects in micro-
array expression data using empirical Bayes methods. Biostatis-
tics. 2007. https:// doi. org/ 10. 1093/ biost atist ics/ kxj037.

 14. Orlhac F, Frouin F, Nioche C, Ayache N, Buvat I. Validation of a 
method to compensate multicenter effects affecting CT radiomics. 
Radiology. 2019. https:// doi. org/ 10. 1148/ radiol. 20191 82023.

 15. Orlhac F, Boughdad S, Philippe C, Stalla-Bourdillon H, Nioche 
C, Champion L, et al. A postreconstruction harmonization method 
for multicenter radiomic studies in PET. J Nucl Med. 2018. https:// 
doi. org/ 10. 2967/ jnumed. 117. 199935.

 16. Orlhac F, Eertink JJ, Cottereau AS, Zijlstra JM, Thieblemont C, 
Meignan M, et al. A guide to ComBat harmonization of imaging 
biomarkers in multicenter studies. J Nucl Med. 2022. https:// doi. 
org/ 10. 2967/ jnumed. 121. 262464.

 17. Da-ano R, Masson I, Lucia F, Doré M, Robin P, Alfieri J, et al. 
Performance comparison of modified ComBat for harmonization 
of radiomic features for multicenter studies. Sci Rep. 2020. https:// 
doi. org/ 10. 1038/ s41598- 020- 66110-w.

 18. O’Connor JP, Rose CJ, Waterton JC, Carano RA, Parker GJ, Jack-
son A. Imaging intratumor heterogeneity: role in therapy response, 
resistance, and clinical outcome. Clin Cancer Res. 2015. https:// 
doi. org/ 10. 1158/ 1078- 0432. CCR- 14- 0990.

 19. Wu J, Gensheimer MF, Zhang N, Guo M, Liang R, Zhang C, et al. 
Tumor subregion evolution-based imaging features to assess early 
response and predict prognosis in oropharyngeal cancer. J Nucl 
Med. 2020. https:// doi. org/ 10. 2967/ jnumed. 119. 230037.

 20. Xu H, Lv W, Feng H, Du D, Yuan Q, Wang Q, et al. Subregional 
radiomics analysis of PET/CT imaging with intratumor partition-
ing: application to prognosis for nasopharyngeal carcinoma. Mol 
Imaging Biol. 2020. https:// doi. org/ 10. 1007/ s11307- 019- 01439-x.

 21. Vallieres M, Zwanenburg A, Badic B, Cheze LRC, Visvikis D, Hatt 
M. Responsible radiomics research for faster clinical translation. J 
Nucl Med. 2018. https:// doi. org/ 10. 2967/ jnumed. 117. 200501.

 22. Andrearczyk V, Oreiller V, Boughdad S, Rest CCL, Elhalawani H, 
Jreige M, et al. Overview of the HECKTOR challenge at MICCAI 
2021: automatic head and neck tumor segmentation and outcome 
prediction in PET/CT images. In: 3D head and neck tumor seg-
mentation in PET/CT challenge. Springer; 2021. pp. 1–37. https:// 
doi. org/ 10. 1007/ 978-3- 030- 98253-9_1.

 23. Zwanenburg A, Vallières M, Abdalah MA, Aerts HJ, Andrearczyk 
V, Apte A, et al. The image biomarker standardization initiative: 
standardized quantitative radiomics for high-throughput image-
based phenotyping. Radiology. 2020. https:// doi. org/ 10. 1148/ 
radiol. 20201 91145.

 24. Iantsen A, Visvikis D, Hatt M. Squeeze-and-excitation normaliza-
tion for automated delineation of head and neck primary tumors 
in combined PET and CT images. In: 3D head and neck tumor 
segmentation in PET/CT challenge. Springer; 2020. pp. 37–43. 
https:// doi. org/ 10. 1007/ 978-3- 030- 67194-5_4.

 25. Kapp AV, Tibshirani R. Are clusters found in one dataset present 
in another dataset? Biostatistics. 2007. https:// doi. org/ 10. 1093/ 
biost atist ics/ kxj029.

1733European Journal of Nuclear Medicine and Molecular Imaging  (2023) 50:1720–1734

1 3

https://www.aicrowd.com/challenges/miccai-2021-hecktor
https://doi.org/10.1056/NEJMra1715715
https://doi.org/10.1056/NEJMra1715715
https://doi.org/10.2967/jnumed.114.144055
https://doi.org/10.1038/nrclinonc.2017.141
https://doi.org/10.1038/nrclinonc.2017.141
https://doi.org/10.1007/s00259-022-06001-6
https://doi.org/10.1007/s00259-022-06001-6
https://doi.org/10.1053/j.semnuclmed.2020.09.002
https://doi.org/10.1053/j.semnuclmed.2020.09.002
https://doi.org/10.2967/jnumed.118.220582
https://doi.org/10.2967/jnumed.118.220582
https://doi.org/10.1016/j.ejmp.2021.03.009
https://doi.org/10.1016/j.ejmp.2021.03.009
https://doi.org/10.2967/jnumed.115.156927
https://doi.org/10.2967/jnumed.115.156927
https://doi.org/10.1007/s00259-014-2961-x
https://doi.org/10.2967/jnumed.119.229724
https://doi.org/10.1007/s11307-018-1217-8
https://doi.org/10.1007/s11307-018-1217-8
https://doi.org/10.1148/ryai.2020190035
https://doi.org/10.1148/ryai.2020190035
https://doi.org/10.1093/biostatistics/kxj037
https://doi.org/10.1148/radiol.2019182023
https://doi.org/10.2967/jnumed.117.199935
https://doi.org/10.2967/jnumed.117.199935
https://doi.org/10.2967/jnumed.121.262464
https://doi.org/10.2967/jnumed.121.262464
https://doi.org/10.1038/s41598-020-66110-w
https://doi.org/10.1038/s41598-020-66110-w
https://doi.org/10.1158/1078-0432.CCR-14-0990
https://doi.org/10.1158/1078-0432.CCR-14-0990
https://doi.org/10.2967/jnumed.119.230037
https://doi.org/10.1007/s11307-019-01439-x
https://doi.org/10.2967/jnumed.117.200501
https://doi.org/10.1007/978-3-030-98253-9_1
https://doi.org/10.1007/978-3-030-98253-9_1
https://doi.org/10.1148/radiol.2020191145
https://doi.org/10.1148/radiol.2020191145
https://doi.org/10.1007/978-3-030-67194-5_4
https://doi.org/10.1093/biostatistics/kxj029
https://doi.org/10.1093/biostatistics/kxj029


 26. Efron B, Hastie T. Computer age statistical inference. Cambridge 
University Press. 2016. https:// doi. org/ 10. 1017/ CBO97 81316 
576533.

 27. Collins GS, Reitsma JB, Altman DG, Moons KG. Transparent 
reporting of a multivariable prediction model for individual prog-
nosis or diagnosis (TRIPOD): the TRIPOD statement. Journal of 
British Surgery. 2015. https:// doi. org/ 10. 1136/ bmj. g7594.

 28. Salmanpour MR, Hajianfar G, Rezaeijo SM, Ghaemi M, Rah-
mim A. Advanced automatic segmentation of tumors and survival 
prediction in head and neck cancer. In: 3D head and neck tumor 
segmentation in PET/CT challenge. Springer; 2021. pp. 202–210. 
https:// doi. org/ 10. 1007/ 978-3- 030- 98253-9_ 19.

 29. Starke S, Thalmeier D, Steinbach P, Piraud M. A hybrid radiomics 
approach to modeling progression-free survival in head and neck 
cancers. In: 3D head and neck tumor segmentation in PET/CT 
challenge. Springer; 2021. pp. 266–277. https:// doi. org/ 10. 1007/ 
978-3- 030- 98253-9_ 25.

 30. Saeed N, Majzoub RA, Sobirov I, Yaqub M. An ensemble 
approach for patient prognosis of head and neck tumor using 
multimodal data. In: 3D head and neck tumor segmentation in 
PET/CT challenge. Springer; 2021. pp. 278–286. https:// doi. org/ 
10. 1007/ 978-3- 030- 98253-9_ 26.

 31. Murugesan GK, Brunner E, McCrumb D, Kumar J, VanOss J, 
Moore S, et al. Head and neck primary tumor segmentation using 
deep neural networks and adaptive ensembling. In: 3D head and 
neck tumor segmentation in PET/CT challenge. Springer; 2021. 
pp. 224–235. https:// doi. org/ 10. 1007/ 978-3- 030- 98253-9_ 21.

 32. Naser MA, Wahid KA, Mohamed AS, Abdelaal MA, He R, Dede 
C, et al. Progression free survival prediction for head and neck 
cancer using deep learning based on clinical and PET/CT imag-
ing data. In: 3D head and neck tumor segmentation in PET/CT 
challenge. Springer; 2021. pp. 287–299. https:// doi. org/ 10. 1007/ 
978-3- 030- 98253-9_ 27.

 33. Nagpal C, Yadlowsky S, Rostamzadeh N, Heller K. Deep Cox 
mixtures for survival regression. In: Machine learning for health-
care conference. PMLR; 2021. pp. 674–708. https:// doi. org/ 10. 
48550/ arXiv. 2101. 06536.

 34. Ishwaran H, Kogalur UB, Blackstone EH, Lauer MS. Random 
survival forests. The annals of applied statistics. 2008. https:// doi. 
org/ 10. 1214/ 08- AOAS1 69.

 35. Bogowicz M, Riesterer O, Stark LS, Studer G, Unkelbach J, 
Guckenberger M, et al. Comparison of PET and CT radiomics 
for prediction of local tumor control in head and neck squamous 
cell carcinoma. Acta Oncol. 2017. https:// doi. org/ 10. 1080/ 02841 
86X. 2017. 13463 82.

 36. Ferreira M, Lovinfosse P, Hermesse J, Decuypere M, Rousseau 
C, Lucia F, et al. [18F] FDG PET radiomics to predict disease-
free survival in cervical cancer: a multi-scanner/center study with 
external validation. Eur J Nucl Med Mol I. 2021. https:// doi. org/ 
10. 1007/ s00259- 021- 05397-x.

 37. Chatterjee A, Vallières M, Dohan A, Levesque IR, Ueno Y, Saif 
S, et al. Creating robust predictive radiomic models for data from 
independent institutions using normalization. IEEE Transactions 
on Radiation and Plasma Medical Sciences. 2019. https:// doi. org/ 
10. 1109/ TRPMS. 2019. 28938 60.

 38. Chen C, Grennan K, Badner J, Zhang D, Gershon E, Jin L, et al. 
Removing batch effects in analysis of expression microarray data: 
an evaluation of six batch adjustment methods. PLoS ONE. 2011. 
https:// doi. org/ 10. 1371/ journ al. pone. 00172 38.

 39. Masson I, Da-ano R, Lucia F, Doré M, Castelli J, Goislard De 
Monsabert C, et al. Statistical harmonization can improve the 
development of a multicenter CT-based radiomic model predictive 
of nonresponse to induction chemotherapy in laryngeal cancers. 
Med Phys. 2021; https:// doi. org/ 10. 1002/ mp. 14948.

 40. Fontaine P, Andrearczyk V, Oreiller V, Abler D, Castelli J, Acosta 
O, et al. Cleaning radiotherapy contours for radiomics studies, is it 
worth it? A head and neck cancer study. Clinical and Translational 
Radiation Oncology. 2022. https:// doi. org/ 10. 1016/j. ctro. 2022. 01. 
003.

 41. Sepehri S, Tankyevych O, Iantsen A, Visvikis D, Hatt M, Le Rest 
CC. Accurate tumor delineation vs. rough volume of interest anal-
ysis for 18F-FDG PET/CT radiomics-based prognostic modeling 
in non-small cell lung cancer. Front Oncol. 2021. https:// doi. org/ 
10. 3389/ fonc. 2021. 726865.

 42. Pietras K, Östman A. Hallmarks of cancer: interactions with the 
tumor stroma. Exp Cell Res. 2010. https:// doi. org/ 10. 1016/j. yexcr. 
2010. 02. 045.

Publisher's note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.

1734 European Journal of Nuclear Medicine and Molecular Imaging  (2023) 50:1720–1734

1 3

https://doi.org/10.1017/CBO9781316576533
https://doi.org/10.1017/CBO9781316576533
https://doi.org/10.1136/bmj.g7594
https://doi.org/10.1007/978-3-030-98253-9_19
https://doi.org/10.1007/978-3-030-98253-9_25
https://doi.org/10.1007/978-3-030-98253-9_25
https://doi.org/10.1007/978-3-030-98253-9_26
https://doi.org/10.1007/978-3-030-98253-9_26
https://doi.org/10.1007/978-3-030-98253-9_21
https://doi.org/10.1007/978-3-030-98253-9_27
https://doi.org/10.1007/978-3-030-98253-9_27
https://doi.org/10.48550/arXiv.2101.06536
https://doi.org/10.48550/arXiv.2101.06536
https://doi.org/10.1214/08-AOAS169
https://doi.org/10.1214/08-AOAS169
https://doi.org/10.1080/0284186X.2017.1346382
https://doi.org/10.1080/0284186X.2017.1346382
https://doi.org/10.1007/s00259-021-05397-x
https://doi.org/10.1007/s00259-021-05397-x
https://doi.org/10.1109/TRPMS.2019.2893860
https://doi.org/10.1109/TRPMS.2019.2893860
https://doi.org/10.1371/journal.pone.0017238
https://doi.org/10.1002/mp.14948
https://doi.org/10.1016/j.ctro.2022.01.003
https://doi.org/10.1016/j.ctro.2022.01.003
https://doi.org/10.3389/fonc.2021.726865
https://doi.org/10.3389/fonc.2021.726865
https://doi.org/10.1016/j.yexcr.2010.02.045
https://doi.org/10.1016/j.yexcr.2010.02.045

	Radiomics prognostic analysis of PETCT images in a multicenter head and neck cancer cohort: investigating ComBat strategies, sub-volume characterization, and automatic segmentation
	Abstract
	Purpose 
	Methods 
	Results 
	Conclusion 

	Introduction
	Materials and methods
	Dataset
	Pre-processing and feature extraction
	Prognosis analysis
	Radiomics model construction
	ComBat harmonization strategies
	Hybrid clinical-radiomics model construction

	Tumor sub-volume characterization
	Impact of automatic segmentation
	Statistics and model evaluation

	Results
	Patients’ characteristics
	Performance of prognostic models
	Effect of ComBat harmonization
	Sub-volume characterization
	Impact of alternative contours through automatic segmentation
	Comparison with other challengers’ results

	Discussion
	Conclusion
	Acknowledgements 
	References


