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A B S T R A C T
An important component for the advancement of plant breeding, genetics, and genomics research
is the rapid and accurate measurement of phenotypic traits of large plant populations. The
phenotypic data that are of interest can be at multiple levels of plant organization including
organ-level geometric characteristics as well as the spatial organization of the organs. 3D
computer vision enabling 3D geometry acquisition and processing promises to supply fast,
automated phenotypic data collection. One important component of the processing pipeline is
the segmentation of the plant into its structural components, such as leaves, stems, and flowers.
In this paper, a novel 3D point-based deep learning network, namely RoseSegnet, is proposed
for segmentation of point clouds of rosebush plants to their organs. The network is equipped
with two attention-based modules, one for extracting contextual features at the encoder phase,
another for feature propagation at the decoder phase. The network processes regions of points
in a hierarchical manner, where at each level, point features are aggregated using attention-
based operators. The aggregation is performed by incorporating point relations both within and
between the receptive fields, defined by the hierarchical organization of points. RoseSegNet
outperforms the widely-used architecture PointNet++ by 4% in terms of 𝑀𝐼𝑜𝑈 on the publicly
available ROSE-X data set. Also, it is demonstrated that introducing local surface features
together with the spatial coordinates of each 3D point at the input level boosts the segmentation
performance of both networks by 9% in terms of 𝑀𝐼𝑜𝑈 .

Nomenclature

(𝜆1, 𝜆2, 𝜆3) Eigenvalues of the covariance matrix Σ
(𝐹1, 𝐹2, 𝐹3, 𝐹4) Local surface features
(𝑥𝑖, 𝑦𝑖, 𝑧𝑖) Coordinates of point 𝑝𝑖
𝛼 The weight function in the Intra-Emb operator
𝛽 The transformation function to obtain the query vector in the

Intra-Emb operator
Δ𝑐𝑢 The relative position vector between 𝑝 and 𝑐𝑢
𝛿𝑘 The position vector of 𝑘th point in the Intra-Emb operator
𝛾 The non-linear transformation of 𝛼 in the Intra-Emb operator
�̂� The weight function in the Att-Prop module
𝛽 The transformation function to obtain the query vector in the

Att-Prop module
�̂� The non-linear transformation of �̂� in the Att-Prop module
�̂� The non-linear transformation in the Att-Prop module
�̂� The transformation function to obtain value vectors in the Att-

Prop module
�̂� The transformation function to obtain key vectors in the Att-

Prop module
�̂�𝑘𝑒 The weights of the function �̂�
�̂�𝑞𝑢 The weights of the function 𝛽
�̂�𝑣𝑎 The weights of the function �̂�
 Set of centre points

 Set of point features
§ Neighbourhood of point 𝑝𝑖
 The set of points representing a point cloud
𝑖𝑛𝑡𝑒𝑟
𝑖 The set of nearest 𝐿 centre points to 𝑐𝑖

𝑖𝑛𝑡𝑟𝑎
𝑖 The point set falling inside the region centred at 𝑐𝑖

𝑝 Mean of the coordinates of the points in §

𝜙 The non-linear transformation in the Intra-Emb operator
𝜓 The transformation function to obtain value vectors in the

Intra-Emb operator
𝜌 Softmax function
Σ Covariance matrix
Θ The linear transformation of 𝛿𝑘 in the Intra-Emb operator
𝜑 The transformation function to obtain key vectors in the Intra-

Emb operator
𝜗 A one-layer MLP with leaky ReLU to transform 𝑓𝑘 for 𝑔𝑖𝑛𝑡𝑟𝑎𝑟𝑒𝑠
𝐶 Number of semantic categories of plant organs
𝑐𝑖 𝑖th centre point in set 
𝑐𝑢 𝑢th nearest centre point to 𝑝 in the Att-Prop module
𝐷 Dimension of features in 
𝑓𝑖 Features of point 𝑝𝑖
𝑓𝑘 Features of point 𝑝𝑘
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𝑓𝑎𝑡𝑡 The attention-based interpolated features in the Att-Prop mod-
ule

𝑓𝑝𝑟𝑜𝑝 The propagated features
𝐹𝑁 Number of false negatives
𝐹𝑃 Number of false positives
𝑔 Features of point 𝑐𝑖
𝑔𝑢 Features of point 𝑐𝑢
𝑔𝑖𝑛𝑡𝑒𝑟𝑎𝑡𝑡 Attention-based aggregated features in the Inter-Emb operator
𝑔𝑖𝑛𝑡𝑟𝑎𝑎𝑡𝑡 Attention-based aggregated features in the Intra-Emb operator
𝑔𝑐𝑜𝑛𝑡𝑒𝑥𝑡 Concatenated features of Intra-Emb and Inter-Emb operators
𝑔𝑖𝑛𝑡𝑒𝑟 The output features of the Inter-Emb operator
𝑔𝑖𝑛𝑡𝑟𝑎 The output features of the Intra-Emb operator
𝑔𝑖𝑛𝑡𝑒𝑟𝑟𝑒𝑠 The residual features in the Inter-Emb operator
𝑔𝑖𝑛𝑡𝑟𝑎𝑟𝑒𝑠 The residual features in the Intra-Emb operator
𝐼𝑜𝑈 Intersection over Union
𝐾 Number of points randomly selected from 𝑖𝑛𝑡𝑟𝑎

𝑖
𝐿 Number of centre points in 𝑖𝑛𝑡𝑒𝑟

𝑖
𝑀 Number of points in set 
𝑀𝐼𝑜𝑈 Mean Intersection over Union
𝑁 Number of points in 
𝑁0 Number of points in the input point cloud
𝑃 Precision
𝑝𝑖 𝑖th 3D point in 
𝑝𝑗 𝑗th neighbour of point 𝑝𝑖
𝑝𝑘 𝑘th 3D point in 𝑖𝑛𝑡𝑟𝑎

𝑖

𝑅 Recall
𝑟𝐹 Radius of the neighbourhood for the extraction of local surface

features
𝑟𝑇 Radius of the region centred at 𝑐𝑖
𝑠 Factor of dimension reduction for input features to attention-

based modules
𝑇𝑃 Number of true positives
𝑈 The number of closest centre points in the Att-Prop module
𝑊𝑘𝑒 The weights of the function 𝜑
𝑊𝑞𝑢 The weights of the function 𝛽
𝑊𝑣𝑎 The weights of the function 𝜓
Att-Abs Attention-based abstraction
Att-Prop Attention-based propagation
Inter-Emb Inter-region Embedding
Intra-Emb Intra-region Embedding
CNN Convolutional Neural Networks
FPFH Fast Point Feature Histograms
FPS Farthest point sampling
LFPC-s Local Features on Point Cloud - supervised
LFPC-u Local Features on Point Cloud - unsupervised
NLP Natural Language Processing
PCA Principal Component Analysis
SVM Support Vector Machines
VCNN Voxel-based convolutional neural networks

1. Introduction1

Component phenotypes of plants refer to measurements of individual components of plants such as leaves, branches2

and flowers (Choudhury et al., 2019). Leaf area, branching angle, stem length are examples to such measurements,3

which are traditionally obtained through manual methods. Manual phenotyping, being highly labor-intensive and4

error-prone, is far from meeting the demand for rapid phenotyping of large populations of plants to analyse complex5

interactions between genotypes and the environment (Minervini et al., 2015). Automated phenotyping through6

computer vision and machine learning techniques has been intensively pursued in the last decade in order to break7

this phenotyping bottleneck (Mochida et al., 2018).8

The visual plant data can be digitised through 2D photographic imaging (Zhang et al., 2021; Xu et al., 2019;9

Feldmann & Tabb, 2022) or through 3D sensing (Liu et al., 2020b; Bao et al., 2019). In either case, component10

phenotyping requires segmentation of the visual plant data into individual organs, such as leaves, stems, nodes, fruits,11

and flowers. The accurate segmentation of plants to the organs is also critical to extract morphological and architectural12

traits for automated high-throughput phenotyping.13

2D image-based systems are widely used for segmentation of plant parts and estimation of organ-level traits.14

However, 2D photographic imaging poses challenges such as self-occlusion, missing data, and the variability due15

to illumination conditions. The lack of 3D depth information complicates the accurate evaluation of many traits such16

as component size, shape, orientation, and location. The geometrical data of plants in the form of point clouds, depth17
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images, etc, acquired through 3D sensors, supplies direct access to such measurements, provided that individual organs18

are accurately segmented.19

The general practise for segmentation of organs from 3D plant models has been the extraction of local surface20

features that describe the local geometric information around each 3D point. Local features capture distinguishing21

properties of organ classes and model within class variability (Ziamtsov & Navlakha, 2019). Examples to such local22

surface features are first and second tensor features (Elnashef et al., 2019), Fast Point Feature Histograms (FPFH)23

(Wahabzada et al., 2015; Sodhi et al., 2017) and eigenvalues of local covariance matrix (Dey et al., 2012; Dutagaci24

et al., 2020). Once these point-based features are extracted, the segmentation is performed through classifying each25

point with traditional machine learning approaches, such as Support Vector Machines (SVM) or Random Forests.26

Classification of handcrafted surface features at the local point level is effective to some degree; however, depends27

heavily on the design of the features and is blind to the contextual information at larger scales. Deep neural networks28

are capable of simultaneously extracting and aggregating features at multiple scales providing context information and29

weighting relevant features according to a loss function evaluated on training data.30

Point cloud data can be obtained through multi-view stereo or RGB-D image acquisition. In these cases, it is31

possible to apply standard convolutional neural networks (CNN) to individual colour or depth images (Shi et al.,32

2019; Liu et al., 2020a; Majeed et al., 2020). Point clouds can be the raw output of other acquisition devices such as33

3D LiDARs. The irregular structure of point clouds poses a challenge for direct application of standard CNNs, which34

require regular data grids of fixed-size as input. To overcome this limitation, rendering 3D point clouds onto 2D images35

has been proposed (Japes et al., 2018; Jin et al., 2018; Wang et al., 2019). Segmentation is performed on the rendered 2D36

images through convolutional neural networks such as U-net, Mask R-CNN, or Fast-RCNN. Then, segmented pixels37

are associated with the original 3D point cloud data in accordance with the transformation relationship established38

between the images and the point cloud. Although these methods enable the application of CNNs to data derived from39

3D plant models, they do not operate directly on the point clouds in 3D space. Another issue is the computational40

cost of the rendering and projection phases. As another strategy, the point cloud can be converted to a volumetric41

form that preserves the spatial relationships in 3D and enable the application of 3D CNNs. Jin et al. (2020) and Le42

Louëdec & Cielniak (2021) proposed voxel-based convolutional neural networks (VCNN) for maize stem and leaf43

segmentation and segmentation of strawberry fruit, respectively. The disadvantage with volumetric approaches is the44

trade-off between computational cost and resolution due to quantization.45

Recent advances on extension of deep neural networks for direct application on 3D point cloud data are key to46

exploring their capabilities for 3D plant analysis. Such advances on 3D point-based deep neural networks started with47

the introduction of PointNet (Qi et al., 2017a) and its local variant PointNet++ (Qi et al., 2017b), and exploded in48

the last decade (Guo et al., 2021b). Despite this proliferation, the application of 3D point-based networks on plant49
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phenotyping is limited to a few studies, mainly due to the scarcity of annotated 3D plant data sets (Chaudhury et al.,50

2020). In work (Turgut et al., 2022), point-based deep learning architectures were compared for organ segmentation51

on ROSE-X data set (Dutagaci et al., 2020) and their performances were enhanced with the incorporation of synthetic52

point cloud data. Schunck et al. (2021) released a multi-temporal data set and provided baseline results of point-based53

deep learning networks such as PointNet, PointNet++ and LatticeNet (Rosu et al., 2020). Chaudhury et al. (2021)54

explored the performance of PointNet++ model trained with virtual plants on real plants and obtained promising55

results. Boogaard et al. (2021) demonstrated the ability of PointNet++ of segmenting incomplete point clouds of56

cucumber plants and also showed that spectral information boosted the performance. Morel et al. (2020) proposed a57

network based on PointNet and PointNet++ to segment virtual trees into woody and leaf parts. After the point cloud was58

partitioned into overlapping sub-clouds, a variant of PointNet++ was used to extract the global information of each sub-59

cloud. The global feature and local features extracted by Principal Component Analysis (PCA) were concatenated and60

PointNet was applied recursively to predict labels. Ghahremani et al. (2021) introduced Pattern-Net to segment wheat61

models into organs. The point cloud was decomposed into multiple and different subsets via a random downsampling62

operator and a feature extraction pattern was applied across all subsets to extract the stationary patterns.63

The problems associated with sampling and organizing 3D points within the structure of neural networks for64

effective surface characterization are still not solved. Morel et al. (2020) showed that introducing geometric local65

descriptors as input to 3D deep learning networks provides additional information on the distribution of points66

in the local neighbourhood and enhances the performance of the classifier significantly for segmentation of trees.67

Boogaard et al. (2021) used the spectral information as additional feature channels for improvement of the classification68

performance of the deep learning architecture. The addition of prior information of plant organs formulated as local69

geometric and spectral characteristics provides a significant benefit to the deep learning architectures to learn the70

underlying latent surface information.71

Recently, due to the success of transformer networks in the Natural Language Processing (NLP) domain (Vaswani72

et al., 2017), the concept of self-attention was adapted to different domains to reveal contextual information present73

across longer ranges (Khan et al., 2021; Wang et al., 2021). The self-attention mechanism is well-suited to extract74

latent relationships of points in the 3D model analysis as it is inherently permutation-invariant for processing point75

cloud data (Guo et al., 2021a). Zhao et al. (2021) showed that self-attention can extract descriptive features considering76

the correlation between points. To the best of our knowledge, the potential of attention mechanism integrated into a77

point-based deep learning architecture has not been previously explored for 3D plant analysis.78

In this work, a novel point-based deep network architecture, which is called RoseSegNet, is proposed to segment 3D79

plant models into structural parts. The network is equipped with self-attention mechanisms. It is composed of encoder80

and decoder parts, each designed in a hierarchical manner. The attention-based modules embedded into the layers of81
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the encoder structure, abstract point features by relating them both within local regions (intra-region), and between82

representatives of local regions (inter-region). Residual connections are inserted to both the attention-based intra-83

region and inter-region embedding operators. In the decoder part, attention-based propagation modules are employed84

to hierarchically interpolate abstracted point features back to the input point cloud. The network is trained and tested85

on the fully annotated 3D rosebush models in the ROSE-X data set (Dutagaci et al., 2020) to segment them into86

flower, leaf, and stem parts. The results demonstrate that RoseSegNet outperforms the widely-used deep learning87

architecture, PointNet++. Moreover, introducing local surface descriptors as input to both networks results in a boost88

in segmentation performance.89

The contributions of this work can be summarised as follows:90

• A novel 3D deep learning network for efficient and accurate segmentation of 3D plant models is introduced. The91

network is equipped with self-attention mechanisms and residual connections to model interactions among local92

structures.93

• It is demonstrated that, in their current state, 3D point-based deep neural networks benefit from augmenting the94

point coordinates with local surface features at the input stage.95

2. Material and methods96

In Section 2.1 the data set is described and details on the steps of data pre-processing are given. In Section 2.2, the97

local surface descriptors that are provided as input features to the networks are defined. In Section 2.3, the operations98

of the proposed attention-based abstraction and propagation modules are explained. Lastly, RoseSegNet is introduced99

as the full attention-based hierarchical point processing network in Section 2.4100

2.1. Data set101

The publicly available ROSE-X data set (Dutagaci et al., 2020) is used to test the proposed deep learning102

architecture and to analyse the effect of incorporating local surface features. ROSE-X data set consists of 11 complete103

3D point cloud models of real rosebush plants. The 3D data was acquired through X-ray tomography, and initially104

modeled in volumetric form. The models were fully annotated at point level, into three classes as flower, leaf, and stem.105

The stem class includes the main stem, the branches, and the petioles. Two point cloud samples from the ROSE-X data106

set are given in Fig. 1.107

The models in the ROSE-X data set are provided in the following forms: (1) raw X-ray image stacks, (2) labeled108

binary volume masks, (3) labeled binary volume masks indicating the voxels only on the surfaces of the plant shoots,109

(4) labeled point clouds, (5) labeled point clouds composed of the points on the surfaces of the plant shoots. In this110

work, point clouds that represent the surfaces of the plant shoots are used. More details related to the data set are given111
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in (Dutagaci et al., 2020). The information on file formats are also explained in the supplementary material available112

at the publisher site (Dutagaci et al., 2020).113

(a) (b)
Figure 1: Two samples from ROSE-X data set. ROSE-X data set consists of 11 complete 3D point cloud models of real
rosebush plants (Dutagaci et al., 2020). The models were fully annotated at point level, into three classes as flower, leaf,
and stem. The stem class includes the main stem, the branches, and the petioles.

2.1.1. Data Pre-processing114

3D point-based deep learning networks accept a fixed number of points as input. This fixed number is denoted as𝑁0,115

the number of points in the point cloud provided as input to the network. For large point clouds, subsampling the entire116

data to the required size is not an option since it would result in a significant loss of geometric information. The practise117

is to partition large point clouds into blocks of predetermined size. The set of points in a block is then processed as an118

independent point cloud by the network, both at the training and test phases. The off-line data preparation procedure119

described in the work of Li et al. (2018) is followed. Each point cloud representing a complete rosebush model is120

divided into non-overlapping blocks.121

The first stage is the partitioning of the point cloud into fixed-size non-overlapping blocks. If the number of points122

in a block is less than 10% of the predetermined number of points (𝑁0), the block is merged into a neighbouring block.123

The second stage forces the point distribution of each block to be homogeneous. Each block is divided into voxels with124

predefined size and the average number of points over all the voxels is calculated. For voxels that have points below125

the average value, the number of points is duplicated to obtain regularly distributed blocks. The last stage ensures that126

the number of points in each block is equal to 𝑁0. If the number of points in a block are higher than 𝑁0, the block127

is separated into new blocks that define the same region with differently sampled points. If the number of points in a128

block are less than 𝑁0, random points are duplicated such that the number of points is raised to 𝑁0.129

At the training phase, block partitioning over a full rosebush model is performed with two different offset values130

(0 and 5𝑐𝑚), thus two sets of blocks are extracted from each model. This operation both provides augmented data131

and pushes the discontinuities at the blocks in the first set towards the centres of the blocks in the second set. At the132
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inference phase, the same offset values are applied to obtain two sets of blocks from a rosebush model. Each block is133

processed independently by the network, which produces the class probabilities of the points in the block as the output.134

For a single point in the rosebush model, class probabilities of the points are calculated by the network separately for135

each block. The final class of a point is determined according to the highest value among the probability scores of the136

corresponding points contained in two overlapping blocks.137

The choice of the block size depends on the resolution of the point cloud. A large block size results in a significant138

loss of geometric detail due to subsampling, while small blocks lack contextual information among neighbouring plant139

organs. In the experiments, the block size is set as 10𝑐𝑚, which provides a good compromise between point resolution140

and context range. Examples to extracted blocks are given in Fig. 2. The grid size, and the number of final points in141

each block are set as 0.2𝑐𝑚, and 8192, respectively.142

(a) (b) (c) (d)
Figure 2: Examples of blocks from ROSE-X data set. Each point cloud representing a complete rosebush model is divided
into non-overlapping blocks. The set of points in a block is then processed as an independent point cloud by the network,
both at the training and test phases. In the experiments, the block size is set as 10𝑐𝑚, which provides a good compromise
between point resolution and context range.

2.2. Local Surface Features143

3D point-based networks are expected to take as input the raw 3D coordinates of points, occasionally together144

with surface normals, and to probe and encode class-specific properties out of this raw data. However, at their current145

stage, the 3D point-based networks are still progressing in their manner of organizing the geometric data at the local146

level. To enhance the informative power of the raw point coordinates, hand-crafted point-based local surface features147

can be incorporated as input attributes. Then, the networks can exploit this additional information for encoding and148

aggregation of the interactions of local structures at various scales.149

The eigenvalues of the local point covariance matrix are used to define the surface features. Let the input point150

cloud be denoted as the set  = {𝑝1, 𝑝2, ..., 𝑝𝑁} where the each point 𝑝𝑖 = (𝑥𝑖, 𝑦𝑖, 𝑧𝑖) is represented in 3D coordinates.151

The neighbourhood of a point 𝑝𝑖 can be defined as 𝑖 = {𝑝𝑗 ∶ ||𝑝𝑖 − 𝑝𝑗|| < 𝑟𝐹 }, where 𝑟𝐹 is the radius of the152

neighbourhood. The covariance matrix of the points in the neighbourhood is calculated as:153

Kaya Turgut et al.: Preprint submitted to Elsevier Page 7 of 26



RoseSegNet: An Attention-Based Deep Learning Architecture for Organ Segmentation of Plants

Σ = 1
𝑖 − 1

∑

𝑝𝑗∈𝑖

(𝑝𝑗 − 𝑝𝑖)(𝑝𝑗 − 𝑝𝑖)𝑇 (1)

where 𝑝𝑖 denotes the mean of the coordinate vectors of the points in the neighbourhood.154

The eigenvalues 𝜆1 < 𝜆2 < 𝜆3 of the covariance matrix Σ represent the amount of the variation of the points in155

the neighbourhood along three principal axes. They carry information about the local shape around the point 𝑝𝑖. For156

example, when 𝜆1 and 𝜆2 are close to zero and 𝜆3 is relatively large, that is indicative of an elongated, line-like structure.157

On a locally planar region, both 𝜆2 and 𝜆3 are expected to be larger than 𝜆1. The relations betweeen eigenvalues of158

the covariance matrix around each point can be used to distinguish line-like, plane-like, and spherical local structures,159

hence be used as local descriptors for classification of flower, leaf, and stem points. The following local features are160

used as given in the work of Dutagaci et al. (2020):161

𝐹1 =
𝜆1

√

𝜆2𝜆3
, 𝐹2 =

𝜆2
𝜆3
, 𝐹3 =

𝜆1
√

𝜆1𝜆2𝜆3
, 𝐹4 =

𝜆1
𝜆2

(2)

Local regions of different sizes instead of a fixed-size neighbourhood are processed to provide information for162

multiple scales. The local features, {𝐹1, 𝐹2, 𝐹3, 𝐹4}, are extracted from local neighbourhoods of six different radii163

around each point, amounting to 24 local features. The radii are selected as 𝑟𝐹 , as 2, 3, 4, 5, 6, and 7𝑚𝑚.164

2.3. The Attention-based Modules of the Network165

Before providing the full architecture for RoseSegNet, two core modules are described: Attention-based abstraction166

module (Att-Abs) at the encoder and Attention-based propagation module (Att-Prop) at the decoder. The Attention-167

based abstraction module (Att-Abs) is responsible for extracting contextual information for each local region, by168

considering the relations of points within the region and the relations of the representative point of the region with169

representative points of neighbouring local regions. Residual connections are present in Att-Abs module in order to170

capture dominant features as well as contextual features. The Attention-based propagation module (Att-Prop) allows171

the contextual information to impact the rate of feature propagation at the decoder.172

2.3.1. Attention-based Abstraction Module (Att-Abs)173

The input to the Att-Abs module is composed of the spatial coordinates  = {𝑝1, 𝑝2, ..., 𝑝𝑁} with 𝑝𝑖 ∈ ℝ3 and174

features  = {𝑓1, 𝑓2, ..., 𝑓𝑁} with 𝑓𝑖 ∈ ℝ𝐷 of the unordered point set, where 𝑁 denotes the cardinality, and 𝐷175

denotes the dimension of input point features. The module extracts contextual features from the point set by relating176

points within regions around representative (centre) points and between these representative points. To this end, the Att-177

Abs module engages two operators: 1-) Intra-region Embedding (Intra-Emb) Operator and 2-) Inter-region Embedding178

(Inter-Emb) Operator.179
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The input point set is sampled with iterative farthest point sampling (FPS) algorithm to determine representative180

points  = {𝑐1, 𝑐2, ..., 𝑐𝑀}, where𝑀 < 𝑁 . In the illustration given in Fig. 3, the black points represent the input points,181

which correspond to the aggregated points from the previous layer. The representative points at the current layer onto182

which features will be aggregated are depicted in red colour. Around each representative point, a region whose radius183

is fixed at the particular layer is defined. The Intra-Emb operator relates each centre point to the points within its region184

through an attention-based approach (Fig. 3b). The Inter-Emb operator embeds longer range interactions by relating185

each centre point to other centre points of neighbouring regions (Fig. 3c). The Att-Abs module combines within-region186

and between-region contextual features extracted via the two operators.187

(a) (b) (c)
Figure 3: Point sampling and feature aggregation: a-) Red points are sampled using farthest point sampling (FPS) algorithm
from the aggregated points (black points) of the previous layer. Each red point defines a region of fixed radius at the
particular layer. b-) Intra-region interactions. 𝐾 points are randomly selected. c-) Inter-region interactions. 𝐿 nearest centre
points are selected.

The diagram of the Att-Abs module is given in Fig. 4. After centre points are determined by the FPS algorithm, the188

grouping stage of the intra-region points and neighbourhoods of centre points for Intra-Emb and Inter-Emb operators189

are carried out in parallel. The grouped points together with their features are fed to Intra-Emb and Inter-Emb operators.190

Finally, context-aware features returned by the two operators are concatenated. In the following subsections, details of191

the Intra-Emb and Inter-Emb operators are given.192

Figure 4: The attention-based abstraction (Att-Abs) module. The module is responsible for extracting contextual
information for each local region.
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Intra-Emb Operator: The grouping stage prior to Intra-Emb operation corresponds to determining the points in193

the region centred at the representative point 𝑐𝑖. This region of radius 𝑟𝑇 is called the receptive field centred at194

𝑐𝑖 at the current layer. 𝐾 points are randomly selected among the points falling inside this region to form the set195

𝑖𝑛𝑡𝑟𝑎
𝑖 = {𝑝𝑖,1, 𝑝𝑖,2, ..., 𝑝𝑖,𝐾} (Fig. 3b). For simplicity, the index 𝑖 is dropped, and the selected points within the region196

are denoted as 𝑝𝑘, and the corresponding input features as 𝑓𝑘, with 𝑘 = 1, ..., 𝐾 . The input feature vector of the centre197

point is denoted as 𝑔.198

With the attention-based approaches, query, key, and value vectors are obtained via transformations of the features199

of entities whose relationships are to be revealed (Vaswani et al., 2017). The goal of the Intra-Emb operation is to200

encode the relationship between the centre point and the points in the region defined by the centre point. A point201

feature aggregation approach similar to the point transformer described in the work of Zhao et al. (2021) is followed.202

The query vector is set to be a transformation of the features of the centre point, as ′𝑞𝑢𝑒𝑟𝑦′ ∶ 𝛽(𝑔,𝑊𝑞𝑢). The key and203

value vectors are transformations of the features of𝐾 points within the region, and are calculated as ′𝑘𝑒𝑦′ ∶ 𝜑(𝑓𝑘,𝑊𝑘𝑒)204

and ′𝑣𝑎𝑙𝑢𝑒′ ∶ 𝜓(𝑓𝑘,𝑊𝑣𝑎). The functions 𝛽, 𝜑, 𝜓 ∶ ℝ𝐷 → ℝ𝐷∕𝑠 map the input features linearly to lower dimensions205

through the transformations𝑊𝑞𝑢,𝑊𝑘𝑒, and𝑊𝑣𝑎, respectively, which are to be learned through training. For all attention-206

based modules in the network, 𝑠 is set to 2. For the sake of simplicity, the transformation parameters from the arguments207

are dropped, and the transformed features are denoted as ′𝑞𝑢𝑒𝑟𝑦′ ∶ 𝛽(𝑔), ′𝑘𝑒𝑦′ ∶ 𝜑(𝑓𝑘), and ′𝑣𝑎𝑙𝑢𝑒′ ∶ 𝜓(𝑓𝑘).208

The block diagram of the Intra-Emb operation is given in Fig. 5. The features aggregated on the centre point through209

attention mechanism are calculated as:210

𝑔𝑖𝑛𝑡𝑟𝑎𝑎𝑡𝑡 = 𝜙

( 𝐾
∑

𝑘=1
𝛼(𝑔, 𝑓𝑘, 𝛿𝑘)⊙

(

𝜓(𝑓𝑘) + 𝛿𝑘
)

)

(3)

where ⊙ is the Hamadard product, 𝛼 is the weight function, 𝛿 is the position encoded vector, 𝜙 is a non-linear211

transformation function and 𝐾 is the number of points sampled from the local region. The transformation function212

𝜙 is used to increase the feature dimension of the aggregated contextual feature back to the original feature size. The213

weight function 𝛼 measures and transforms the dissimilarity between the transformed features (’query’ vector) of the214

centre point and transformed features (’key’ vectors) of the 𝐾 points within the region. The function also incorporates215

a transformation of Euclidean distance vectors between the centre point and the 𝐾 points, as positional encoding. The216

aggregation is then performed by weighing the transformed features (corresponding to ’value’ vectors) of 𝐾 points.217

The weight function is defined as:218

𝛼(𝑔, 𝑓𝑘, 𝛿𝑘) = 𝜌
(

𝛾
(

𝛽(𝑔) − 𝜑(𝑓𝑘) + 𝛿𝑘
))

. (4)
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The relation between ’query’ 𝛽(𝑔) and ’key’ 𝜑(𝑓𝑘) vectors is represented by the subtraction operation. The position219

encoded vector 𝛿𝑘 is a linear function of the relative position of the centre point to the 𝑘𝑡ℎ point in the region:220

𝛿𝑘 = Θ(𝑐 − 𝑝𝑘) . (5)

The parameters of the linear transformation function Θ is learned through training. The position encoded vector is221

added both to the difference of query 𝛽(𝑔) and key 𝜑(𝑓𝑘) vectors in the weight function and the value vectors 𝜓(𝑓𝑘)222

in the aggregation function.223

The function 𝛾 is a two-layered network, where the first layer is nonlinear and the second layer is linear. It is used224

to learn the embedding that will effectively represent the relative dissimilarity measures between points. The softmax225

function 𝜌 is used to normalise the weights across 𝐾 ’value’ vectors.226

Inspired by the effectiveness of residual networks (He et al., 2016), the max-pooled version (𝑔𝑖𝑛𝑡𝑟𝑎𝑟𝑒𝑠 ) of the227

transformed features {𝜗(𝑓𝑘)} of 𝐾 points are added to the attention-based aggregated features (𝑔𝑖𝑛𝑡𝑟𝑎𝑎𝑡𝑡 ). The objective228

here is to let the dominant feature among the transformed input features of the 𝐾 points contribute to the aggregated229

output:230

𝑔𝑖𝑛𝑡𝑟𝑎 = 𝑔𝑖𝑛𝑡𝑟𝑎𝑎𝑡𝑡 + 𝑔𝑖𝑛𝑡𝑟𝑎𝑟𝑒𝑠 (6)

𝑔𝑖𝑛𝑡𝑟𝑎𝑟𝑒𝑠 = max
𝑘=1,...,𝐾

𝜗(𝑓𝑘) (7)

where 𝜗 is a one-layer MLP with leaky ReLU.231

Inter-Emb Operator: While the Intra-Emb operator aggregates features of 𝐾 points within the receptive field232

defined around each centre point (Fig. 3b), the Inter-Emb operator explores the interactions between receptive fields233

through relating features of each centre point to its neighbouring centre points (Fig. 3c). The two operators run in234

parallel.235

The Inter-Emb operator is designed in the same manner as the Intra-Emb. In Inter-Emb, the attention mechanism236

operates on the input features of a target centre point (’query’) and other centre points (’keys’ and ’values’) in its237

vicinity. The Inter-Emb operator aggregates point features in longer ranges as compared to the Intra-Emb operator.238

In Inter-Emb, for each centre point 𝑐𝑖, the nearest neighbour search algorithm is applied to find 𝐿 closest centre239

points to form the group 𝑅𝑖𝑛𝑡𝑒𝑟𝑖 = {𝑐𝑖,1, 𝑐𝑖,2, ..., 𝑐𝑖,𝐿}. The ’query’ vector is a transformation of the features of the centre240

point. The key and value vectors are calculated as the transformed features of the neighbouring 𝐿 centre points.241
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Figure 5: Intra-Emb operator. The operator relates each centre point to the points within its region through an attention-
based approach

Through attention-based feature aggregation, the inter-region features 𝑔𝑖𝑛𝑡𝑒𝑟𝑎𝑡𝑡 are obtained. The output of the Inter-242

Emb operator is243

𝑔𝑖𝑛𝑡𝑒𝑟 = 𝑔𝑖𝑛𝑡𝑒𝑟𝑎𝑡𝑡 + 𝑔𝑖𝑛𝑡𝑒𝑟𝑟𝑒𝑠 (8)

where 𝑔𝑖𝑛𝑡𝑒𝑟𝑟𝑒𝑠 represents residual max-pooled features. The details for the computation of 𝑔𝑖𝑛𝑡𝑒𝑟𝑎𝑡𝑡 and 𝑔𝑖𝑛𝑡𝑒𝑟𝑟𝑒𝑠 can be found244

in the Supplementary Material.245

As stated before, the features extracted by the intra-region and inter-region operators are concatenated to form the246

output contextual feature of the Attention-based Abstraction (Att-Abs) Module:247

𝑔𝑐𝑜𝑛𝑡𝑒𝑥 = 𝑔𝑖𝑛𝑡𝑟𝑎 ⊕ 𝑔𝑖𝑛𝑡𝑒𝑟 (9)

where ⊕ denotes concatenation operation.248

2.3.2. Attention-based Propagation Module (Att-Prop)249

The Attention-based propagation (Att-Prop) module operates at the decoder layers, which propagate the aggregated250

features back to the original points. The Att-Prop module allows the contextual information to impact the rate of feature251

propagation. The block diagram of the Att-Prop module is given in Fig. 6.252

At the encoder, each successive Att-Abs module yields more descriptive and long-ranged features, but the features253

are aggregated at fewer points. The general practise for distributing the features aggregated at various layers back to the254

original point cloud is to perform distance-based interpolation and to introduce skip links from the abstraction layers255
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to the propagation layers (Qi et al., 2017b). In this work, the use of self-attention is proposed to learn the interpolation256

weights according to the relation of point coordinates and features.257

Recall that the Att-Abs module at the encoder accepts a point set () of size 𝑁 with 3D coordinates and point-258

features and returns a subset () of size 𝑀 , with output features aggregated through attention mechanisms. The259

representative (centre) points in  are determined by Furthest Point Sampling. The propagation at the decoder stage260

aims to distribute the aggregated features of the set  to the points in set  . The Att-Prop module relates each point261

in  to its neighbours in the set  through an attention mechanism. Given a point coordinate 𝑝 ∈ 𝑃 , its 𝑈 nearest262

neighbours among the centre points are determined as {𝑐1, 𝑐2, ..., 𝑐𝑈} ⊂ , with corresponding features as 𝑔𝑢 ∈ ℝ𝐷1 ,263

𝑢 = 1, ..., 𝑈 . The query vector is a linear transformation of the relative position vector between point 𝑝 and centre point264

𝑐𝑢, defined as ′𝑞𝑢𝑒𝑟𝑦′ ∶ 𝛽(Δ𝑐𝑢, �̂�𝑞𝑢), where Δ𝑐𝑢 = 𝑝 − 𝑐𝑢. The key and value vectors are computed through linear265

transformations of the features 𝑔𝑢 as ′𝑘𝑒𝑦′ ∶ �̂�(𝑔𝑢, �̂�𝑘𝑒) and ′𝑣𝑎𝑙𝑢𝑒′ ∶ �̂�(𝑔𝑢, �̂�𝑣𝑎).266

The feature for point 𝑝 is interpolated from the 𝑈 points through the following attention-based weighting scheme:267

𝑓𝑎𝑡𝑡 = �̂�

( 𝑈
∑

𝑢=1
�̂�(Δ𝑐𝑢, 𝑔𝑢)⊙ �̂�(𝑔𝑢)

)

(10)

where ⊙ is the Hamadard product, �̂� is the weight function, and �̂� is a non-linear function that transforms the features268

into their original dimensionality.269

The weight vector is determined as:270

�̂�(Δ𝑐𝑢, 𝑔𝑢) = 𝜌
(

�̂�
(

𝛽(Δ𝑐𝑢) − �̂�(𝑔𝑢)
)) (11)

where �̂� is a two-layered network and 𝜌 is the softmax function. Weight vector �̂�(Δ𝑐𝑢, 𝑔𝑢) is learned according to the271

relation function which is a subtraction of linear transformations of relative point coordinates and features.272

Given that the features of point 𝑝 were determined as 𝑓 ∈ ℝ𝐷0 at the encoder stage, the final propagated point273

features 𝑓𝑝𝑟𝑜𝑝 ∈ ℝ𝐷0+𝐷1 at the decoder stage is set as the concatenation of 𝑓 and the interpolated features 𝑓𝑎𝑡𝑡 ∈ ℝ𝐷1 :274

𝑓𝑝𝑟𝑜𝑝 = 𝑓𝑎𝑡𝑡 ⊕ 𝑓 (12)

The features 𝑓 are provided to the decoder through skip links from the encoder.275

2.4. The Network Architecture276

The proposed deep learning architecture, RoseSegNet, for organ segmentation of plants is given in Fig. 7. The277

network is built on an encoder-decoder structure. The encoder follows a local-to-global strategy, employing the Att-278

Abs module at each layer to extract semantic affinities between points at the given scale of spatial interaction range.279
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Figure 6: The attention-based propagation (Att-Prop) module. The module allows the contextual information to impact
the rate of feature propagation at decoder layers.

By this strategy, the receptive fields are gradually expanded, and the spatial interaction ranges between aggregated280

points become longer. Also, the number of regions processed by successive abstraction modules is decreased to mimic281

convolution neural networks. The decoder is responsible to propagate aggregated features at successive layers of the282

encoder back to the original points in an hierarchical manner through Att-Prop modules. This allows that each point283

in the original set is enriched by the features carrying context information from various scales. The semantic labels of284

the points are then inferred through these informative point features.285

Unit embedding operators are used before each Att-Abs module at the encoder stage, and after each Att-Prop286

module at the decoder stage. These operators consist of weight-shared MLPs which uplift the input features to higher287

dimensions to enrich their representation power at the encoder stage, and decrease the dimensionality at the decoder288

stage.289

In the encoder part, four layers, each equipped with Att-Abs modules are used to aggregate features with a local-290

to-global strategy. The input point set with 𝑁0 = 8192 points is downsampled to 1024, 256, 64, and 16 points through291

these four layers, and the receptive fields are expanded to 5𝑚𝑚, 10𝑚𝑚, 20𝑚𝑚, and 40𝑚𝑚, respectively. The number292

of points randomly sampled from intra-regions is set to 𝐾 = 32 for the Intra-Emb operator. The number of nearest293

centre points is set to𝐿 = 8 for the Inter-Emb operator. The unit embedding operators at the four successive layers map294

feature dimensions to 64, 128, 256, and 512, respectively. The output dimension of each Att-Abs module is doubled295

since the embedded features on intra-region and inter-region are concatenated.296

At the decoder stage, the contextual and long-range features of the down-sampled points are propagated to the297

original points. The decoder has four layers consisting of unit embedding operators and Att-Prop modules. Features of298

centre points are propagated to the point sets of the previous layers by using 𝑈 = 3 nearest neighbours in the Att-Prop299

module. The output of the Att-Prop is the concatenation of the propagated features and the features of Att-Abs provided300
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by skip links. The unit embedding operators, inserted after the Att-Prop modules, map feature dimensions to 512, 256,301

128, and 64 at the four successive layers.302

After the decoder stage, two fully connected layers with feature dimensions, 64 and 𝐶 are engaged to extract scores303

of 𝐶 categories for each point in the input point cloud.304

All non-linear layers in the architecture include leaky ReLU activation function and batch normalization. Drop-out305

with keep ratio 0.5 is used on the last fully connected layer.306

Figure 7: The architecture of RoseSegNet. The input is a point cloud of 𝑁0 points. The point features at the input level
can either be the 3D coordinates only (xyz) or the 3D coordinates and 24 local features together (xyz+local features).

2.5. Implementation details307

The network is implemented in Tensorflow, and trained on an NVIDIA Quadro P5000. The size of the input point308

cloud is set to 𝑁0 = 8192 points. The training is performed using Adam optimiser, to minimise a weighted cross-309

entropy loss function. The batch size is 16, and training is completed after 200 epochs. The initial learning rate is set310

as 0.005. The learning rate is decayed by 0.7 for every 30 epochs. As data augmentation, rotated versions of the point311

clouds are used. Specifically, random rotations around the upright axis is applied to the point clouds.312

2.6. Experimental setup313

To evaluate the segmentation performance of the proposed network, 5-fold cross-validation experiments were314

performed. For each fold, a single rosebush model from ROSE-X data set was reserved for optimizing the weights315

of the network, and the remaining 10 models are used as test data. The data processing steps were followed to partition316

the point cloud into blocks as described in Section 2.1.1. In Table 1, the total number of training and test blocks that317

were extracted from training and test rosebush models are given for each fold. The number of blocks varied depending318

on the size of the corresponding rosebush.319
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Table 1
Number of training and test blocks used in the experiments.

# blocks for training # blocks for test
Fold 1 99 677
Fold 2 53 723
Fold 3 103 673
Fold 4 56 720
Fold 5 89 687

2.7. Evaluation metrics320

In this study, three metrics were used to compare the success of plant organ segmentation: 1-) Precision (𝑃 ), 2-)321

Recall (𝑅), and 3-) Intersection over Union (𝐼𝑜𝑈 ). These metrics are defined as:322

𝑃𝑖 =
𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑁𝑖
(13)

𝑅𝑖 =
𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑃𝑖
(14)

𝐼𝑜𝑈𝑖 =
𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑁𝑖 + 𝐹𝑃𝑖
(15)

where the 𝑇𝑃𝑖, 𝐹𝑃𝑖 and 𝐹𝑁𝑖 represent the number of true positives, the number of false positives and the number of323

false negatives of each class 𝑖 ∈ {𝑓𝑙𝑜𝑤𝑒𝑟, 𝑙𝑒𝑎𝑓 , 𝑠𝑡𝑒𝑚}. The categorization of a point as a true positive or otherwise is324

demonstrated in Fig. 8.325

Figure 8: Confusion matrix (𝑖 ∈ {𝑓𝑙𝑜𝑤𝑒𝑟, 𝑙𝑒𝑎𝑓 , 𝑠𝑡𝑒𝑚}). A point is a true positive if both its actual category and predicted
category is 𝑖. It is a false negative if the point’s actual category is 𝑖 and the network classified it wrongly to another class.
It is a false positive if the point does not belong to class 𝑖, but the network classified it as class 𝑖. If neither the actual
class nor the predicted class of the point is 𝑖, then it is a true negative.
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3. Results326

The segmentation performance of RoseSegNet is evaluated on the publicly available ROSE-X data set (Dutagaci327

et al., 2020). The effect of employing the attention-based modules are analysed through ablation studies. Also, the328

positive contribution of feeding the network with hand-crafted local features is demonstrated.329

3.1. Semantic Segmentation of ROSE-X330

The segmentation results of the proposed network, RoseSegNet, are given in Table 2, in comparison with three331

other segmentation methods. Each evaluation value in the Table 2 represents the average and standard deviation over332

the 5-fold experiments. The state-of-the-art point-based deep learning network PointNet++ was selected as a baseline333

for comparison. The default architecture of PointNet++ was used, but it was trained with the same hyperparameters334

(radii of local regions,𝐾 , number of epochs, batch size and learning rate) as those of RoseSegNet. For both PointNet++335

and RoseSegNet, two different networks are trained. The first network accepts only the 3D coordinates as input point336

features. The second network is designed to accept the local surface features (see Section 2.2) together with the 3D337

coordinates as input point features.338

The segmentation results on the same data set of two other methods described in (Dutagaci et al., 2020) are also339

given. These methods are the LFPC-u (Local Features on Point Cloud - unsupervised) and The LFPC-s (Local Features340

on Point Cloud - supervised). The supervised method uses Support Vector Machines (SVM) as the machine learning341

model. The segmentation results in Table 2 are given as reported in (Dutagaci et al., 2020). These two methods were342

used to classify points only to two categories as ’stem’ and ’leaf’. The points annotated as ’flower’ were ignored.343

As observed from Table 2, in terms of 𝐼𝑜𝑈 , RoseSegNet fed with local surface features outperforms the other344

methods over all categories. RoseSegNet fed with local surface features outperforms LFPC-s over all performance345

metrics. The 0.5% drop in terms of ’leaf’ precision as compared to LFPC-u is compensated by 3%, 17%, and 5%346

increase in terms of ’leaf’ recall, ’stem’ precision, and ’stem’ recall, respectively.347

RoseSegNet outperforms PointNet++ by 4% in terms of 𝑀𝐼𝑜𝑈 , with or without the use of local features. When348

both networks are augmented with local features, PointNet++ performs with a 1.6% higher ’flower’ precision, and a349

0.1% higher ’leaf’ recall. These are compensated by RoseSegNet with 14% higher ’flower’ recall and 1% higher ’leaf’350

precision.351

PointNet++, relying only on the spatial coordinates of the input points, returns lower performance figures for352

leaf and stem categories as compared to LFPC-u and LFPC-s. Notice that these two methods are representatives of353

the traditional unsupervised and supervised techniques for organ segmentation of plants. RoseSegNet, without the354

local features, gives lower ’leaf’ and ’stem’ 𝐼𝑜𝑈 measures compared to LFPC-s. Supplying local features as input to355

the networks boosts the performance significantly for both PointNet++ and RoseSegNet. The performance increase356
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in terms of 𝑀𝐼𝑜𝑈 is 9% for both networks, when the input data is enriched by local features. These observations357

demonstrate the importance of augmenting input 3D point coordinates with corresponding local surface features while358

training the point-based networks.359

Table 2
The segmentation performance of RoseSegNet on ROSE-X data set in comparison with PointNet++, LFPC-u, and LFPC-s
.

LFPC-u LFPC-s PointNet++ RoseSegNet
xyz xyz+local features xyz xyz+local features

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
𝐹 𝑙𝑜𝑤𝑒𝑟 - - 88.92±5.31 92.86±2.03 86.55±8.18 91.20±3.79
𝐿𝑒𝑎𝑓 98.23±0.33 97.19±0.48 95.74±0.84 96.76±1.01 96.53±0.25 97.78±1.11
𝑆𝑡𝑒𝑚 75.01±9.76 83.67±4.88 77.25±3.85 90.48±1.93 79.90±5.20 91.96±0.46

𝑅𝑒𝑐𝑎𝑙𝑙
𝐹 𝑙𝑜𝑤𝑒𝑟 - - 61.11±10.10 64.67±10.39 73.52±7.36 79.05±12.03
𝐿𝑒𝑎𝑓 95.74±1.74 97.79±0.46 97.11±0.77 98.77±0.29 97.04±0.32 98.67±0.34
𝑆𝑡𝑒𝑚 88.03±1.82 80.50±1.29 82.90±2.47 92.78±3.97 83.01±3.98 92.87±1.37

𝐼𝑜𝑈
𝐹 𝑙𝑜𝑤𝑒𝑟 - - 56.17±6.71 61.51±9.30 65.01±2.41 72.91±7.59
𝐿𝑒𝑎𝑓 94.10±1.54 95.10±0.46 93.08±0.68 95.60±0.77 93.77±0.29 96.50±0.78
𝑆𝑡𝑒𝑚 67.96±8.18 69.57±3.87 66.63±3.54 84.52±3.68 68.41±2.81 85.90±1.11

𝑀𝐼𝑜𝑈 - - 71.96±2.16 80.55±3.80 75.73±1.02 85.10±2.85

In Fig 9, visual segmentation results provided by PointNet++ and RoseSegNet on six sample rosebush blocks360

are given. The first column represents the ground truth. The second and third columns give the results obtained with361

PointNet++ and RoseSegNet, respectively, with the use of spatial coordinates only. The fourth and fifth columns depict362

the segmentation of the blocks by PointNet++ and RoseSegNet, respectively, when both networks are fed with local363

surface features.364

In Figs 9a, 9c, 9e and 9f, it can be observed that petioles are classified as leaf points by PointNet++ without the365

use of local features. The addition of local features alleviates this confusion for both PointNet++ and RoseSegNet.366

However, petiole-leaf distinction is best modeled by RoseSegNet augmented with local features. This success can be367

attributed to the attention-based mechanisms that extract contextual information at leaf-stem boundaries.368

Another source of error is the misclassification of some flower regions as either leaf or stem points (Figs 9a, 9c,369

9d, 9e, and 9f). The misclassification is most pronounced with PointNet++ trained without the local surface features.370

With the exception of the block in Fig 9f, RoseSegNet with local features captured the variations among the flower371

points most effectively. The gain with 𝐼𝑜𝑈 for the flower class with RoseSegNet over PointNet++ is significant (11%)372

as can be observed from Table 2. For the case of the flower in Fig 9f, the addition of local features to RoseSegNet lead373

to confusion of petals with leaves. Despite this example, the 𝐼𝑜𝑈 value for the flower class is significantly higher, in374

average, for RoseSegNet operating with local features (Table 2).375

An interesting result arises in Fig. 9a. The stipules in the rosebush models were originally labeled as ’stem’ in the376

ground-truth annotation of ROSE-X data set. The attention-based RoseSegNet tends to classify those stipule points at377

the extremities as flowers, which is coherent with the contextual relation that elongated and short flower parts tend to378
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Table 3
Ablation study on RoseSegNet. The first row gives 𝐼𝑜𝑈 values of the default RoseSegNet that includes Att-Abs and Att-
Prop modules. Each Att-Abs module consists of Intra-Emb and Inter-Emb operators with residual connections. Number
of neighbouring centre points is selected as 𝐿 = 8 in Inter-Emb operator. In Att-Prop module, 𝑈 is set to 3. Remaining
rows of the Table give 𝐼𝑜𝑈 values with the setting changed as specified in the first column.

Model 𝐼𝑜𝑈𝑓𝑙𝑜𝑤𝑒𝑟 𝐼𝑜𝑈𝑙𝑒𝑎𝑓 𝐼𝑜𝑈𝑠𝑡𝑒𝑚 𝑀𝐼𝑜𝑈
RoseSegNet 81.99 97.26 85.26 88.17
Architecture
w/o Att-Abs 78.48 96.71 86.31 87.17
w/o Att-Prop 79.43 96.90 86.58 87.64
w/o Att-Abs, Att-Prop 64.59 95.81 86.86 82.42
Att-Abs Module
w/o Inter-Emb 79.41 97.01 86.40 87.61
w/o Intra-Emb 71.55 96.02 83.12 83.57
w/o Residual 77.19 96.87 85.57 86.54
L=4 76.72 96.90 87.14 86.92
L=12 81.23 97.22 85.95 88.13
L=16 80.61 96.86 86.39 87.96
Att-Prop Module
U=1 77.97 96.72 85.77 86.82
U=5 79.42 96.99 86.46 87.62
U=8 78.45 96.49 84.39 86.44

occur at the extremities, while stem class is long ranging and usually followed by leaf or flower points. The assignment379

of stipules to the flower class also contributes to the lower ’flower’ precision yielded by RoseSegNet.380

3.2. Ablation Study381

Ablation experiments on RoseSegNet were conducted to observe the influence of different settings. The version382

of RoseSegNet where local features were introduced to the network as input in addition to the spatial coordinates was383

studied. The results of these experiments are given in Table 3. The first row of the table indicates the classification384

performance of the default RoseSegNet. Each model in the remaining rows was trained with the same hyper-paramaters385

and the same settings, except the one specified in the first column of the corresponding row.386

Three experiments were performed to analyse the effect of exclusion of attention-based modules. When Att-Abs was387

removed, the feature aggregation operation was replaced by PointNet++’s default abstraction strategy (max-pooling of388

embedded features). When Att-Prop was excluded, the feature propagation was implemented according to the distance-389

based scheme of PointNet++. Using either Att-Abs or Att-Prop modules has individually increased 𝑀𝐼𝑜𝑈 by about390

5% as compared to the case where neither was included. There was about 1% drop in 𝐼𝑜𝑈 for the stem class with the391

inclusion of attention-based modules, however, the increase in 𝐼𝑜𝑈 for the flower class was significant (Table 3). The392

attention-based modules helped increase the performance for the difficult and rare ’flower’ class.393

The Att-Abs module was assessed in terms of the contributions of the Intra-Emb and Inter-Emb operators. While the394

performance of the network without the features encoded by the Inter-Emb operator decreased slightly as compared to395

the default RoseSegNet, the performance drop without the Intra-Emb operator was significant (Table 3). The Intra-Emb396

operator is more essential since it aggregates features within receptive fields in the spirit of a convolution operation.397
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Ground truth PointNet++, xyz RoseSegNet, xyz
PointNet++,
xyz+local features

RoseSegNet,
xyz+local features

(a)

(b)

(c)

(d)

(e)

(f)
Figure 9: Segmentation results provided by PointNet++ and RoseSegNet on six sample rosebush blocks. The first column
represents the ground truth. The second and third columns give the results obtained with PointNet++ and RoseSegNet,
respectively, with the use of spatial coordinates only. The fourth and fifth columns depict the segmentation of the blocks
by PointNet++ and RoseSegNet, respectively, when both networks are fed with local surface features.
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The Inter-Emb operator provides longer range context information, which especially helps modelling the ’flower’ class398

more effectively. The number of neighbouring centre points (𝐿) used in the Inter-Emb operator was also varied. Setting399

𝐿 = 8 yielded the highest 𝑀𝐼𝑜𝑈 (Table 3).400

Another experiment was conducted to assess the contribution of the residual connections. Intra-Emb and Inter-Emb401

operators were kept, but their residual connections were removed. The 𝐼𝑜𝑈 for flower and leaf classes dropped without402

the residual connections, while there was a slight increase in 𝐼𝑜𝑈 for the stem class. However, in overall, it can be403

observed that the 𝑀𝐼𝑜𝑈 benefits from the inclusion of residual connections.404

Finally, the number of closest points 𝑈 selected for feature propagation at the Att-Prop module was varied. While405

increasing this number up to a certain point (𝑈 = 3) had a positive effect on the performance, further increase lead to406

a drop in performance in addition to the increased computational cost.407

4. Discussion408

The demand for increased productivity and quality of produce pushes for programs aiming to breed agricultural409

plants with high genetic potential. Automated solutions for trait measurements through 3D computer vision will enable410

experimentation with a high number of plants for breeding, genetics, and genomics research. 3D acquisition and411

modelling of plant geometry provides complete and accurate measurements of the plant shape. Organ segmentation of412

the 3D plant models is indispensable for extraction of organ-level traits in high-throughput phenotyping as well as for413

monitoring emergence and growth of individual organs in horticulture.414

Examples to such organ-level traits are number of leaves, organization of leaves, leaf areas, leaf inclination angles,415

proportions among the organs, and shape of organs. One important application area where measurements of such traits416

over a large number of plants during their development are in demand is genetic and mechanical control of organ417

growth. Understanding the genetic regulation mechanisms that determine organ identity, growth, size, and shape is418

possible through phenotypic shape measurements at organ level (Johnson & Lenhard, 2011). The role the external419

mechanical processes and constraints play in organ morphogenesis along with genes is also an important research420

question (Trinh et al., 2021). There is considerable variation in the shapes of plant organs such as fruits, leaves, and421

stems even within plants with identical genetic composition. The interplay of genetics with mechanical constraints422

leading to such variations is yet to be understood for regulating the shapes of harvestable plant organs (Lazzaro et al.,423

2018).424

In the case of ornamental plants, the research question of correlating the subjective aesthetic quality with425

quantitative geometric and architectural attributes is of considerable interest (Boumaza et al., 2009; Garbez et al., 2018;426

Demotes-Mainard et al., 2013). Garbez et al. (2018) conducted a thorough study to investigate the relation between427

the architecture of rosebush plants and the visual perception of consumers. With a Fastrack® 3D digitiser (Polhemus,428
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Colchester, VT, USA), they manually measured a large number of traits such as apparent plant axes, their topological429

relations (succession or branching), the number of branching, number of leaves, flowers, fruits, and carrier axes, size of430

the leaves, height of the flowers. Demotes-Mainard et al. (2013) also explored the elements of visual quality of rosebush431

plants by gathering quantitative attributes. They collected data of leaf dimensions via destructive measurements and432

manually observed the number of visible leaves, internodes and terminal leaflet lengths.433

As opposed to such laborious manual data gathering over a small number of plants, digital processing of 3D434

plant models can provide automated trait measurements over large populations for expanding scientific knowledge435

on the development of the shape of the produce. Also, automatic plant monitoring and shape characterization via 3D436

vision enables accurate plant management, especially for plants where individual organ shapes as well as their spatial437

organizations are important agronomic traits. The architectural and morphological attributes of importance, such as438

organization of axes, leaf sizes, flower height, etc., can be estimated only through the decomposition of the acquired439

plant model into its individual organs. The accuracy of automatic plant segmentation methods operating on 3D models440

directly influences accurate trait estimation.441

This work provides an organ segmentation method that brings an improvement on the accuracy of previous442

segmentation techniques measured on a publicly available data set. The application of technical innovations in 3D443

point cloud segmentation to plant models in the framework of deep learning is in its infancy. Deep learning techniques444

promise fast characterization of the vast amount of structural and geometrical variations among and within plant species445

via learning with training data, and without incorporation of much expert knowledge. The recent advances in 3D point-446

based deep learning methods in the field of computer vision, however, mainly target robotic applications other than447

those related to plant sciences and agriculture. The proposed RoseSegNet is a progress in the direction of designing448

deep neural network architectures suitable for 3D plant model analysis, specifically 3D plant organ segmentation. The449

inclusion of attention-based mechanisms modelling interactions of local structures at multiple scales, and within and450

among local regions, is the main contribution of this work in relation with previous applications of 3D point-based451

networks. Augmenting spatial features of local structures with hand-crafted surface features and letting the network452

process, relate, and aggregate these features towards organ identity inference is another contribution.453

Despite the considerable research in plant genetics, investment on provision of publicly available annotated 3D454

plant data sets for research purposes is alarmingly low. The need for large amount of annotated data for training deep455

learning techniques has the potential of pushing for development of fast acquisition and labelling protocols, that will456

eventually lead to common use of 3D robot vision both in plant sciences and in agriculture. In the context of this work,457

however, the amount of annotated data is limited to eleven rosebush models, and only one model is used for training.458

One important research question in the framework of deep learning is the assessment of the impact of the amount of459

training data on various architectures. The limits of the performance improvement with respect to the amount of data, as460
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well as the potential of substantial data availability for closing the gap between different deep learning approaches are461

yet to be explored. On the other hand, the ability of a network in achieving high performance with limited annotated462

data is of considerable importance due to the time-consuming process of manually annotating 3D models of target463

crops.464

5. Conclusion465

This paper demonstrates a progress in the improvement of organ segmentation accuracy through advanced deep466

learning techniques to contribute to automated and accurate estimation and monitoring of organ-level and architectural467

phenotypical traits that are crucial in plant sciences and horticultural processes. A novel point-based deep learning468

network, which is named as RoseSegNet, is proposed to segment 3D point clouds of rosebush plants into their structural469

parts. The network is designed to process the input point cloud in a hierarchical manner and to extract contextual470

features based on the relations between points. The contextual features are encoded and propagated by attention-471

based modules. Through ablation studies, the contribution of each of these modules was analysed. The attention-472

based contextual features improved the segmentation accuracy, especially for the flower class. Augmenting input473

point coordinates with local surface descriptors boosted the performance of RoseSegNet and PointNet++. RoseSegNet474

improved the segmentation performance as compared to the traditional classification methods based on local surface475

features. RoseSegNet also achieved significant improvement over the state-of-the-art 3D point-based deep learning476

framework PointNet++. These results suggest that deep learning methods devised to model 3D characteristics of plants477

are capable of surpassing traditional techniques that solely depend on hand-crafted features. The capacity of deep neural478

networks to simultaneously extract and evaluate relevant attributes from raw data and simple surface features without479

intervention of experts is of special importance for plant characterization. Deep neural networks trained on one plant480

species also have the potential of applicability to a large variety of other species through domain adaptation with the481

use of few training data.482
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