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Abstract
Accelerated life testing (ALT) is widely used in high-reliability product estima-
tion to get relevant information about an item’s performance and its failure
mechanisms. To analyse the observed ALT data, reliability practitioners need
to select a suitable accelerated life model based on the nature of the stress and
the physics involved. A statistical model consists of (i) a lifetime distribution
that represents the scatter in product life and (ii) a relationship between life
and stress. In practice, several accelerated life models could be used for the
same failure mode and the choice of the best model is far from trivial. For
this reason, an efficient selection procedure to discriminate between a set of
competing accelerated life models is of great importance for practitioners. In
this paper, accelerated life model selection is approached by using the Approx-
imate Bayesian Computation (ABC) method and a likelihood-based approach
for comparison purposes. To demonstrate the efficiency of the ABC method in
calibrating and selecting accelerated life model, an extensive Monte Carlo simu-
lation study is carried out using different distances to measure the discrepancy
between the empirical and simulated times of failure data. Then, the ABC algo-
rithm is applied to real accelerated fatigue life data in order to select the most
likelymodel among five plausiblemodels. It has been demonstrated that theABC
method outperforms the likelihood-based approach in terms of reliability pre-
dictions mainly at lower percentiles particularly useful in reliability engineering
and risk assessment applications. Moreover, it has shown that ABC could miti-
gate the effects of model misspecification through an appropriate choice of the
distance function.
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2 RABHI et al.

1 INTRODUCTION

Designing components with high reliability and longer lifetime presents a challenging task for industry because the nec-
essary testing time under normal use conditions is often excessive. Such circumstances lead to consider accelerated life
testing (ALT) as the most suitable technique to overcome this issue through the extrapolation of the failure data collected
from severe stress levels to the nominal stress level.1 It is commonly assumed that the failure modes and failure mecha-
nisms remain the same for all the applied stress levels to be able to extrapolate. Roughly speaking, the components are
subjected to higher stress conditions than those for which they were designed to operate forcing them to fail more rapidly.
It is commonly assumed that for all stress levels, the failure times are governed by the same parametric lifetime distribu-
tion. The acceleration life models are formulated by expressing the parameters of the reliability model with relationships,
called acceleration models, which express their dependencies on the stress levels. The statistical physics-based models
explain the relationship between the applied stress levels and the system failure time by using the parameters of the fail-
ure physics in conjunction with the statistical parameters to obtain realistic models.1–3 A detailed description of ALT can
be found in Meeker and Escobar.4
In ALT, researchers are widely divided between two assumptions: (1) the stress independence of the distribution shape

parameter is commonly accepted because the resulting models are typically easier to use and the data set suggests that
from a practical standpoint, such a constraint is sometimes valid since extrapolation is made assuming that the failure
mechanism remains the same for all the accelerated stress levels. Therefore, the tested units fail in the same manner
across different loads. Carlsson et al.5 made this assumption for the service life assessment of solar thermal compo-
nents, and Gaertner et al.6 for the life prediction at normal use conditions of cathode ray tubes. However, the second
assumption (2) is that the shape parameter does depend on stress, that is, in the case of more than one parameter of the
lifetime distribution being dependent on the stress, each one can be related to the stress by an acceleration model. In
the literature, some authors suggested checking the validity of the stress independence assumption by a graphical pro-
cedure. Whitman et al.7 showed that the slopes of the probabilities lines for the different stress levels are nearly parallel.
Also, Barlow et al.8 showed that ALT data of Kevlar/Epoxy strands follow Weibull distribution with a stress-dependent
shape parameter. In the same perspective, Giuseppe et al.9 studied the estimation of fatigue reliability of structural com-
ponents via a two-parameter Birnbaum–Saunders (BS) model with stress-dependent parameters (both scale and shape
parameters).
Selecting a suitable acceleration lifemodel is still quite challenging for practitioners. In practice, several competingmod-

els could potentially fit the data distribution reasonably well, regarding the physics involved. Birnbaum and Saunders10
showed that most two-parameter lifetime distributions fit well the fatigue data and produce similar fitting qualities in
the central tendency region of the reliability curve. Nevertheless, large discrepancies could be seen in lower and upper
percentiles when comparing these distributions. This is a challenging issue for industry interested in low percentiles pre-
dictions. Box and Draper11 stated that ‘All models are wrong but some are useful’, this means that there is no true model
for all the situations but there is only a model that performs better than the other competing models for a specific goal.
Hence, the challenging task consists in selecting the ‘most useful’ model and estimating its parameters from ALT obser-
vations. This is of a paramount importance to make good reliability predictions at normal use conditions, especially for
lower lifetime percentiles that are important for early failure predictions, costly product failure claims avoiding and war-
ranty analysis.12 Thus, models should be compared in order to select the one which presents the highest performance. A
comprehensive review of reliability model selection was presented by Settani et al.13
Several classical methods have been proposed in the literature to deal with model selection issues. The largely used

ones are presented hereafter. The classical techniques commonly used are the weighted least squares method,14–16 the
graphical analysis method,17,18 the likelihood ratio test (see Kalbfleisch et al.19) and the Information Criteria such as the
Akaike Information Criterion (AIC)20 and the Bayesian Information Criterion (BIC).21 Ghaly et al.22 used likelihood ratio
test to compare between exponentiated inverted Weibull and inverted Weibull distributions using real life data set. These
approaches require the estimation of the model parameters that maximize the likelihood function and an additional term
to penalise overly complex models. The major limitation of these approaches is that they undertake separately the com-
petingmodels regardless the uncertainties related to the parameters estimates which could lead to an inaccurate selection
of the ‘best’ model as stated by Gupta et al.23
Contrarily to the classical approaches, Santana et al.24 proposed a novel Bayesian formulation based on the residu-

als evaluation to examine the benefits of the uncertainty evaluation in the model selection procedure. Other Bayesian
approaches based on goodness of fit indices evaluation are used to discriminate between the competing models. The
idea is to select the model that presents the best point estimate of the indices to be evaluated.25 Ling et al.26 proposed
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RABHI et al. 3

an optimization method for parameter estimation and model selection based on the minimization of the Kolmogorov–
Smirnov distance between the observed probability of failure and the expected probability of failure associated to the
competing distributions.
Further methods based on Bayes theory have been proposed in the literature for model selection. The Reversible-Jump

Markov-ChainMonteCarlo (RJ-MCMC) algorithm is one of the largely usedBayesianmethods inmodel selection issues.27
Several studies have addressed the strengths and weakness of RJ-MCMC and the other trans-dimensional setups of the
algorithm.28,29 Indeed, their implementations require the construction of across-model proposals between the state spaces.
Hence, the change ofmodels dimensions introduces additional difficulty since the definition of the between-model transi-
tion matrices may no longer be intuitive. This could result in slowing the state space exploration. In some circumstances,
the proposed between-model jumps tend to be rejected and the chain becomes trapped in one model, even though that
model has low posterior probability.30
Bayes factors (BFs)31 have been considered for a long time as the standard tools for performing Bayesian model com-

parison. However, they provide only a relative comparison of competing models, not the absolute values of their posterior
probabilities. In fact, from a decision-making point of view, it can be perceived as the posterior probability of the null
hypothesis. Themain drawback of BFs is their sensitivity to the choice of priors. In fact, the approach proposed by Jeffreys31
is not available for comparing models with improper priors since these are defined only up to a multiplicative constant,
leaving the BF undetermined.32 This issue was addressed by the intrinsic Bayes factors (IBF) proposed by Berger et al.33
The IBF uses a part of the data as a training sample to convert the non-informative priors to proper posterior distributions.
Then, the IBF are computed with the remainder of the data and using the posterior distribution estimated from the train-
ing data as a prior distribution. Nevertheless, the main challenges of IBF are that they manage only pairwise comparisons
to discriminate numerous models.
So far, the common limitation of the classical Bayesian approaches is that they require the definition of a likelihood

function to measure the level of agreement between the observed and simulated data particularly for high-dimensional
models and low-sized samples. In some circumstances, the likelihood function could not be available in a closed form
and may encounters numerical problems such the non-convergence or the convergence to the wrong roots raised in
Refs. 34–37 Another aspect concerns the effects of model misspecification on the desired estimates of some life character-
istics. Balakrishnan et al.38 showed that the effect of model misspecification between Gamma and Weibull distributions
should not be ignored for one-shot device testing data. The authors evaluated bias, root mean square errors (MSEs), cov-
erage probabilities and average widths of confidence intervals for the mean lifetime as well as the reliability at a given
mission time and suggested implementing a specification test to improve the estimation accuracy. Furthermore, Khaki-
firooz et al.39 considered generalised Gamma, Lognormal and Weibull distributions for studying model misspecification
effects under accelerated lifetime testing with censored data. Castilla et al.40 studied the effect of model misspecification
between Gamma, Weibull, Lognormal and BS lifetime distributions on the design of optimal constant-stress accelerated
life-test for one-shot device.
In this work, and in order to overcome the above-mentioned issues, a likelihood-free method called also Approximate

Bayesian Computation (ABC) which has been widely used in the literature (see, Beaumont et al.41) to deal with model
selection and parameter estimation is adopted. Contrary to the classical Bayesian inference, which requires to write down
a likelihood function, the ABC algorithms relax the need for an explicit likelihood function. In a nutshell, it consists in
approaching the posterior distributions by generating samples from prior distributions of the model parameters, eval-
uating the level of agreement between the ALT data and a simulated data through an appropriate distance metric and
propagate good particles until the convergence condition is satisfied. Nevertheless, awell-knownproblemof theABCalgo-
rithm in its basic form is the low acceptance rate of samples. It decreases dramatically along the iterations which increases
exponentially the computational time. This has been reported by Bonassi et al.42 To overcome this shortcoming and alle-
viate the computational burden, an ABC algorithm based on an elegant ellipsoidal Nested Sampling technique (ABC-NS)
and a re-weighting scheme introduced in Ref. 43 is used. It promises drastic speedups compared to other variants43 and
provides a good alternative for parameter estimation as shown in Ref. 44 Additionally, it has been demonstrated that the
ABC-NS can mitigate the effects of model misspecification through an appropriate choice of the distance function which
can be tailored according to the user’s interest.
The paper is organized as follows. In Section 2, the principle of the Bayesian inference and ABC is set out with a brief

description of the algorithm implementation. Section 3 introduces the selected accelerated life models used in this study.
In Section 4, a simulation study is carried out to demonstrate the performance of the proposed likelihood-free Bayesian
procedure compared to a likelihood-based approach. In Section 5, the procedure is applied on the basis of real fatigue life
data. Finally, Section 6 provides some concluding remarks with an emphasis on future research challenges.
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4 RABHI et al.

2 BAYESIAN INFERENCE

2.1 Bayes formalism

Bayesian inference has proven very efficient to deal withmodel selection and parameter estimation inmany disciplines. It
consists of assessing the relative plausibility of a set of competing modelsMMM = {𝑘, 𝑘 = 1,… , 𝜅} as well as the parameters
𝜃 within eachmodel (for simpler presentation a subscript 𝑘 on 𝜃 is omitted) using a combination of one’s prior knowledge
and a set of available data, . Both levels of inference (i.e. parameter estimation and model selection) can be addressed
via the sequential application of Bayes’ theorem:

ℙ(𝜃|,𝑘) =
ℙ(|𝜃,𝑘)ℙ(𝜃|𝑘)

ℙ(|𝑘)
(1)

ℙ(𝑘|) = ℙ(|𝑘)ℙ(𝑘)

ℙ() (2)

Evaluation of Equation (1) requires the definition of the prior, ℙ(𝜃|𝑘), and the likelihood, ℙ(|𝜃,𝑘). The prior
is a subjective probability distribution which describes our prior belief for the parameter values. The likelihood encodes
the information contained in the data according to model,𝑘, with parameters, 𝜃. The denominator of Equation (1) is a
normalising constant which ensures that ℙ(𝜃|,𝑘) integrates to unity. Successful evaluation of Equation (1) gives the
posterior parameter distribution, which describes the probability of parameter vector, 𝜃, given the data,, and the chosen
model structure,𝑘.
With regard to Equation (2),ℙ(𝑘) is the prior probability of𝑘 that expresses themodeller’s judgement on the initial

relative plausibility of𝑘 ∈ MMM, before observing data . Prior model probability ℙ(𝑘) can be specified depending on
the existing prior knowledge about the credibility of model𝑘, or it can be given a uniform probability, ℙ(𝑘) = 1∕𝜅,
if not referring to any information. ℙ() is a normalising constant and ℙ(|𝑘) is equal to the evidence term on the
denominator of Equation (2). ℙ(𝑘|) is a distribution describing the relative probability of different competing model
structures conditional on the data,.

2.2 Likelihood-free method

To deploy ABC methods, we need to be able to simulate data from the model, and require a distance function, 𝜌(,⋆),
where ⋆ is the simulated data generated through the model. This distance function provides a measure of discrepancy
between the observed and the simulated data. After calculating 𝜌(,⋆), we accept the particle 𝜃 where 𝜌(,⋆) ≤ 𝜀,
where 𝜀 is the tolerance threshold. This leads to a modification of original Bayes theorem (see, Equation 1, the model is
dropped for simplicity):

ℙ(𝜃|𝜌(,⋆) ≤ 𝜀) =
ℙ(𝜌(,⋆) ≤ 𝜀|𝜃)ℙ(𝜃)

ℙ(𝜌(,⋆) ≤ 𝜀)
(3)

For the prior probability distribution, ℙ(𝜃), we will assume a uniform prior over the possible parameter set, 𝜃. By being
able to produce simulations from the model, we are able to perform inference for the parameters of interest, subject to
data. The tolerance threshold 𝜀 determines the level of approximation as 𝜀 → 0, ℙ(𝜃|𝜌(,⋆) ≤ 𝜀) → ℙ(𝜃|).
As already mentioned, the ABC method can address both levels of inference. Conversely to the classical Bayesian

inference, the ABC algorithm brings a straightforward solution to approximate ℙ(𝑘|) (see Refs. 45, 46). Briefly, a
model 𝑘 is sampled from the prior and the model is stored only if the difference between simulated data and the
observed data is less than a prefixed threshold. The posterior probability ℙ(𝑘|) is then approximated by the accep-
tance frequency of 𝑘. When no prior information is available for the preference of the models, one assumes that
the prior on the models follows a uniform distribution. As a result, comparing ℙ(𝑘|) is the same as comparing
ℙ(|𝑘), and the model with the largest value of ℙ(|𝑘) should be selected. In the literature, ℙ(|𝑘) is known
as the Bayesian evidence or the marginal likelihood under model 𝑘, and it has also been widely used for model
selection (e.g. see Refs. 47, 48). The most elementary implementation of ABC is ABC rejection sampling (ABC-RS),49,50
(see Algorithm 1). This algorithm requires a huge computational time to converge because it samples blindly over the
model and parameter spaces. To overcome this issue, many variants have been proposed in the literature.51,52 In the
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RABHI et al. 5

ALGORITHM 1 ABC-RS for model choice.

Require: data:, target tolerance: 𝜀𝑇 , 𝑁: number of particles, distance function: 𝜌(⋅), prior distributions: ℙ(𝜃)
1: for 𝑖 = 1 to 𝑁 do
2: repeat
3: Draw⋆ from the prior ℙ(MMM) (whereMMM is a vector that indexes the models)
4: Sample 𝜃⋆ from the prior p(𝜃|⋆)

5: Simulate a candidate data set⋆ ∼ 𝐹(⋅|𝜃⋆,⋆)

6: until 𝜌(⋆,) ≤ 𝜀𝑇

7: Store the pair ((𝑖) = ⋆, 𝜃(𝑖) = 𝜃⋆)

8: end for
Ensure: Model posterior probabilities, marginal distributions

present study, the ABC algorithm coupled with an elegant nested sampling technique (ABC-NS) introduced in Ref. 43 is
employed.

2.3 Steps of the ABC-NS algorithm

The iterative process is given in Algorithm 2 for completeness (see Ref. 43 for more details). The algorithm starts by
selecting a model from the candidate models supposed to be equally probable. A proposal particle is then sampled from
the prior over the model parameters, simulating the data using the probability model and keep the pair (model, particle)
if the constraint 𝜌(,⋆) ≤ 𝜀1 is satisfied (here,  for observed data and ⋆ for simulated data, 𝜌(⋅) is the function
measuring the discrepancy). In this study, the initial tolerance threshold is chosen to target an acceptance rate roughly
equal to ∼ 50%. The simulations are repeated until one gets𝑁 particles distributed over the candidate models (𝑁 is equal
to 1000 for all the simulations). Then, weights are calculated for each particle and normalised according to each model
using the kernel shown in step 10. The first iteration of the ABC-NS algorithm is similar to the ABC-RS algorithm but
with a large tolerance threshold value to speed-up the algorithm.
The subsequent tolerance threshold is defined based on the discrepancy values ranked in descending order (highest

on top, see, step 12) as the (𝛼0𝑁)th value where 𝛼0 is equal to 0.3. The dropped particles represent 30% from the total
number of particles. After that, we normalise the weights of the remaining particles (see, step 14) and a weight of zero
is assigned to the dropped particles. From the remaining particles, a number of (𝛽0𝑁) are randomly selected and prop-
agated to the next population (𝛽0 is equal to 0.6). In this way, the algorithm can visit any part of the parameter space
and cannot be trapped in a local minima to ensure a good exploration of the model and parameter spaces. The remain-
ing particles associated to each model are then enclosed in an ellipsoid in which the mass centre 𝜇 and the covariance
matrix  are estimated based only on the remaining particles; one denotes this ellipsoid by  (𝑡)𝑡 = (𝜇

(𝑡)
𝑡 ,(𝑡)𝑡 ). The aim of

the elliptical bound is to restrict the parameter space around the most interesting part of the parameter space which
improves the acceptance ratio and efficiency through the iterations. The volume of the generated ellipsoid could be
enlarged by a factor 𝑓0 as mentioned in step 17 to ensure that the particles on the borders will be inside. It is worth
noting that the ellipsoidal sampling was firstly proposed in Ref. 53 to improve the efficiency of the nested sampling algo-
rithm which has been widely used for Bayesian inference. Finally, the population is replenished by re-sampling particles
inside the enlarged ellipsoid for each model (see step 18) following the scheme in Ref. 54 In the subsequent steps, the
threshold is updated adaptively in the same way and samples selection are subjected to more stringent threshold. The
priors on the models are also updated when one of the competing model is eliminated. Through the populations and
as 𝜀 → 0, a larger number of particles are selected for the most likely model(s) and the samples for the parameters bet-
ter reflect the real posterior distribution. Several stopping criteria could be used to stop the algorithm. In this work, the
algorithm is stopped when the difference between two successive tolerance threshold values falls below a pre-specified
value.
The hyper-parameters applied in this study are those suggested in Ref. 43 through a sensitivity analysis. To sum up, the

ABC-NS hyper-parameters are selected in such a way as to guarantee the best trade-off between the computational time
and the statistical efficiencies by ensuring relatively high acceptance rates over iterations (≥50%) and precise estimates.
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6 RABHI et al.

ALGORITHM 2 ABC-NS for model selection and parameter estimation.

Require: data:, initial tolerance: 𝜀1, distance function: 𝜌(⋅), prior distributions: ℙ(𝜃), tuning parameters: (𝛼0, 𝛽0, 𝑓0), 𝑁: number of
particles, 𝑇: number of populations
1: At iteration 𝑡 = 1

2: for 𝑖 = 1 to 𝑁 do
3: repeat
4: Draw⋆ from the prior ℙ()

5: Sample 𝜃⋆ from the prior ℙ(𝜃|⋆)

6: Simulate a candidate data set⋆ ∼ 𝐹(⋅|𝜃⋆,⋆)

7: until 𝜌(,⋆) ≤ 𝜀1

8: Store(𝑖)
𝑡 = ⋆, 𝜃(𝑖)𝑡 = 𝜃⋆, 𝑒(𝑖)𝑡 = 𝜌(,⋆)

9: end for
10: Evaluate weights for all particles: 𝜔𝑖 =

1

𝜀1
(1 − (

𝑒𝑖

𝜀1
)2), 𝑖 = 1, … ,𝑁

11: Sort 𝑒(𝑖)𝑡 in descending order and store them.
12: Compute the next tolerance threshold 𝜀2 = 𝑒

(𝛼0𝑁)
𝑡

13: Drop particles with 𝜌(,⋆) ≥ 𝜀2, {𝜔𝑘}
𝛼0𝑁

𝑘=1
= 0 ▹ A weight of zero is assigned to the dropped particles

14: Normalise the weights such that
∑(1−𝛼0)𝑁

𝓁=1
𝜔𝓁 = 1

15: Select𝑡 = 𝛽0𝑁 particles from the remaining ones based on the weights
16: For each model, define the ellipsoid by its mass centre and covariance matrix  (𝑘)

𝑡 = {𝜇
(𝑘)
𝑡 ,(𝑘)

𝑡 }, 𝑘 = 1,… 𝜅

17: Enlarge the ellipsoids by 𝑓0 ▹ The same notation for the updated ellipsoids is kept
18: for 𝑡 = 2 to 𝑇 do
19: for 𝑗 = 1 to (1 − 𝛽0)𝑁 do
20: repeat
21: Draw⋆ from the prior p()▹ updated through the iterations
22: Sample 𝜃⋆ inside the ellipsoid ⋆

𝑡−1

23: Simulate a candidate data set⋆ ∼ 𝐹(⋅|𝜃⋆,⋆),
24: until 𝜌(,⋆) ≤ 𝜀𝑡

25: Store(𝑗)
𝑡 = ⋆ and add 𝜃(𝑗)𝑡 = 𝜃⋆ to the population of particles of {𝜃(⋆)}, 𝑒(𝑗)𝑡 = 𝜌(,⋆)

26: end for
27: Store the new particles in 𝑡

28: Obtain the new particle set for each model,𝑛𝑒𝑤 = [𝑡−1;𝑡] with their correspondent distance value 𝑒𝑡

29: Sort 𝑒𝑡 and define 𝜀𝑡+1 = 𝑒
(𝛼0𝑁)
𝑡

30: Compute new weights for all particles as in step (10) and normalise them
31: Define the new set of selected particles𝑡 as in step (15)
32: Update the hyper-parameters of the ellipsoid using𝑡 , 𝑡 = {𝜇

(𝑘)
𝑡 ,(𝑘)

𝑡 }, 𝑘 = 1,… , 𝜅 ▹ The same factor is used for all
the simulations

33: end for
Ensure: Model posterior probabilities, Marginal distributions

In fact, the stopping criterion threshold value, 𝜉, is selected by the user according to the required precision on the
posterior estimates. BenAbdessalem et al.43 showed that, for a fixed 𝜉, the ellipsoid enlargement factor,𝑓0, impacts slightly
the acceptance rate of the ABC-NS approach over the populations. Furthermore, the effect of 𝑓0 on the posterior estimates
is negligible. As for the initial tolerance threshold value 𝜖1, it is calibrated, particularly for each case study, by running
some few preliminary numerical simulations. Indeed, it should be set large in order to explore all the parameters’ space.
Finally, the best trade-off between 𝛼0 and 𝛽0 is, respectively, 0.3 and 0.6 as these values ensure a stable convergence and
a high acceptance rate.
At the last population, the algorithmproduces aMarkov chain on (, 𝜃) forwhich themarginal distribution is p(|).

Let us suppose that ((𝑖)
𝑘
, 𝜃

(𝑖)
𝑘
) with (𝑖 = 1, … ,𝑁, 𝑘 = 1,… , 𝜅) are obtained at the last population, the posterior model
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RABHI et al. 7

probability can then be estimated by

ℙ̂(𝑘|) = 1

𝑁

𝑁∑
𝑖=1

𝕀((𝑖) = 𝑘), 𝑘 = 1,… , 𝜅 (4)

2.4 Selection of distance functions

To implement the ABC-NS algorithm, one needs to select an effective distance function. Various types of distances have
been proposed in the literature to measure the discrepancy between the empirical data (times to failure) and the data
simulated by the reliability model. In this section, the computational forms of the distances used in this study are given.55

∙ The Cramer–von Mises distances The Cramer–von Mises (CM) distance measures the distance between the cumu-
lative distribution function (CDF) of the derived distribution against the dataset’s cumulative histogram. It is defined
by

𝑊2
𝑛 = 𝑛 ∫

+∞

−∞

[𝐹(𝑡) − 𝑆𝑛(𝑡)]
2Ψ(𝑡)d𝐹(𝑡) (5)

where 𝐹(𝑡) is the predicted cumulative probability from the theoretical CDF and 𝑆𝑛(𝑡) is the empirical cumulative
distribution function (ECDF) of the observed data. Ψ(𝑡) is a weight function such that Ψ(𝑡) = 1. For given ordered
sample, 𝑡1, 𝑡2, … , 𝑡𝑛, from a statistical distribution, the distance can be written as follows:

𝜌CM =
1

12𝑛
+

𝑛∑
𝑖=1

[
𝑧𝑖 −

2𝑖 − 1

2𝑛

]2
(6)

where 𝑧𝑖 = 𝐹(𝑡𝑖) is the predicted value for the 𝑖th observation. In the following, the same alphabets denote the same
meaning.

∙ The Anderson–Darling distance The Anderson–Darling (AD) distance first introduced by Anderson and Darling56
to place more weight at the tails of the distribution.57 It is defined by the following equation:

𝐴2
𝑛 = 𝑛 ∫

+∞

−∞

[𝐹(𝑡) − 𝑆𝑛(𝑡)]
2Ψ(𝑡)d𝐹(𝑡) (7)

where Ψ(𝑡) = [𝐹(𝑡)(1 − 𝐹(𝑡))]−1 is a non-negative weight function. Equation (7) can be written for a finite data sample
as

𝜌AD = −𝑛 −
1

𝑛

𝑛∑
𝑖=1

(2𝑖 − 1)[ln(𝑧𝑖) + ln(1 − 𝑧𝑛+1−𝑖)] (8)

Two modified distances of the AD distance called ADL and ADR which give more weight to the left and right tail,
respectively, have been tested. They are computed by the following formulas:

𝜌ADL = −
3𝑛

2
+ 2

𝑛∑
𝑖=1

𝑧𝑖 −
1

𝑛

𝑛∑
𝑖=1

(2𝑖 − 1) ln 𝑧𝑖 (9)

𝜌ADR =
𝑛

2
− 2

𝑛∑
𝑖=1

𝑧𝑖 −
1

𝑛

𝑛∑
𝑖=1

(2𝑖 − 1) ln(1 − 𝑧𝑛+1−𝑖) (10)

Similarly, the 𝜌AD2R and 𝜌AD2Lmetrics, which assign larger weights to the tails of the distribution, are considered. They
are computed by the following formulas:

𝜌AD2L = 2

𝑛∑
𝑖=1

log 𝑧𝑖 +
1

𝑛

𝑛∑
𝑖=1

2𝑖 − 1

𝑧𝑖
(11)
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8 RABHI et al.

𝜌AD2R = 2

𝑛∑
𝑖=1

log (1 − 𝑧𝑖) +
1

𝑛

𝑛∑
𝑖=1

2𝑖 − 1

1 − 𝑧𝑛+1−𝑖
(12)

3 FORMULATION OF THE ACCELERATION LIFEMODELS

3.1 Choice of the parametric lifetime distributions

The accelerated life models consists in choosing a parametric distribution and an accelerationmodel. In practice, the ALT
data (times-to-failure) may be represented by several lifetime distributions. In this study, three parametric distributions
named Weibull, BS and Lognormal distributions will be used. It should be noted that a candidate distribution is chosen
for one of the following reasons: (i) there is a physical statistical argument that theoretically matches a failure mechanism
to a life distribution model, (ii) a particular model has previously been used successfully and confirmed by experience
for the same or a similar failure mechanism, (iii) a convenient model provides a good empirical fit to all the failure data.
In this study, our choices are motivated by the failure mechanism which is induced by fatigue. The specifications of the
parametric distributions used in this study with some relevant life characteristics are defined below.

∙ The two-parameter Weibull distribution It is a popular distribution used for modelling the lifetime data because
of its flexibility within multiple types of failure mechanisms and its easiness of computing probabilities without the
need for numerical integration (Cao et al.58). The probability density function and the reliability function of the two-
parameter Weibull distribution are given respectively by

𝑓(𝑡, 𝜂, 𝛽) =

(
𝛽

𝜂

)(
𝑡

𝜂

)𝛽−1

exp

{
−

(
𝑡

𝜂

)𝛽
}
, (𝜂, 𝛽 > 0); 𝑡 ≥ 0 (13)

𝑅(𝑡, 𝜂, 𝛽) = exp

{
−

(
𝑡

𝜂

)𝛽
}

(14)

where 𝜂 and 𝛽 are the scale and shape parameters, respectively. 𝑡 is the lifetime of the component. The percentiles,
denoted 𝑡p, is the time by which a specified fraction 𝑝 of the population fails is given by

𝑡𝑝 = 𝐹−1(𝑝) = 𝜂(− ln(1 − 𝑝))1∕𝛽, 0 < 𝑝 < 1 (15)

where 𝐹−1(⋅) is the inverse CDF. The mean time to failure (MTTF) is the expected life 𝐸(𝑇), it is defined by

MTTF = 𝐸(𝑇) = ∫
∞

0

𝑅(𝑡)d𝑡 = 𝜂Γ(1 +
1

𝛽
) (16)

where Γ(⋅) denotes the gamma function.
∙ The two-parameter Lognormal distribution The Lognormal distribution is widely used for modelling failure times
of materials and structures induced by fatigue. When 𝑌 has a Lognormal distribution with parameters 𝜇 and 𝜎2, then
𝑋 = ln (𝑌) has a normal distribution with mean equal to 𝜇 and a variance 𝜎2.4 The probability density function of
Lognormal distribution is

𝑓(𝑡) =
1√
2𝜋𝜎𝑡

exp

(
−
[ln 𝑡 − 𝜇]

2

2𝜎2

)
=

1

𝜎𝑡
𝜙

[
ln 𝑡 − 𝜇

𝜎

]
, (17)

where 𝜙 is the standard normal pdf. The percentiles is given by the following equation:

𝑡p = 𝑒𝜎Φ
−1(𝑝)+𝜇, 0 < p < 1 (18)
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RABHI et al. 9

where Φ−1(⋅) is the inverse standard normal CDF. The MTTF is defined by

MTTF = 𝑒

(
𝜎2

2
+𝜇

)
. (19)

∙ The two-parameterBirnbaum–Saunders distributionTheBSmodel is based on a physical argument of cumulative
damage that produces fatigue inmaterials, which is exerted by cyclical stress. The failure follows from the development
and growth of a dominant crack in the material. The probability density function and the reliability function of the BS
model are given, respectively, by

𝑓(𝑡, 𝛼, 𝜈) =
1

2
√
2𝜋

𝑡−3∕2(𝑡 + 𝜈)

𝛼
√
𝜈

exp

{
−

1

2𝛼2

( 𝑡
𝜈
+
𝜈

𝑡
− 2

)}
, (𝜈, 𝛼 > 0); 𝑡 ≥ 0 (20)

𝑅(𝑡, 𝛼, 𝜈) = 1 − Φ

{
1

𝛼

(√
𝑡

𝜈
−

√
𝜈

𝑡

)}
(21)

where 𝛼 et 𝜈 are the shape and scale parameters, respectively. 𝑡 is the lifetime of the component and Φ(⋅) is the CDF of
the normal distribution. By definition, the BS random variable 𝑇 ∼ BS(𝛼, 𝛽), is linked to the standard normal random
variable 𝑍 (where 𝑍 ∼ N(0,1)) by the following relationship:

𝑍 =
1

𝛼

(√
𝑇

𝜈
−

√
𝜈

𝑇

)
(22)

The percentiles and the MTTF are given, respectively, by the following equations:

𝑡p =
𝜈

4

{
𝛼Φ−1(p) +

√
4 + (𝛼Φ−1(p))2)

}2

, 0 < p < 1 (23)

MTTF = 𝜈

(
1 +

𝛼2

2

)
(24)

3.2 Choice of the acceleration model

This is a key element of ALT, as it expresses the relationship between the life characteristics and the applied stress. Com-
bined with the life distribution, it provides a single model, known as the accelerated life model, which the ALT data
analysis can be based on. It has been assumed in this study, that the parameters of the selected distributions are expressed
as stress function through the inverse power law (IPL) relationship which is commonly used for non-thermal accelerated
stresses. The choice is also motivated by the failure mechanism and the nature of the applied stress. The IPL is given by
Equation (25):

𝐿(𝑆) = 𝑒𝛾0x
−𝛾1
𝑖

(25)

where 𝐿(𝑆) is the life characteristic, x𝑖 =
𝑆

𝑆0
is the ratio of severe stress by operating stress, 𝛾0 and 𝛾1 are the IPL parameters

of the acceleration model estimated from the ALT data.
From Equation (25), a linear extrapolation can be obtained using a logarithmic transformation on the accelerating

variables as follows:

ln(𝐿(𝑆)) = 𝛾0 − 𝛾1 ln(x𝑖) (26)

Following this, the dependence of the scale parameter 𝜂 of theWeibull distribution at the 𝑖th stress level can be expressed
as follows:

𝜂(𝑆𝑖) = exp{𝛾0 − 𝛾1 ln(x𝑖)} (27)
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10 RABHI et al.

TABLE 1 Accelerated life models.

Parametric distribution Acceleration model: stress dependency Model size Model
Weibull – Only scale parameter 3 1

– Both scale and shape parameters 4 2

Birnbaum–Saunders – Only scale parameter 3 3

–Both scale and shape parameters 4 4

Lognormal – Only the mean parameter 3 5

In the same way, the shape parameter could be linked to the applied stress by the same formula:

𝛽(𝑆𝑖) = exp{𝛾′0 − 𝛾′1 ln(x𝑖)} (28)

The same IPL has been used for the BS and Lognormal distributions. In this study, for illustrative purpose, only five
competing accelerated life models are considered. The models are obtained by coupling the IPL to the two-parameter
Weibull, the BS and the Lognormal distributions as listed in Table 1.
To summarize, let denote by 𝜃1 = (𝛽, 𝛾0, 𝛾1) the parameter vector of1, 𝜃2 = (𝛾′0, 𝛾

′
1, 𝛾0, 𝛾1, ) the parameter vector of2, 𝜃3 = (𝛼, 𝛾0, 𝛾1) the parameter vector of3, 𝜃4 = (𝛾′0, 𝛾

′
1, 𝛾0, 𝛾1) the parameter vector of4 and 𝜃5 = (𝜎, 𝛾0, 𝛾1) the

parameter vector of5.

3.3 Formulation of the log-likelihood function of the accelerated life models

The likelihood-based approach uses the log-likelihood functions for the different competing models. One assumes that
the components are tested only under three accelerated stress levels. Hence, 𝑡𝑖,𝑗(𝑖 = 1, 2, 3 and 𝑗 = 1…𝑛𝑖) stands for the
set of the ALT data in the ith group and 𝑛𝑖 is the number of failures observed at 𝑥𝑖 . Let 𝜌LH denotes the log-likelihood
function of1. It is given by the following equation59:

𝜌LH(𝜃1) = 𝑁[ln 𝛽 − 𝛽 ln 𝛾0] + −𝛾1𝛽

3∑
𝑖=1

ln 𝑥𝑖 + (𝛽 + 1)

3∑
𝑖=1

𝑛𝑖∑
𝑗=1

ln 𝑡𝑖𝑗 +

3∑
𝑖=1

𝑛𝑖∑
𝑗=1

(
𝑡𝑖𝑗

𝛾0𝑥
−𝛾1
𝑖

)
(29)

Similarly, the log-likelihood functions of models2,3,4 are given, respectively, by the following equations9:

𝜌LH(𝜃2) = 𝑁

[
ln 𝛾′0 +

3∑
𝑖=1

(
𝛾′0𝛾1𝑥

−𝛾′
0

𝑖
− 𝛾′1

)]
ln 𝑥𝑖 +

3∑
𝑖=1

𝑛𝑖∑
𝑗=1

(
𝛾′0𝑥

−𝛾′
1

𝑖
− 1

)
ln 𝑡𝑖𝑗 −

3∑
𝑖=1

𝑛𝑖∑
𝑗=1

[
𝑡𝑖𝑗

𝛾0𝑥
−𝛾1
𝑖

]𝛾′
0
𝑥
−𝛾′

1
𝑖

(30)

𝜌LH(𝜃3) = 𝑁

[
ln(

1

2
√
2𝜋

) − ln 𝛼

]
−

𝑛

𝛼2
−

1

2𝛼2

[
3∑
𝑖=1

𝑛𝑖∑
𝑗=1

(
𝑡𝑖𝑗

𝛾0𝑥
−𝛾1
𝑖

+
𝛾0𝑥

−𝛾1
𝑖

𝑡𝑖𝑗

)]

+

3∑
𝑖=1

𝑛𝑖∑
𝑗=1

ln
(
𝑡𝑖𝑗 + 𝛾0𝑥

−𝛾1
𝑖

)
+
𝛾1
2

3∑
𝑖=1

𝑛𝑖 ln 𝑥𝑖

(31)

𝜌LH(𝜃4) = 𝑁

[
ln

(
1

2
√
2𝜋

)
−

(
log 𝛾

′

0 +
1

2
ln 𝛾0

)]
−

1

2𝛾
′

0

2

⎡⎢⎢⎢⎣
3∑
𝑖=1

𝑛𝑖∑
𝑗=1

⎛⎜⎜⎜⎝
𝑡𝑖𝑗

𝛾0𝑥
−(2𝛾

′
0
+𝛾1)

𝑖

+
𝛾0𝑥

2𝛾
′

0
−𝛾1

𝑖

𝑡𝑖𝑗

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦

+

3∑
𝑖=1

𝑛𝑖∑
𝑗=1

ln
(
𝑡𝑖𝑗 + 𝛾0𝑥

−𝛾1
𝑖

)
+ (𝛾

′

1 +
𝛾1
2
)

3∑
𝑖=1

𝑛𝑖 ln 𝑥𝑖 +
1

𝛾
′

0

2

3∑
𝑖=1

𝑛𝑖 ln 𝑥
2
𝑖
−
3

2

3∑
𝑖=1

ln 𝑡𝑖𝑗

(32)

𝜌LH(𝜃5) = −
𝑁

2
ln(2𝜋) − 𝑁 ln(𝜎) −

3∑
𝑖=1

𝑛𝑖∑
𝑗=1

ln 𝑡𝑖𝑗 −

3∑
𝑖=1

𝑛𝑖∑
𝑗=1

⎡⎢⎢⎢⎣
(
ln 𝑡𝑖𝑗 − 𝑒𝛾0𝑥

−𝛾1
𝑖

)2
2𝜎2

⎤⎥⎥⎥⎦ (33)
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RABHI et al. 11

TABLE 2 Parameter bounds for the considered accelerated life model.

Parameter Type of distribution Lower bound Upper bound
𝛽 Uniform 0.1 × 𝛽 10 × 𝛽

𝛾0 Uniform 0.1 × 𝛾̃0 10 × 𝛾̃0

𝛾1 Uniform 0.1 × 𝛾̃1 10 × 𝛾̃1

4 SIMULATION STUDY

In this section, a simulation study is conducted to investigate the performance of the ABC method to deal with model
selection and parameter estimation of accelerated life models. First, a comparison between the different distances in
terms of the bias and the MSE under different sample sizes is given. Then, a qualitative comparison in terms of reliability
predictions of some relevant life characteristics is presented. Finally, a comparison of the PCS when very close competing
models are considered under different sample sizes is given.
Let us consider a three-level constant-stress ALT without censoring. The accelerated data are collected under three

stress levels: 𝑆1 = 320 MPa, 𝑆2 = 360 MPa and 𝑆3 = 400 MPa. The operating stress level 𝑆0 is supposed to be 200 MPa.
It is assumed that the lifetime 𝑇 of an item at use condition follows a Weibull distribution with parameters: 𝛽 = 1.5,
𝛾0 = 10 and 𝛾1 = 5. The IPL is assumed between the scale parameter and the stress level only for illustrative purpose.
In this manner, the lifetime data for each stress level can be obtained by combining the CDF of the parametric Weibull
distribution and the IPL following Equations (34) and (35):

𝐹(𝑇) = 𝑦 = 1 − exp

{
−

(
𝑇

𝜂(𝑆)

)𝛽
}

(34)

𝑇 = 𝑇(𝑆) = 𝜂(𝑆)[− ln(1 − 𝑦)]1∕𝛽 (35)

where 𝑦 is a uniform random number in the interval [0, 1].
Sample sizes of 𝑛 = 5, 10, 20, 30, 50, 100 and 200 have been considered to investigate the effects of the times to failure

data. In this study, the model parameters were given uniform priors spanning a range of one order of magnitude above
and below crude estimates obtained by least square method18 as illustrated in Table 2 for1.
The ABC-NS algorithm is used here to deal with parameter estimation. It is implemented with the following hyper-

parameters:

∙ the initial threshold 𝜖1 is set to 1000.
∙ the number of particles per population is set to 1000.
∙ the proportion of dropped particles and surviving particles are set respectively, to 30 and 60%.
∙ The ellipsoid enlargement factor 𝑓0, is set to 1.1.
∙ The stopping criterion threshold value is equal to 10−6.

The quality of the estimates from the different distances is studied by considering the bias, the MSE and the deficiency
(DEF) given by

Bias(𝜃̂) = 𝜃̄ − 𝜃 (36)

such that

𝜃̄ =
1

1000

1000∑
𝑖=1

𝜃̂𝑖 (37)

MSE(𝜃̂) =
1

1000

1000∑
𝑖=1

(𝜃̂𝑖 − 𝜃)2 (38)

The DEF is a natural measure of joint efficiencies of the estimators 𝛽, 𝛾̂0 and 𝛾̂1. DEF is formulated as follows:

DEF(𝜃) = MSE(𝛽) + MSE(𝛾̂0) + MSE(𝛾̂1) (39)
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12 RABHI et al.

By replicating the experiment 1000 times, we can obtain the estimated MSEs, bias and the deficiencies (𝑫𝐸𝐹) for the
considered distances and sample sizes. From Table 3, the following observations can be drawn:

∙ As expected, the MSE of all the estimators become smaller as the sample sizes increase. The numerical results indicate
that the ML estimator behave slightly better than the ABC in terms of the MSE.

∙ The likelihood-free method provides overall good estimates mainly when the 𝜌AD and 𝜌ADR are used showing an ABC
estimator to be competitive with the ML estimator.

∙ By analysing the bias which is the average tendency of the simulated data to over-or under-estimate the real parameters
(positive values indicate a model under-estimation and negative values indicate an over-estimation), it is clear that the
𝜌LH metric provides the best estimates, seconded by the 𝜌ADR and the 𝜌AD distances.

∙ From the same table, one can see that the latter distances provide an estimates close to the ML estimates.
This mean that these distances could be used as a robust alternative estimator when for instance the like-
lihood function is difficult to formulate or challenging to be minimized which is a commonly encountered
in practice mainly when one deals with small sample sizes or when it is challenging to derive a likelihood
function.

4.1 Estimation of the reliability lifetime characteristics

Put the focus now on the estimation of some important life characteristics widely used in reliability engineering appli-
cations. Some of them are: the MTTF, the percentile 𝐵100𝑝, (0 ≤ 𝑝 ≤ 1) by which time 100𝑝% of the product population
will fail is used as the warranty life. Generally, the percentile life for airplane parts is 𝑝 = 0.1 or 𝑝 = 0.01 and is 𝑝 = 0.05

or 𝑝 = 0.10 for machine parts.60 In Table 4, these life characteristics using the true parameters with the assumed ALT
model are given. The objective here is to compare the predictive capability of the ABC method using the considered
distance functions over the likelihood-based method. Furthermore, one investigates the effect of the sample size on the
predicted lifetimes.
The results summarized in Figures 1 and 2 display bias and 𝑙𝑜𝑔(𝑀𝑆𝐸) of the average values of the considered percentiles

obtained from the different distances and the true values for different sample sizes. The following observations can be
drawn from both figures:

∙ It can be seen that the differences on the percentiles estimated by the different approaches and distances can
be significant.

∙ One can see that the 𝜌AD distance outperforms the other distances to get precise estimates of the lower extreme
percentiles (B1, B5, B10) mainly for small sample sizes.

∙ Another important point should be highlighted is that, regardless the sample size, 𝜌CM and 𝜌LH distances always
overestimate the lower percentiles (B1, B5 and B10) by several orders of magnitude.

∙ For 𝜌LH distance, the estimates present the highest MSE for extremely small sample sizes (𝑛 = 5). However, the MSE
using 𝜌LH decreases for large sample sizes and performs better than the other distance functions.

∙ Only the 𝜌AD2L and 𝜌AD2R yield conservative estimates of the percentiles as they ensure negative bias associated to lower
percentiles. In the same way, one can see that the other distances provide always non-conservative predictions as the
bias are greater than 0.

∙ It is clear that the MSE of each low percentiles for the considered distances tend to zero for large sample sizes (for
instance, for 𝑛 = 5 the log(MSE) of 𝐵1 estimated for 𝜌AD2L distance is 25% greater than that estimated for 𝑛 = 200 using
the same distance function).

∙ For large sample sizes, the MSE deviations between the considered distances start to widen contrary to small sample
sizes. Indeed, 𝜌AD2L yields the highest values (as could be seen for 𝑛 = 20, 𝑛 = 30, 𝑛 = 50, 𝑛 = 100, 𝑛 = 200).

∙ One can see that, for a given sample size, theMSEmagnitudes increase for larger percentiles regardless the used distance
function.

∙ To conclude, it is recommended to use the ABC method coupled with the 𝜌AD distance to precisely estimate the lower
lifetime percentiles as it presents the lesser bias and the smaller MSE mainly for small sample sizes. Furthermore,
𝜌LH distance presents the less precise predictions of the low percentiles regardless the sample size. However, this
overestimation is less pronounced for large sample sizes.

 10991638, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/qre.3283 by C

ochrane France, W
iley O

nline L
ibrary on [17/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



RABHI et al. 13

T
A
B
L
E

3
Bi
as
,M

SE
an
d
D
EF

va
lu
es
us
in
g
di
ffe
re
nt
sa
m
pl
e
si
ze
s.

𝝆
𝐋
𝐇

𝝆
𝐂
𝐌

𝝆
𝐀
𝐃

𝝆
𝐀
𝐃
𝐋

𝝆
𝐀
𝐃
𝐑

𝝆
𝐀
𝐃
𝟐𝐋

𝝆
𝐀
𝐃
𝟐𝐑

Sa
m
pl
e

si
ze

Pa
ra
m
et
er
/

D
EF

B
ia
s

M
SE

B
ia
s

M
SE

B
ia
s

M
SE

B
ia
s

M
SE

B
ia
s

M
SE

B
ia
s

M
SE

B
ia
s

M
SE

5
𝛽

0.
25
70

0
0.
25
07

0.
12
49

0.
49
01

−
0.
18
02

0.
15
40

−
0.
10
04

0.
25
38

−
0.
06
45

0.
20
70

−
0.
12
19

0.
46
94

−
0.
01
84

0.
32
50

𝛾
0

−
0.
08
19

1.3
29
5

−
0.
03
82

1.6
78
4

−
0.
01
45

1.5
02
5

−
0.
01
94

1.9
83
6

−
0.
03
31

1.3
97
6

0.
03
55

2.
93
10

−
0.
05
04

1.6
16
4

𝛾 1
−
0.
08
78

3.
80
53

−
0.
04
41

4.
85
72

−
0.
05
61

4.
32
59

−
0.
03
28

5.
66
93

−
0.
09
14

4.
03
94

0.
03
77

8.
50
61

−
0.
13
89

4.
65
03

̂
D
E
F

5.
38
55

7.
02
57

5.
98
24

7.
90
67

5.
64
39

11
.9
06
4

6.
59
17

10
𝛽

0.
11
54

0.
06
92

0.
02
67

0.
09
30

−
0.
10
45

0.
05
89

−
0.
07
63

0.
07
85

−
0.
05
40

0.
07
03

−
0.
18
32

0.
16
58

−
0.
07
12

0.
10
90

𝛾
0

−
0.
00
23

0.
64
06

0.
00
34

0.
83
45

0.
01
67

0.
75
39

0.
01
53

1.0
01
5

0.
01
31

0.
68
36

0.
08
67

1.5
56
9

−
0.
01
80

0.
70
51

𝛾
1

0.
01
85

1.8
34
3

0.
01
05

2.
38
38

0.
01
08

2.
15
52

0.
02
03

2.
87
39

0.
00
24

1.9
46
7

0.
07
02

4.
52
36

−
0.
05
67

2.
01
91

̂
D
E
F

2.
54
41

3.
31
13

2.
96
79

3.
95
39

2.
70
06

6.
24
63

2.
83
32

20
𝛽

0.
05
61

0.
02
90

0.
02
21

0.
04
10

−
0.
05
01

0.
02
82

−
0.
02
68

0.
04
05

−
0.
03
19

0.
03
18

−
0.
15
98

0.
10
35

−
0.
08
88

0.
06
20

𝛾
0

−
0.
00
66

0.
34
79

−
0.
00
88

0.
43
85

0.
00
30

0.
39
52

−
0.
00
02

0.
52
16

−
0.
00
06

0.
36
45

0.
06
67

0.
80
86

−
0.
01
57

0.
38
11

𝛾
1

0.
00
10

0.
99
61

−
0.
00
68

1.2
55
8

−
0.
00
03

1.1
33
0

0.
00
30

1.5
01
3

−
0.
00
68

1.0
41
7

0.
02
49

2.
30
14

−
0.
02
51

1.0
84
2

̂
D
E
F

1.3
72
9

1.7
35
3

1.5
56
4

2.
06
35

1.4
38
0

3.
21
34

1.5
27
2

30
𝛽

0.
03
37

0.
01
79

0.
00
60

0.
02
60

−
0.
03
90

0.
01
94

−
0.
02
90

0.
02
64

−
0.
02
50

0.
02
12

−
0.
15
32

0.
07
70

−
0.
08
38

0.
04
29

𝛾
0

−
0.
02
24

0.
20
87

−
0.
02
68

0.
26
79

−
0.
02
08

0.
23
90

−
0.
02
55

0.
31
56

−
0.
01
98

0.
22
29

0.
02
09

0.
52
22

−
0.
02
35

0.
23
36

𝛾
1

−
0.
02
88

0.
60
44

−
0.
04
18

0.
77
04

−
0.
03
89

0.
69
12

−
0.
04
35

0.
90
73

−
0.
03
75

0.
64
36

−
0.
05
30

1.5
00
6

−
0.
03
29

0.
67
56

̂
D
E
F

0.
83
10

1.0
64
3

0.
94
97

1.2
49
2

0.
88
77

2.
09
98

0.
95
22

50
𝛽

0.
01
84

0.
01
07

0.
00
58

0.
01
65

−
0.
02
31

0.
01
25

−
0.
01
32

0.
01
68

−
0.
01
76

0.
01
36

−
0.
13
15

0.
05
17

−
0.
08
99

0.
02
90

𝛾
0

0.
01
86

0.
11
98

0.
01
91

0.
16
01

0.
02
37

0.
14
26

0.
02
54

0.
19
59

0.
02
13

0.
12
97

0.
09
14

0.
36
07

0.
00
35

0.
13
57

𝛾
1

0.
03
33

0.
33
63

0.
03
28

0.
45
03

0.
03
50

0.
39
96

0.
04
18

0.
55
48

0.
03
11

0.
36
21

0.
07
01

0.
99
82

0.
01
86

0.
38
04

̂
D
E
F

0.
46
69

0.
62
69

0.
55
46

0.
76
75

0.
50
55

1.4
10
6

0.
54
50

10
0

𝛽
0.
01
22

0.
00
51

0.
00
65

0.
00
72

−
0.
00
93

0.
00
56

−
0.
00
33

0.
00
78

−
0.
00
76

0.
00
61

−
0.
09
26

0.
02
82

−
0.
06
91

0.
01
83

𝛾
0

−
0.
01
06

0.
06
35

−
0.
01
16

0.
08
46

−
0.
00
96

0.
07
53

−
0.
01
14

0.
09
92

−
0.
00
96

0.
07
06

0.
03
00

0.
17
01

−
0.
02
15

0.
07
13

𝛾
1

−
0.
01
58

0.
18
20

−
0.
01
75

0.
24
24

−
0.
01
73

0.
21
58

−
0.
01
83

0.
28
46

−
0.
01
70

0.
20
24

−
0.
01
38

0.
48
67

−
0.
01
90

0.
20
22

̂
D
E
F

0.
25
05

0.
33
43

0.
29
67

0.
39
1

0.
27
92

0.
68
51

0.
29
18

20
0

𝛽
0.
00
69

0.
00
24

0.
00
07

0.
00
33

−
0.
00
57

0.
00
27

−
0.
00
49

0.
00
35

−
0.
00
27

0.
00
31

−
0.
07
83

0.
02
00

−
0.
04
67

0.
00
93

𝛾
0

−
0.
01
01

0.
02
93

−
0.
00
76

0.
03
91

−
0.
00
75

0.
03
47

−
0.
00
85

0.
04
84

−
0.
00
69

0.
03
13

0.
02
11

0.
09
02

−
0.
02
04

0.
03
53

𝛾
1

−
0.
01
78

0.
08
24

−
0.
01
51

0.
11
08

−
0.
01
59

0.
09
81

−
0.
01
74

0.
13
74

−
0.
01
51

0.
08
87

−
0.
02
48

0.
25
10

−
0.
02
27

0.
09
85

̂
D
E
F

0.
11
41

0.
15
32

0.
13
55

0.
18
93

0.
12
31

0.
36
12

0.
14
31

 10991638, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/qre.3283 by C

ochrane France, W
iley O

nline L
ibrary on [17/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



14 RABHI et al.

TABLE 4 Percentiles and MTTF using true model parameters.

Life characteristic True value
𝐵1 1025.8059
𝐵5 3040.7815
𝐵10 4913.5654
MTTF 19884.2883

In the same way, we shall compare the MTTF life characteristics. Figure 3 displays the log-transformed bias and MSE
of the estimated MTTF using different distances and for different sample sizes. From Figure 3, it is obvious that for small
sample sizes (𝑛 = 5), the predictions provided by the 𝜌LH distance are slightly better as the bias is closer to 0 and the MSE
value is the lowest. However, as we increase the sample size, the advantage of the ML method becomes less pronounced.
For different sample sizes, not much differences were observed between all the distance functions except for 𝜌AD2L that
provides the worst predictions since it presents the highest bias andMSE values of theMTTF. Furthermore, it is important
tomention that for𝑛 = 200, the𝜌AD2R outperforms𝜌LH distance by providing a better prediction of theMTTFwith roughly
the same magnitude of the MSE.

4.2 Proportion of correct selection

In this subsection, we shall compute the proportion of correct selection (PCS) using different sample sizes and for all the
distances by considering very close accelerated lifetime models and nested ALT models. The idea here is to compare the
performance of each distance to recover the ‘parent model’. Since it is not possible to consider all possible models in a
single study, the choice is made to generate the simulated data sets through1 and to consider only1,2,3 and5 (already presented in Section 3.2) for the discrimination studies.
This choice is made to, first, keep a reasonable computational time and, second, to present the results for the main

scenarios: (1) discrimination between similar models (1 vs.3 and1 vs.5) and (2) discrimination between nested
models (1 vs.2). The computation of the PCS matrices was performed using 1000 replications.

4.2.1 Discrimination between close ALT models

The matrices exhibiting the PCS for1 versus3 and1 versus5 discrimination studies are shown, respectively, in
Figures 4 and 5.
One can clearly see, from both figures, that the PCS increases when the sample size increases regardless the distance

function. It is apparent from both discrimination studies that the ABC approach using 𝜌ADL and 𝜌AD2L distances is
performing the best for small sample sizes compared to the likelihood-based distance, through exhibiting the highest
proportion of ‘parent model’ selection. This is quite interesting, as these distances could be efficiently used to mitigate the
risk of model misspecification by inferring and discriminating very close acceleration life models when observed failure
times are limited.
It is important to mention that the evolution of1 versus5’s PCS for different sample sizes shares the same trend

as that presented in1 versus3’s PCS matrix.
Furthermore, from both figures, one can see that 𝜌ADR and 𝜌AD2R distances exhibit the lowest PCS for both cases. This

can be explained by the fact that as these distances give more weight to the right-tail region where the available data
are limited (the three competing ALT models are right-skewed). It will be difficult to discriminate between overlapping
models. One can conclude that these distances are not suitable to discriminate between very close acceleration lifemodels.

4.2.2 Discrimination between nested ALT models

In the following study, one investigates the performance of the ABC approach and the information criteria (IC) to recover
the correct model by considering nested ALT models for different sample sizes. The PCS matrices are estimated for
different tolerance thresholds (Δ𝜖) using both ABC algorithm and IC.
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RABHI et al. 15

F IGURE 1 Bias of the low percentiles predicted using different distances and for different sample sizes.
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16 RABHI et al.

F IGURE 2 Mean squared errors of low percentiles predicted using different distances and for different sample sizes.
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RABHI et al. 17

F IGURE 3 Mean squared error (MSE) and bias of the predicted MTTF using different distances and for different sample sizes.

F IGURE 4 Proportion of correct selection between
1 and3 accelerated life models when the data are
generated from model1.

Two popular IC have been used: the AIC and the BIC. They are given by

AIC = −2 ln((𝜃̂)) + 2𝑘, (40)

where 𝑘 stands for the number of model parameters and (𝜃̂) denotes the likelihood function evaluated at the estimated
parameters values.

BIC = −2 ln((𝜃̂)) + 𝑘 ln(𝑁), (41)

where 𝑁 represents the number of observed data.
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18 RABHI et al.

F IGURE 5 Proportion of correct selection for1 and
5 accelerated life models discrimination when the data
are generated from model1.

F IGURE 6 Proportion of correct selection for1 and2

accelerated life models discrimination for 𝜉 = 10−2.

It should bementioned that for a set of candidatemodels, the selectedmodel is the one that presents the lowest IC value.
Hereafter, 𝜌LH distance is not considered in PCS matrix since the competing models do not have the same dimension-

ality. Hence, for the same data sets generated from model 1, the estimated PCS matrix for Δ𝜖 ≤ 10−2 is illustrated in
Figure 6. Similarly, a PCS matrix was estimated for Δ𝜖 ≤ 10−6. However, it is not presented in this paper since the pro-
portions of parent model selection tend towards zero for all the considered distances regardless the sample sizes. The
following observations can be drawn:

∙ Overall, we notice that, for small tolerance thresholds, all the considered distances largely favour the complex model
(2).

∙ The proportions of2 selection obtained forΔ𝜖 = 10−2 are less pronounced than those forΔ𝜖 = 10−6. This proves that
tightening the expected tolerance threshold reduces the selection probability of the simple model.

∙ It can be seen that increasing sample sizes for a given tolerance thresholds favours the selection of2 regardless the
considered distance and the tolerance threshold. This could be explained by the fact that2 is more flexible and offer
a better fitting quality to the data.

∙ Conversely to the ABC algorithm,𝐴𝐼𝐶 and 𝐵𝐼𝐶 ensure the selection of simpler model (i.e.1) regardless the tolerance
threshold. The PCS for IC increases slightly for large sample sizes. Indeed, for 𝑛 = 5, 𝐴𝐼𝐶 and 𝐵𝐼𝐶 present almost the
same PCS value, respectively, 77.5 and 78.5%, and for 𝑛 = 200, the PCS increases to, respectively, 86 and 86.1%.

∙ Independently of the considered tolerance thresholds, the IC penalises complexmodels and leads to the selection of the
simple model. This could be justified by the fact that models with low number of parameters generalise better.

To sum up, the ABC-NS algorithm coupled with appropriate distances ensures, depending on the user’s objective, the
flexibility of selecting the complexmodel and infer its parameters to better fit the considered data (low tolerance threshold)
or generalising for unseen data (large tolerance threshold).
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TABLE 5 Definition of the priors on the parameters of the accelerated life models.

Model Priors
1 𝛽 ∼  (0, 20) 𝛾0 ∼  (0, 100) 𝛾1 ∼  (0, 50)

2 𝛾′0 ∼  (0, 10) 𝛾′1 ∼  (−10, 10) 𝛾0 ∼  (0, 100) 𝛾1 ∼  (0, 50)

3 𝛽 ∼  (0, 5) 𝛾0 ∼  (0, 100) 𝛾1 ∼  (0, 50)

4 𝛾′0 ∼  (−10, 10) 𝛾′1 ∼  (0, 20) 𝛾0 ∼  (0, 100) 𝛾1 ∼  (0, 50)

5 𝜎 ∼  (0, 3) 𝛾0 ∼  (0, 10) 𝛾1 ∼  (−10, 10)

F IGURE 7 Evolution of the model posterior probabilities over some selected populations using the 𝜌AD distance.

5 REAL DATA APPLICATION

In this section, the ABC-NS algorithm is employed to discriminate between five competing accelerated life models (see
Table 1) using real data. It is constituted of 304 fatigue failure times using 6061-T6 aluminiumcoupons under three different
stress levels: 𝑆1 = 31, 000 Psi with 𝑛1 = 101 observations, 𝑆2 = 26, 000 Psi with 𝑛2 = 102 observations and 𝑆3 = 21000 Psi
with 𝑛3 = 101 observations. All tests have been conducted until failure (see Ref. 61 for more details). As in the first part,
a comparison between likelihood-based approach and likelihood-free method applied for model selection is conducted.
For the ABC-NS algorithm, vague uniform priors based on crude estimates from a least square method are employed.

The estimates are obtained, for each model, through a preliminary analysis that consists of using the data collected at the
stress levels. The priors on the parameters of the considered five accelerated life models are given in Table 5. Furthermore,
equal prior probabilities are assumed for the five competing models, that is, ℙ(𝑖) =

1

5
. The other hyper-parameters of

ABC-NS algorithm are kept the same as for the simulation study.

5.1 Results

In this subsection,we investigate the performance of theABC-NS algorithmusing the𝜌AD distance for illustrative purpose.
This choice is motivated by the fact that this distance provides the best predictions at low lifetime percentiles and very
efficientwhen very closemodels are in competition. The posterior probabilities over the populations are shown in Figure 7.
A few important observations are worth mentioning: first, the parsimony principle is well embedded in the ABC-NS

algorithm; the algorithm tries, first, to select the simpler models (1, 3 and 5). Then, when these latter are no
longer able to fit the data very well, the algorithm switches to a more complex models (2 and 4). Second, one can
see that1 is eliminated first, then5 pursued by3. After that, the ABC-NS algorithm oscillates between2 and4 and finishes by converging to model2. This model has been selected around the 100th population with a posterior
probability equal to 1. The algorithmcontinues to rununtil reaching the stopping condition. In otherwords, from the 100th
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20 RABHI et al.

F IGURE 8 Histograms for the parameters of the
selected2 with the 𝜌AD distance.

F IGURE 9 Acceptance rate over the populations.

to the 136th population, the algorithm tends to refine the posterior estimates. Figure 8 displays the marginal distributions
of the selected model parameters. As one can see, they are very well peaked with low variability, the value of the distance
function at the last population is equal to 𝜌AD = 3.142.
Figure 9 shows the acceptance rate over the populations computed by dividing the number of particles needed to replen-

ish each population by the total number of simulated particles. One can clearly see that the ABC-NS algorithm ensures
a relatively high acceptance rates. It is worth mentioning that for the first populations, the acceptance rate decreases
because the algorithm explores large model and parameter spaces, then it steadily rises as the sampling spaces tighten
and the least likely models are eliminated.
For comparison purpose, the algorithm is now employed with the other distance functions in order to select the ade-

quate model(s) and to compare the fitting qualities. Table 6 gives the selected model for the different distances. Again,
model2 is selected as the most likely model to fit the accelerated data when using 𝜌CM, 𝜌ADL and 𝜌AD2L distances (rank
1 in bold in the table). However, for 𝜌ADR and 𝜌AD2R distances, the most likely model seems to be model4 (rank 1 in
bold in the table). The obtained results show that the selected model may vary depending on the selected distance func-
tion which measures the level of agreement between the empirical and the simulated data and also expresses a desired
objective of the user.
Table 7 shows that the differences on the percentiles estimated by the different selectedmodels and distances are signif-

icant. One important point that should be highlighted is that the 𝜌AD2L and 𝜌ADL distances tend to be more ‘pessimistic’
to predict lifetime at the left-tail. This lies to the fact that both distances give more weights to the left observations which
rises the risk of over-fitting. In other words, they provide a good fitting quality at the left-tail region when observed data
are available, but they are poor in terms of predictions (for unseen data). Both 𝜌ADR and 𝜌AD2R provide probably an
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RABHI et al. 21

TABLE 6 Model ranking for the considered distance functions.

Competing accelerated life models
Distance function 𝟏 𝟐 𝟑 𝟒 𝟓

𝜌CM 3 1 4 2 5
𝜌AD 3 1 4 2 5
𝜌ADL 3 1 4 2 5
𝜌ADR 4 2 3 1 5
𝜌AD2L 2 1 4 3 5
𝜌AD2R 4 3 2 1 5

TABLE 7 Prediction of some life characteristics under normal stress.

Life characteristics/(cycles number)
Distance function Selected model 𝑩𝟏 𝑩𝟓 𝑩𝟏𝟎 MTTF
𝜌LH 2 3475.5130 6277.591 8150.623 16408.188
𝜌CM 2 2051.3905 4504.1864 6374.7216 16725.2032
𝜌AD 2 2575.4527 5201.1226 7094.1467 16586.8824
𝜌ADL 2 2002.9660 4452.2793 6335.5730 16910.1358
𝜌ADR 4 6019.4383 7939.3868 9255.9937 17834.3071
𝜌AD2L 1 1734.9376 4121.2831 6039.1011 17699.7480
𝜌AD2R 4 8949.3723 10768.5230 11905.1746 17734.2997

TABLE 8 Comparison between the competing models using two information criteria.

Model Maximum Log-likelihood  AIC BIC
1 −1793.0338 3592.0675 3603.2186
2 −1782.7183 3573.4365 3588.3046
3 −1806.5762 3619.1523 3630.3034
4 −1784.6265 3577.2530 3592.1212
5 −1818.1496 3642.2994 3653.4504

over-estimated values of lower percentiles as one can see from the same table. It is obvious that these distances are not
recommended in predicting the ‘safe life’ at lower percentiles. Another reason to explain the big difference in terms of
lifetime predictions is that both distances select4 as the most likely model. Despite that the selected models are very
close, they yield quite different values. It is obvious from the obtained results that the choice of the model but also the
distance used to infer the accelerated life model play a crucial role with regard to prediction of tail percentiles. Based
on the obtained results and for the purpose of specifying a safe life, one can say that2 provides the best compromise
between a good fitting quality and a better generalization (i.e. prediction of unseen data). Finally, the disparity between
the predicted MTTF given by the used distances is less pronounced as one can see from Table 7.

5.2 Model selection through likelihood-based approach

Table 8 gives an estimate of 𝐴𝐼𝐶 and 𝐵𝐼𝐶 criterion for the competing models. One can see that the most likely model
using both criteria is2 where it presents the lowest IC values (in bold in the table). In addition, it can be seen that4

provides an acceptable fit to the data as the difference between the IC values is not significant. The obtained results from
the likelihood-based approach is coherent with the likelihood-free method. It is obvious that the2 and4 are themost
likely models to fit the data (the values are in bold in the table). The advantage of the likelihood-free method is that it can
be tailored through an appropriate choice of the distance function according to a specific user objective.
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22 RABHI et al.

6 CONCLUDING REMARKS

In this paper, a comparison between likelihood-free and likelihood-based approaches has been conducted to deal with
accelerated life model selection and parameter estimation. Several distance functions have been tested for the first
approach to get more insights. A focus on the ability of each approach to precisely estimate the model parameters, to
predict some lower percentiles and to discriminate between very close competing accelerated life models have been inves-
tigated. It has been shown that each approach has its own strength and its own drawbacks. The likelihood-based approach
is a good estimator but presents some weaknesses in predicting lower percentiles and also to discriminate between very
close models when the available data are limited. However, the likelihood-free approach coupled with an appropriate dis-
tance (selected based on the user’s goal) may be a good alternative to overcome these issues as it has been demonstrated.
In addition, the ABCmethod is a single step procedure as all themodels are considered simultaneously and the least likely
models are ruled out progressively over the populations. The presented results indicated that the likelihood-free Bayesian
approach applied for the first time to discriminate between accelerated life models is a promising option for practical
applications regarding reliability of systems/components, mainly when a good predictions of lower percentiles lifetime is
of major concern. Themethod can be tailored to our needs through an appropriate selection of a distance function/metric.
The overall conclusion here is that the likelihood-free method may be of considerable value in engineering reliability

problems for selecting a ‘useful’ model. It is flexible in the sense that different distance functions can be used and can
be considered as a promising alternative to overcome the drawbacks of the likelihood-based approaches. As it has been
demonstrated, it has a good prediction capability especially for lower percentiles. Although, we have discussed only the
complete data, but similar results can be obtained for censored data also. The work is in progress and it will be reported
later. The improvement of the ABC-NS algorithm using reinforcement learning is another avenue under investigation to
gain more in efficiency.

ACKNOWLEDGEMENTS
We would like to thank the University of Angers and Liebherr Aerospace Toulouse for providing facilities throughout
the project. This article has benefited from the contributions of Mr Anis Ben Abdessalem, Mr Laurent Saintis, Prof Bruno
Castanier andMrRodrigue Sohoin.We thank the journal and the reviewers for the thoughtful comments and constructive
suggestions and for the attention given to this work. This research received no specific grant from any funding agency in
the public, commercial or not-for-profit sectors.

DATA AVAILAB IL ITY STATEMENT
The data and the codes that support the findings of this study are available upon request.

ORCID
MohamedRabhi https://orcid.org/0000-0002-6815-0553

REFERENCES
1. Pan R. A bayes approach to reliability prediction utilizing data from accelerated life tests and field failure observations. Qual Reliab Eng

Int. 2009;25:229-240.
2. Fan TH, Yu CH. Statistical inference on constant stress accelerated life tests under generalized gamma lifetime distributions. Qual Reliab

Eng Int. 2013;29(5):631-638.
3. Freels JK, Pignatiello JJ, Warr RL, Hill RR. Bridging the gap between quantitative and qualitative accelerated life tests. Qual Reliab Eng

Int. 2015;31(5):789-800.
4. Meeker WQ, Escobar LA. Statistical Methods for Reliability Data. John Wiley and Sons; 2014.
5. Carlsson B, Möller K, Köhl M, et al. The applicability of accelerated life testing for assessment of service life of solar thermal components.

Sol Energy Mater. Sol Cells. 2004;84:255-274.
6. Gaertner G, Raasch D, Barratt D, Jenkins S. Accelerated life tests of CRT oxide cathodes. Appl Surf Sci. 2003;215:72-77.
7. WhitmanCS. Accelerated life test calculations using themethod ofmaximum likelihood: an improvement over least squares.Microelectron

Reliab. 2003;43:859-864.
8. Barlow R, Toland R, Freeman T. A Bayesian analysis of the stress rupture life of Kevlar/epoxy spherical pressure vessels. In: Accelerated

Life Testing and Experts Opinions in Reliability. Elsevier Science Ltd.; 1988;203-236.
9. D’Anna G, Giorgio M, Riccio A. Estimating fatigue reliability of structural components via a Birnbaum-Saunders model with stress

dependent parameters from accelerated life test. Compos Part B. 2017;119:206-214.
10. Birnbaum ZW, Saunders SC. A new family of life distributions. J Appl Probab. 1969;6(2):319-327.

 10991638, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/qre.3283 by C

ochrane France, W
iley O

nline L
ibrary on [17/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://orcid.org/0000-0002-6815-0553
https://orcid.org/0000-0002-6815-0553


RABHI et al. 23

11. Box GE, Draper NR. Empirical Model-Building and Response Surfaces. Wiley Series in Probability and Mathematical Statistics. Wiley; 1987.
12. ShanshanL, ZhanwenN,GuodongW,QuL, ZhenH. Lower percentile estimation of accelerated life testswith nonconstant scale parameter.

Qual Reliab Eng Int. 2017;33:1437-1446.
13. Settanni E,Newnes LB, ThenentNE, BumblauskasD, ParryG,GohYM.A case study in estimating avionics availability from field reliability

data. Qual Reliab Eng Int. 2016;32(4):1553-1580.
14. Prabhakar Murthy DN, Bulmer M, Eccleston JA. Weibull model selection for reliability modelling. Reliab Eng Syst Saf. 2004;86(3):257-267.
15. JukicD, BensicM, Scitovski R.On the existence of the nonlinearweighted least squares estimate for a three-parameterWeibull distribution.

Comput Stat Data Anal. 2008;52(9):4502-4511.
16. Li H, Zuo H, Liu R, Liu J, Jing C. Evaluation of aileron actuator reliability with censored data. Chin J Aeronaut. 2015;28(4):1087-1103.
17. Jiang R, Murthy DN. Reliability modeling involving two Weibull distributions. Reliab Eng Syst Saf. 1995;47(3):187-198.
18. Zhang T, Dwight R. Choosing an optimal model for failure data analysis by graphical approach. Reliab Eng Syst Saf. 2013;115:111-123.
19. Kalbfleisch JG. Probability and Statistical Inference. 2nd ed. Springer-Verlag; 1979:1-60.
20. Akaike H. A new look at statistical model identification. IEEE Trans Autom Control. 1974;19(6):716-722.
21. Schwarz G. Estimating the dimension of a model. Ann Statist. 1978;6(2):461-464.
22. Ghaly A, Aly HM, Salah RN. Different estimation methods for constant stress accelerated life test under the family of the exponentiated

distributions. Qual Reliab Eng Int. 2016;32:1095-1108.
23. Gupta A, Mukherjee B, Upadhyay SK. Weibull extension model: a Bayes study using Markov chain Monte Carlo simulation. Reliab Eng

Syst Saf. 2008;93(10):1434-1443.
24. Santana D, Filho CF, Márcio IS, Martins A. A novel Bayesian approach to reliability modeling: the benefits of uncertainty evaluation in

the model selection procedure. Qual Reliab Eng Int. 2018;34:1127-1141.
25. Al-Garni AZ, JamalA. Artificial neural network application ofmodeling failure rate for boeing 737 tires.Qual Reliab Eng Int. 2011;27(2):209-

219.
26. Ling J, Pan J. A new method for selection of population distribution and parameter estimation. Reliab Eng Syst Saf. 1998;60:247-255.
27. Green PJ. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika. 1995;80(4):711-732.
28. Dellaportas P, Jonathan J, Ntzoufras I. On Bayesian model and variable selection using MCMC. Stat Comput. 2002;12:27-36.
29. Godsill SJ. On the relationship between Markov chain Monte Carlo methods for model uncertainty. J Comput Graph Stat. 2001;10(2):230-

248.
30. Green PJ, Hastie DI. Model choice using reversible jump Markov chain Monte Carlo. Statistica Neerlandica. 2012;66:309-338.
31. Jeffreys H. Theory of Probability. 1st ed. Oxford University Press; 1939:10-56.
32. Sansó B, Pericchi LR, Moreno E, RacugnoW. On the robustness of the intrinsic Bayes factor for nested models. IMS Lect Notes Monogr Ser.

1996;6:155-173.
33. Berger JO, Pericchi LR. The intrinsic Bayes factor for model selection and prediction. J Am Stat Assoc. 1996;91(433):109-122.
34. Puthenpura S, Sinha NK. Modified maximum likelihood method for the robust estimation of system parameters from very noisy data.

Automatica. 1986;22(2):231-235.
35. Vaughan DC. The generalized secant hyperbolic distribution and its properties. Commun Stat-Theory Methods. 2002;31(2):219-238.
36. Acitas S, Kasap P, Senoglu B, Arslan O. Robust estimation with the skew distribution. Pak J Stat. 2013;29(8):409-430.
37. Acitas S, Kasap P, Senoglu B, Arslan O. One-step m-estimators: Jones and Faddy’s skewed t-distribution. J Appl Stat. 2013;40(3):1545-1560.
38. Balakrishnan N, LingMH.Model misspecification analyses of Weibull and gammamodels based on one-shot device test data. IEEE Trans.

2017;66(3):641-650.
39. KhakifiroozM, Tseng ST, Fathi M. Model misspecification of generalized gamma distribution for accelerated lifetime-censored data. Tech-

nometrics. 2020;62(3):357-370.
40. Balakrishnan N, Castilla E, Ling MH. Optimal designs of constant-stress accelerated life-tests for one-shot devices with model

misspecification analysis. Qual Reliab Eng Int. 2022;38:989-1012.
41. Beaumont MA, Zhang W, Balding DJ. Approximate Bayesian computation in population genetics. Genetics. 2002;162:2025-2035.
42. Bonassi V, West M. Sequential Monte Carlo with adaptive weights for approximate Bayesian computation. Bayesian Anal. 2015;10:171-

187.
43. Ben Abdessalem A, Dervilis N, Wagg D, Worden K. Model selection and parameter estimation of dynamical systems using a novel variant

of approximate Bayesian computation.Mech Syst Signal Process. 2019;122:364-386.
44. Rabhi M, Ben Abdessalem MA, Saintis L, Castanier B, Sohoin RK. Parameters estimation of accelerated lifetime testing models using an

efficient approximate Bayesian computation method. In: ESREL. 2021.
45. Toni T, Welch D, Strelkowa N, Ipsen A, Stumpf MPH. Approximate Bayesian computation scheme for parameter inference and model

selection in dynamical systems. J R Soc Interface. 2009;6:187-202.
46. Barnes CP, Filippi S, Stumpf MP, Thorne T. Considerate approaches to constructing summary statistics for ABC model selection. Stat

Comput. 2012;22(6):1181-1197.
47. Everitt RG, Johansen AM, Rowing E, Evdemon-Hogan M. Bayesian model comparison with un-normalised likelihoods. Stat Comput.

2017;27(2):403-422.
48. Ong VM, Nott DJ, Tran MN, Sisson SA, Drovandi CC. Variational Bayes with synthetic likelihood. Stat Comput. 2018;28(4):971-988.
49. Pritchard JK, Seielstad MT, Perez-Lezaun A, Feldman MW. Population growth of human Y chromosomes: a study of Y chromosome

microsatellites.Mol Biol Evol. 1999;16(12):1791-1798.

 10991638, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/qre.3283 by C

ochrane France, W
iley O

nline L
ibrary on [17/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



24 RABHI et al.

50. Sunnaker M, Busetto AG, Numminen E, Corander J, Foll M, Dessimoz C. Approximate Bayesian computation. PLOS Comput Biol.
2013;9(1):e1002803.

51. Chiachio M, Beck JL, Chiachio J, Rus G. Approximate Bayesian computation by subset simulation. SIAM J Sci Comput. 2014;36(3):A1339-
A1358.

52. Picchini U, Anderson R. Approximate maximum likelihood estimation using data-cloning ABC. Comput Stat Data Anal. 2017;105:166-183.
53. Mukherjee P, Parkinson D, Liddle AR. A nested sampling algorithm for cosmological model selection. Astrophys J. 2006;638:L51-L54.
54. Shaw JR, BidgesM,HobsonMP. Efficient Bayesian inference formultimodal problems in cosmology.MonNotice RAstron Soc. 2006;378:1-7.
55. Luceno A. Fitting the generalized pareto distribution to data using maximum goodness-of-fit estimator. Comput Stat Data Anal.

2006;51:904-917.
56. Anderson TW, Darling DA. A test of goodness-of-fit. J Am Stat Assoc. 1954;49:765-769.
57. Farrel PJ, Stewart KR. Comprehensive study of tests for normality and symmetry: extending the Spiegelhalter test. J Stat Comput Simul.

2006;76:803-816.
58. Cao QV, McCarty SM. Newmethods for estimating parameters of Weibull functions to characterize future diameter distributions in forest

stands. In: 13th Biennial Southern Silvicultural Research Conference. 2006;338-340.
59. Bai DS, Chung SW. An accelerated life test model with the inverse power law. Reliab Eng Syst Saf. 1989;24:223-230.
60. Park SH, Kim JH. Lifetime estimation of led lamp using gamma process model.Microelectron Reliab. 2016;57:71-78.
61. Birnbaum ZW, Saunders SC. Estimation for a family of life distributions with applications to fatigue. J Appl Probab. 1969;6(2):328-347.

AUTH OR BIOGRAPH IES

Mohamed Rabhi earned a PHD in Reliability engineering from University of Angers – France
where he worked on the development of a methodology for quantifying the impact of prepon-
derant stresses on the reliability of complex systems (2023) and a Mechanical Engineer from the
National Engineering School of Tunis (2017). He currently holds a position of Reliability Special-
ist at Liebherr Aerospace Toulouse where he is in charge of the methodological development of
accelerated life testing of complex systems.

Anis B. Abdessalem (ABA) is a Lecturer in the Department of Mechanical Engineering at the
University of Angers and a member of the dependability and decision support group. His back-
ground is structural dynamics, nonlinear system identification, reliability, stochastic modelling
and Bayesian inference. ABA obtained a PhD in Physical, Mathematics and Information Sciences
for Engineers (2007–2011) from INSA Rouen. From 2015 to 2017, he joined the Dynamics Research
Group at the University of Sheffield to work on the EPSRC Programme Grant ‘Engineering Non-

linearity’ (EK/K003836). His current research sits between reliability analysis of complex systems, model selection,
verification and validation in situations where data are sparse in multiple engineering disciplines.

Laurent Saintis is an Associate Professor at the University of Angers in the Department of Qual-
ity, Innovation and Reliability Engineering. He is actually head of dependability research team
of the LARIS lab. He works principally on reliability testing and complex systems modelling for
dependability evaluation. Since 2015, he is mainly involved in the design of reliability test plan
for electronic medical devices, and is responsible for the RECOME project for the laboratory.
His main teaching themes are dependability, reliability assessment, maintainability design and
value analysis.

BrunoCastanier is a Professor atUniversitÃ©d’Angers in theDepartment ofQuality, Innovation
and Reliability Engineering. He conducts his research in the domain of mathematical models for
reliability assessment andmaintenance optimization.He has publishedmore than 30 papers in the
main journal of the domains and more than 100 contributions in international conferences. His
research activity is strongly connected with industry. He has participated as leader or contributor
to 15 different research contracts. He was the General Chair of the 31st European Reliability and

Safety Conference – ESREL 2021 – in Angers, France.

 10991638, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/qre.3283 by C

ochrane France, W
iley O

nline L
ibrary on [17/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



RABHI et al. 25

Rodrigue Sohoin earned a PHD inReliability Engineering from theUniversity of Angers – France
where he worked on the definition of a methodology for reliability estimation and qualification
of mechanical systems in the development stage. He currently holds a position of Reliability
Specialist at Liebherr Aerospace Toulouse where he is in charge of reliability assessment for
complex systems.

How to cite this article: Rabhi M, Abdessalem AB, Saintis L, Castanier B, Sohoin R. Discrimination between
accelerated life models via Approximate Bayesian Computation. Qual Reliab Eng Int. 2023;1-25.
https://doi.org/10.1002/qre.3283

 10991638, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/qre.3283 by C

ochrane France, W
iley O

nline L
ibrary on [17/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1002/qre.3283

	Discrimination between accelerated life models via Approximate Bayesian Computation
	Abstract
	1 | INTRODUCTION
	2 | BAYESIAN INFERENCE
	2.1 | Bayes formalism
	2.2 | Likelihood-free method
	2.3 | Steps of the ABC-NS algorithm
	2.4 | Selection of distance functions

	3 | FORMULATION OF THE ACCELERATION LIFE MODELS
	3.1 | Choice of the parametric lifetime distributions
	3.2 | Choice of the acceleration model
	3.3 | Formulation of the log-likelihood function of the accelerated life models

	4 | SIMULATION STUDY
	4.1 | Estimation of the reliability lifetime characteristics
	4.2 | Proportion of correct selection
	4.2.1 | Discrimination between close ALT models
	4.2.2 | Discrimination between nested ALT models


	5 | REAL DATA APPLICATION
	5.1 | Results
	5.2 | Model selection through likelihood-based approach

	6 | CONCLUDING REMARKS
	ACKNOWLEDGEMENTS
	DATA AVAILABILITY STATEMENT

	ORCID
	REFERENCES
	AUTHOR BIOGRAPHIES


