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Abstract

We propose a 3D colour point cloud processing pipeline to count apples on

individual apple trees in trellis structured orchards. Fruit counting at the tree

level requires separating trees, which is challenging in dense orchards. We em-

ploy point clouds acquired from the leaf-off orchard in winter period, where the

branch structure is visible, to delineate tree crowns. We localise apples in point

clouds acquired in harvest period. Alignment of the two point clouds enables

mapping apple locations to the delineated winter cloud and assigning each ap-

ple to its bearing tree. Our apple assignment method achieves an accuracy rate

higher than 95%. In addition to presenting a first proof of feasibility, we also

provide suggestions for further improvement on our apple assignment pipeline.

Keywords: Fruit detection, Apple detection, Apple trees, Tree trunk

detection, Point Cloud, Semantic segmentation, Phenotyping

Nomenclature

(∆x,∆y ,∆z) Edge lengths of the voxels for

voxelization of a point cloud

(x̂, ŷ, ẑ) Coordinates of a 3D point p̂

(A,B,C,D) Parameters of the trellis-plane
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(Is, Js) Location of the sth detected peak in

IG

(Nx, Ny , Nz) Size of B and S

(x, y, z) Coordinates of a 3D point p

(xr,1, yr,1, zr,1) Coordinates of the point pr,1

(xr,2, yr,2, zr,2) Coordinates of the point pr,2

Γ Set of semantic labels

γi Predicted semantic label of the ith

point pi

γGTi Ground truth semantic label of the

ith point pi

L̂j = (0, ŷj , 0) Location of verified trunk j

L̂s = (0, ŷcts , 0) Location of candidate trunk

s

p̂ A 3D point in PCTPw

p̂e eth end-point of Cc

p̂q,j Intersection point of qth trellis-line

and jth trunk

p̂s,bottom Bottom point of SKs along the Z-

axis

p̂s,top Top point of SKs along the Z-axis

ŷcts y coordinate of the sth candidate

trunk location in CT

ẑq Height of tlq

AGT Set of ground truth apples

A Set of detected apples

CC Set of connected components of

Strees

CT Set of candidate trunk locations

IGi,j Set of points in PCts projected to

the ground in the grid (i, j)

LHL Set of 3D horizontal lines detected

through applying Hough Transform

to IH

LTL Set of trellis-lines

T Set of located trees in the scene

τa Predicted tree identity of the ath ap-

ple in A

τc Predicted tree identity of the cth

connected component Cc

τg Ground truth tree identity of the gth

apple in AGT

τi Predicted tree identity of the ith

point pi

τGTi Ground truth tree identity of the ith

point pi

{(Cf , τf )} Connected components already

assigned to a tree

{Cc,d} Set of connected components of Cc

after cutpoints are removed

ACC Accuracy of apple assignment to

trees

B Binary 3D volumetric form of PCCw

Bs Binary 3D volumetric form of PCCTs

Btrees Binary 3D volumetric form of

PCtreesw

Cc cth connected component in CC

CA Class Accuracy

CP Connecting path between adjacent

trees

d(p, hlr) Distance between point p and the

line hlr

dccR The minimum distance of the Col-

orChecker tripod stick to the tree

row

dSPs Length of main axis SPs

dccT The distance of the ColorChecker

tripod stick to a designated tree

F1 F1 score

FN Number of false negatives

FP Number of false positives

hlr rth horizontal line in LHL
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IG Histogram of points in PCts pro-

jected to the ground

IH Binary image resulting from project-

ing S to the YZ-plane

IoU Intersection over Union

le Line fitted to the points around pe

Lj Location of jth tree in the scene

corresponding to (xj , yj , zj) coordi-

nates of the base of the tree

lsj,j+1 The line defined by the points p̂q,j

and p̂q,j+1

Ne Number of end-points of Cc

NF Number of connected components

already assigned to a tree

NP Number of detected peaks in IG and

number of canditate trunk locations

in CT

NW Number of points in PCCw

Napples Number of apples in A

NGT
apples Number of apples in AGT

Ncomp Number of connected components in

CC

Nc
comp Number of connected components of

Cc after cutpoints are removed

Nc Number of trees spanned by a con-

nected component Cc

NHL Number of horizontal lines in LHL

NTL Number of trellis-lines in LTL

nTP Unit normal of the trellis-plane

Ntrees Number of verified trees in the scene

NGT
trees Number of ground truth trees

p A 3D point

pαa Position of the ath apple in A

pα,GTg Position of the gth ground truth ap-

ple in AGT

pi ith point in PCCw

pr,1 A point on hlr

pr,2 A point on hlr

PC A 3D colour point cloud

PCh Reconstructed harvest point cloud

before calibration

PCCh Calibrated harvest point cloud

PCCTs Subset of PCTPw ; set of points within

a cylindrical region around the sth

candidate trunk location

PCw Reconstructed winter point cloud

before calibration

PCCw Calibrated winter point cloud

PCTPw Winter point cloud aligned to the

trellis-plane

PCqj,j+1 Cylindrical region around the qth

trellis-line between the points p̂q,j

and p̂q,j+1

PCtr Subset of PCCw ; set of points within

1cm distance to the horizontal lines

on the trellis-plane

PCts Subset of PCTPw ; set of points within

5cm distance to the trellis-plane

PCCwh Winter point cloud aligned to PCCh

PCtreesw Subset of PCTPw ; set of points with

trellis wires and support pole re-

moved

Pr Precision

R Rotation matrix to transform PCCw

to PCTPw

Rwh Rotation matrix to align PCCw to

PCCh

Re Recall

S Skeleton of B

Ss Skeleton of Bs

Strees Skeleton of Btrees

SKs Set of points on the skeleton of sth

trunk candidate
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SPj Set of points on the main axis of jth

verified trunk

SPs Set of points on the main axis of sth

trunk candidate

Twh Translation vector to align PCCw to

PCCh

Tj jth tree in T

tj Identity of jth tree in T

tlq qth trellis-line in LTL

TN Number of true negatives

TP Number of true positives

TPC Number of true positive apples cor-

rectly assigned to respective trees

uX X-axis of the reference frame aligned

to the trellis-plane

uY Y-axis of the reference frame aligned

to the trellis-plane

uZ Z-axis of the reference frame aligned

to the trellis-plane

xmax Maximum of the x coordinates of the

points in a point cloud

xmin Minimum of the x coordinates of the

points in a point cloud

ymax Maximum of the y coordinates of the

points in a point cloud

ymin Minimum of the y coordinates of the

points in a point cloud

zmax Maximum of the z coordinates of the

points in a point cloud

zmin Minimum of the z coordinates of the

points in a point cloud

HSV Hue, Saturation, and Value compo-

nents of the colour of a 3D point

RGB Red, Green, and Blue channels of

the colour of a 3D point

1. Introduction1

Apple yield is an important trait for both orchard management and variety2

testing of apple trees. Manual fruit counting is usually conducted by sampling3

a fixed percentage (e.g. 5 or 10%) of trees randomly or systematically and4

extrapolating the counts on these trees for total yield estimation of the entire5

orchard (Wulfsohn et al., 2012). This sampling and extrapolation process, in6

addition to being time-consuming and labor-intensive, does not always produce7

the desired precision of yield estimation. Computer vision techniques, on the8

other hand, provide a faster and more accurate alternative to manual counting9

of fruits (Gongal et al., 2015).10

While the majority of computer vision techniques for fruit counting relied11

on RGB (Red, Green, Blue) images, other types of data including RGB-Depth12

images (Gené-Mola et al., 2019b; Nguyen et al., 2016; Tao & Zhou, 2017; Tu13

et al., 2018; Lin et al., 2019; Fu et al., 2020), spectral images (Safren et al.,14
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(a) 3D model from harvest period.

Apples’ memberships to individual 

trees are not apparent.

(b) 3D model from winter 

period. Branches are visible. 

Easier to segment neighbour 

trees from each other

(e) Each apple is assigned to the 

tree with the closest branch.

Apple count on individual trees 

is possible.
(c) Trees are automatically 

segmented and all points on the 

branches are labeled with the 

corresponding tree.

(d) Two models from harvest and 

winter periods are registered.

Figure 1: Apple detection algorithms usually estimate the cumulative apple count from the

harvest season. Our aim is to count the number of apples on each individual tree. The main

idea is to register the 3D model from the harvest period (a) with the delineated 3D model

from the winter period (c) to align the branches with the detected apples (d). We assign a

different label to each delineated tree as an output of the automatic tree separation algorithm

we perform on the winter model (c). Finally the detected apples from the harvest model

are mapped to their closest branches, and membership of each apple to an individual tree is

determined (e).

2007), thermal images (Stajnko et al., 2004; Bulanon et al., 2008, 2009; Wachs15

et al., 2010; Gan et al., 2020) images or LiDAR (Light Detection and Ranging)16

data (Gené-Mola et al., 2019a) have also been used. In traditional approaches17

for fruit detection through such sensor information, relevant information is ex-18

tracted from each data instance separately according to a manually predefined19

algorithm. The representative quantitative information obtained in this manner20

is generally referred to as a hand-crafted feature. Hand-crafted approaches can21

involve techniques such as colour thresholding, colour space clustering, shape22

analysis, blob detection, circular Hough transform, Ncut algorithm, employment23
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of Histogram of Oriented Gradients (HOG), Local Binary Patterns (LBP) and24

Upright Speeded Up Robust Features (U-SURF) for separating fruits from the25

canopy (Wang et al., 2012; Sengupta & Lee, 2014; Sabzi et al., 2018; Tao & Zhou,26

2017; Gongal et al., 2016; Nguyen et al., 2016; Roy & Isler, 2016; Bargoti & Un-27

derwood, 2017; Samiei et al., 2020; Sun et al., 2019; Gong et al., 2013; Lu et al.,28

2018; He et al., 2020; Kelman & Linker, 2014; Linker, 2018; Wu et al., 2019).29

Recently, deep learning methods have become commonplace for fruit detection30

and counting (Apolo-Apolo et al., 2020; Bargoti & Underwood, 2017; Bresilla31

et al., 2019; Chen et al., 2017; Häni et al., 2018; Häni et al., 2020; Tian et al.,32

2019; Gené-Mola et al., 2019b; Liu et al., 2018; Tu et al., 2018; Williams et al.,33

2019; Fu et al., 2020; Gan et al., 2020; Xiong et al., 2020). Deep neural networks34

are employed to learn predictors from a set of training data through optimising35

the parameters of feature extraction and localisation of fruits simultaneously.36

After prediction, further processing, such as circular Hough transform and wa-37

tershed transform (Bargoti & Underwood, 2017) for verification and filtering of38

multiple counts through 3D (3-Dimensional) reconstruction (Gené-Mola et al.,39

2020; Gongal et al., 2016; Häni et al., 2020) can be applied to extract the final40

fruit count.41

The main objective of most fruit counting methods is to estimate the total42

number of observable fruits in the sensed data (Gené-Mola et al., 2020; Gongal43

et al., 2016; Häni et al., 2018; Häni et al., 2020; Liu et al., 2018; Bargoti &44

Underwood, 2017; Bargoti & Underwood, 2017; Bresilla et al., 2019; Chen et al.,45

2017; Fu et al., 2020). The fruits are not mapped to their bearing trees; i.e. the46

number of fruits on each tree is not computed. Examples to applications that47

will benefit from fruit counting on individual trees are precise yield mapping at48

tree scale, management of individual trees to maximise uniformity within the49

orchard, and individual tree-based analysis in variety testing experiments.50

Estimation of fruit count on each tree requires separating individual trees51

and identifying which tree each detected fruit belongs to (tree membership of the52

fruit). Individual tree delineation is the process of separating individual trees,53

including trunk detection and crown boundary delineation; i.e. identifying the54
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trunk and branches belonging to a single tree (Zhen et al., 2016). Delineation55

of trees in dense orchards or forests is a challenging task due to interlacing and56

touching branches of adjacent trees, particularly when there is high variation57

among the trees in terms of crown size and shape (Zhen et al., 2016). Occlu-58

sion caused by dense leaf cover during harvest period further complicates the59

delineation of trees. Using leaf-off data collected during winter can alleviate the60

occlusion and facilitate the capture of trunk and branch geometry (Brandtberg61

et al., 2003; Lu et al., 2014).62

The architectural structure that determines the connectivity of the branches63

to a particular tree trunk becomes ambiguous in 2D images, even during winter64

period. 2D projection causes loss of shape and connectivity information of the65

branches of neighbouring trees. Processing 3D point clouds is more adequate66

for our application since 3D data enables a detailed analysis of the geometric67

structure of trees and localisation of branches and fruits in the 3D world.68

Furthermore, acquiring 3D information of the trees in the orchards facil-69

itates a number of applications in precision agriculture, robotic agriculture,70

and phenotyping. These applications include robotic crop harvesting (Barnea71

et al., 2016; Ge et al., 2020; Lin et al., 2019; Williams et al., 2019), automated72

pruning (Medeiros et al., 2017; He & Schupp, 2018), monitoring pruning opera-73

tions (Méndez et al., 2016), and 3D visualisation tools to guide the agronomists74

(Yandún Narváez et al., 2016). Accurate measurements of morphological traits75

such as canopy volume, branch dimensions and leaf area from already available76

3D models are essential for phenotyping experiments and productivity assess-77

ment (Rosell & Sanz, 2012; Coupel-Ledru et al., 2019; Tabb & Medeiros, 2017).78

Computer vision techniques aiding management of fruit orchards range from79

complete processing pipelines to algorithms performing single tasks such as tree80

localisation (Tabb & Medeiros, 2017; Colmenero-Martinez et al., 2018; Medeiros81

et al., 2017; Zhang et al., 2017; Zeng et al., 2020; Nielsen et al., 2012; Under-82

wood et al., 2015; Zhong et al., 2016; Bargoti et al., 2015). A vision system was83

developed by (Tabb & Medeiros, 2017) to reconstruct 3D fruit trees and iden-84

tify branch structure and traits for automatic pruning. In (Colmenero-Martinez85
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et al., 2018) an automatic trunk-detection system using an infrared sensor was86

introduced. Medeiros et al. (Medeiros et al., 2017) employed a laser sensor to87

model dormant fruit trees and identify primary branches for automatic pruning.88

In (Zhang et al., 2017) Regions-Convolutional Neural Network (R-CNN) was ap-89

plied on depth images for detection of branches of apple trees and localisation90

of shaking points to guide a harvesting machine. Zeng et al. (Zeng et al., 2020)91

developed an algorithm to segment trellis wires, support poles, and tree trunks92

in sparse LiDAR point clouds acquired from trellis-structured apple orchards.93

In order to optimise the mechanisation of fruitlet and blossom thinning, Nielsen94

et al. (Nielsen et al., 2012) used LiDAR and stereo vision together for obtaining95

3D models of orchard rows of trees. They fitted mixtures of Gaussians to the96

point cloud to cluster the trees into Gaussian shaped cylinders. In (Underwood97

et al., 2015), LiDAR data was used for individual tree separation through a hid-98

den semi-Markov model. Their objective was to develop a pipeline for building99

detailed orchard maps and an algorithm to match subsequent LiDAR tree scans100

to the prior database, enabling correct data association for precision agricul-101

tural applications. In (Zhong et al., 2016), a procedure for segmenting canopy102

to individual trees was proposed. The procedure involved octree construction,103

clustering, trunk detection and Ncut segmentation. 3D data was obtained with104

terrestrial laser scanning (TLS) and mobile laser scanning (MLS). In (Bargoti105

et al., 2015), a tree trunk detection pipeline was proposed for identifying indi-106

vidual trees in a trellis structured apple orchard, using ground-based LiDAR107

and image data. Hough transformation was performed on 3D point cloud to108

search for trunk candidates. These candidates were projected into the camera109

images, where pixel-wise classification was used to update their likelihood of be-110

ing a tree trunk. Detection was achieved by using a hidden semi-Markov model111

to leverage from the contextual information provided by the repetitive structure112

of the orchard.113

The objective of this work is to delineate apple trees in a trellis structured114

orchard and count the number of apples on each individual tree (Fig. 1). To115

the best of our knowledge, this problem was not addressed before in previous116
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works dealing with apple detection and counting. Our strategy is to reconstruct117

3D models of the same set of trees twice a year, once during the winter period118

and once during the harvest period. We perform delineation of individual trees119

on the leaf-off model from winter, which we refer to as winter point cloud. We120

detect tree trunks and identify the branches connected to them using winter121

point cloud. We employ the 3D model from the harvest period, which we call122

harvest point cloud, to localise apples. We determine the tree-membership of123

each apple in the harvest point cloud by mapping their locations onto the winter124

point cloud, where individual trees are separated. This approach of registering125

data from two different time instances for fruit counting is another novelty we126

introduce to the field. We also propose the use of a known calibration object127

to facilitate the registration of two point clouds and to recover the true metric128

sizes of the important structures in the scenes.129

The main contributions of this study are:130

• Addressing the problem of apple counting on individual trees from 3D131

colour point clouds.132

• As a way to map detected apples to individual trees, alignment of harvest133

point cloud to the winter point cloud, where individual trees are automat-134

ically delineated.135

• A complete pipeline for detecting and removing trellis wires and support136

poles, detecting tree trunks and delineating crowns of individual trees in137

winter point clouds.138

• The use of a calibration object for correct scaling and alignment of point139

clouds acquired in different time instances.140

2. Materials and Methods141

We developed a point cloud processing pipeline (Fig. 2) in order to locate142

and count apples on individual trees. We use a colour camera for capturing143

images of target trees in the orchard from multiple views during both winter144
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and harvest periods (Fig. 2 (a)). These images are processed by a structure145

from motion algorithm to reconstruct winter and point clouds. The two point146

clouds are prepared for initial alignment which we refer to as calibration of point147

clouds (Fig. 2 (b)). A novelty of our pipeline is the use of a ColorChecker during148

acquisition. The ColorChecker serves both as a reference for removal of irrele-149

vant background information and as a calibration tool. Calibration of the point150

cloud, in our case, involves 1) re-scaling the point cloud to the correct metric151

scale, 2) orienting the point cloud to a canonical reference frame, 3) extraction152

of region of interest, and 4) re-centering the point cloud to a predetermined posi-153

tion. The estimated scale allows us to impose metric parameters on the pipeline154

such as range of separation between trees, separation between trellis wires, di-155

ameter of trellis wires, diameter of tree trunks, the expected pole diameter and156

height, etc. The orientation and re-centering facilitate trellis wire removal, tree157

trunk detection, and delineation of tree crowns (Fig. 2 (d)). The calibration of158

both harvest and winter point clouds is also crucial for their correct registration159

(Fig. 2 (c)). We employ a colour-based apple detection algorithm to locate the160

apples in the harvest point cloud (Fig. 2 (e)). Finally, we map the detected161

apples onto the winter cloud via distance calculation to assign them to their162

bearing trees. We give detailed explanations of each module of our pipeline in163

the following subsections.164

2.1. Experimental Field165

The experiments were conducted in a dense apple orchard, dedicated to166

variety testing at INRAe-Angers (latitude: 47.48226◦N, longitude: 0.6152◦E)167

in France. The orchard was composed of 4 years old apple trees organised in168

I-trellis structure with support poles. Our target trees were arranged in a row,169

where each tree was a mutant, being tested to be established as a new apple170

variety. The spacing between trees was 1m in average and the height of the171

trees ranged from 1 to 3m. The variation of the crown shape among the trees172

was high.173
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Figure 2: Pipeline proposed to assign apples to individual trees. (a) Image acquisition of apple

trees in winter and harvest period. (b) Calibration of 3D models and extraction of region of

interest. (c) Registration of calibrated models from winter and harvest period. (d) Separation

of individual trees in winter point cloud. (e) Apple detection from harvest point cloud. (f)

Distance map to assign apples to individual segmented trees.
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Figure 3: Data acquisition and point cloud calibration modules corresponding to (a) and (b) in Fig. 2. (a) Multi-view image acquisition. (b) Apple

orchard images acquired in winter and harvest periods. (c) 3D colour point cloud reconstructions (PCw and PCh) of orchard scenes with zoom on

the ColorChecker. (d) 3D colour point clouds after calibration and extraction of region of interest (PCCw and PCCh ). See Supplementary Material A

for details of the calibration process.
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Table 1: Number of trees in the scenes and number of images acquired in winter and harvest

periods.

# trees # images (winter) # images (harvest)

Scene 1 5 236 364

Scene 2 5 189 382

Scene 3 5 221 380

Scene 4 4 183 374

Scene 5 5 206 380

Scene 6 4 199 376

Scene 7 4 227 376

2.2. Data acquisition and 3D reconstruction174

Fig. 3 illustrates the data acquisition and point cloud calibration processes175

of our pipeline, corresponding to the modules (a) and (b) in Fig. 2. We obtained176

3D colour point clouds of seven scenes from the orchard through a multi-view177

reconstruction process. A scene, in our study, refers to part of an orchard row;178

i.e. a set of adjacent trees in the same row. Each scene contained 4 to 5 apple179

trees in our experiments, although our algorithm is capable of processing an180

entire orchard row. The number of trees in each scene is given in Table 1.181

A 3D colour point cloud (or a 3D RGB point cloud) PC is a set of 3D182

points, where each point is represented by its coordinates (x, y, z) and its colour183

(R,G,B). Here, (R,G,B) refers to the values of red, green and blue channels.184

We captured multiple RGB images of size 3000 × 4000 pixels, of a scene185

with a colour camera (Fujifilm X20, Fujifilm Corporation, Tokyo, Japan) in186

both winter and harvest periods to reconstruct the point clouds. We acquired187

images from only one side of the orchard row; although it is possible to follow188

the procedure proposed in (Roy et al., 2018) to reconstruct and register two189

sides of a row. Table 1 lists the number of images used for 3D reconstruction of190

the scenes from winter and harvest periods. In this study, we captured multiple191

images from the scene manually, choosing the viewpoints and viewing angles192
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(i.e. camera positions and orientations) to get visual information covering the193

scene from top to bottom and from various sides of the trees. It is important to194

guarantee that there is enough overlap between pairs of images for a successful195

3D reconstruction. This process can be automated in a more systematic manner196

with path planning, using a drone (Scher et al., 2019) or a land robot equipped197

with multiple cameras (Tabb & Medeiros, 2017).198

The multi-view images were used to reconstruct 3D colour point clouds of199

the scenes through VisualSFM (Wu, 2013; Wu et al., 2011) and PMVS/CMVS200

tool (Furukawa et al., 2010; Furukawa & Ponce, 2010). VisualSFM is a freely201

available software (Wu, 2013; Wu et al., 2011) that performs Structure from Mo-202

tion (SfM) to estimate unknown camera locations and orientations. It provides a203

sparse point cloud of the scene through keypoint matching and triangulation. In204

order to obtain a dense point cloud, we used PMVS/CMVS tool, another freely-205

available software (Furukawa et al., 2010; Furukawa & Ponce, 2010). This tool206

takes as input the images and the camera parameters computed by VisualSFM207

and provides a dense reconstruction of the scene through multi-view stereo. For208

introductory and in-depth information on the techniques of SfM and multi-view209

stereo, we refer the reader to the textbook of Hartley and Zisserman (Hartley210

& Zisserman, 2004).211

Before capturing the images of each scene, we installed a calibration object212

(ColorChecker Passport Photo 2, X-rite, Great Lakes, Midwestern US) mounted213

on a tripod stick at a known position. We placed the tripod stick in front of the214

trees facing the camera, such that the ColorChecker pattern is almost parallel to215

the tree row Fig. 2 (b). When the ColorChecker stick was installed, we manually216

measured two distances with a tape measure: dccR : the minimum distance of the217

tripod stick to the tree row, and dccT : the distance to a designated target tree.218

These values are necessary for the calibration process of the point clouds.219

The reconstructed harvest point cloud and winter point cloud of a scene are220

referred to as PCh and PCw respectively. Point clouds of a sample scene are221

given in Fig. 3 (c) with the ColorChecker objects zoomed in.222
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2.3. Calibration and Extraction of Region of Interest223

The calibration of the point clouds from harvest and winter periods provides224

an initial alignment, which is fundamental for the success of the registration of225

the two point clouds. Having the point cloud with the accurate scale also enables226

us to fix parameters, such as trunk diameter, tree height, separation between227

trees, according to the range of expected metric sizes of the structures in the228

scene.229

The ColorChecker is usually employed as a colour reference to obtain accu-230

rate colours from images under varying lighting conditions (Marrero Fernández231

et al., 2019). In this work, we do not use the ColorChecker for this purpose.232

Instead, we use it as a distinct reference pattern to geometrically calibrate the233

raw point clouds. We developed an algorithm for automatic detection of the234

ColorChecker, together with the tripod stick it is mounted on, from 3D colour235

point clouds. The description of this algorithm can be found in Supplemen-236

tary Material A. The 3D locations of the centers of the colour patches of the237

ColorChecker chart are used to guide the calibration of the point cloud.238

The geometric calibration process takes as input the harvest and winter239

point clouds (PCh and PCw) and produces the calibrated point clouds (PCCh240

and PCCw ), as shown in Fig. 3 (d). The details of the calibration process are241

given in Supplementary Material A. In summary, the calibration process consists242

of 1) estimation of the true scale and re-scaling the point cloud; 2) re-defining243

a canonical reference frame and rotating the point cloud to this new frame; 3)244

extraction of region of interest, which corresponds to the set of trees just behind245

the ColorChecker; and 4) moving the origin of the reference frame to the base of246

the designated tree. The canonical reference frame is defined such that Y-axis247

is parallel to the tree row and Z-axis is orthogonal to the ground.248

2.4. Separation of Individual Trees249

In this section, we describe the procedure to separate the trees from each250

other in the winter scenes. This procedure involves localisation of target tree251

trunks, finding the points on the tree trunks, detecting and removing trellis252
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wires, the water pipe, and the support poles. After the trees are localised and253

irrelevant points are removed, the tree membership of all the remaining points254

are determined.255

Let the number of points in the calibrated winter point cloud PCCw =256

{p1, p2, ..., pNW
} be NW . We aim to map each point pi to a semantic label257

γi, i = 1, 2, ..., NW where γi ∈ Γ. Γ is the set of four semantic labels: Γ = {258

"Tree trunk", "Branch", "Trellis wire+Water pipe", "Support pole"}. The pro-259

cess of automatically labeling the points in the cloud with one of these four260

classes is called semantic segmentation of the scene. The rationale for a seman-261

tic segmentation stage is to remove irrelevant structures and to eliminate the262

connectivity between adjacent trees caused by trellis wires and the water pipe.263

In conjunction with semantic segmentation, we also detect trees in the scene264

and locate their trunks. Let the set of verified trees in the scene be denoted as265

T . Each tree Tj in T is represented by its tree identity tj ∈ {1, 2, ..., Ntrees}266

and its location Lj , for j = 1, 2, ..., Ntrees. The location of a tree corresponds267

to the coordinates of its base Lj = (xj , yj , zj), j = 1, 2, ..., Ntrees measured in268

the canonical reference frame.269

After removing the irrelevant structures (trellis wires, water pipe and support270

pole) we delineate the trees in the winter point cloud. The final output of the271

tree separation algorithm is the assignment of each trunk and branch point in272

the calibrated winter point cloud PCCw to one of the trees in the set T .273

2.4.1. Detection of trellis wires and tree trunks274

The procedure for detecting points on trellis wires is based-on estimation275

of the trellis-plane and the trellis-lines along the trellis wires and operating276

on the points close to these estimates. Candidate trunk locations are detected277

along the trellis-plane based on point density. The points in a cylindrical region278

along each candidate location is separately skeletonised. The skeleton and the279

points surrounding it are examined to verify tree trunk position and to detect280

the presence of a supporting pole. 3D points belonging to the trunk of each281

individual tree and support pole are identified and labeled. Regions between282
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tree trunks along the initial line estimates are re-examined through 3D line283

fitting to increase the precision of the detection and removal of the points that284

belong to the trellis wires. The steps of the procedure are shown in Fig. 4 and285

detailed below:286

Step 1: Voxelization The calibrated winter point cloud PCCw is converted to287

binary volumetric form, where a voxel takes the value 1 if the voxel is occupied288

by the points in PCCw . Specifically, we fit a regular 3D grid to the bounding289

box defined by the minimum and maximum coordinate values (xmin, xmax),290

(ymin, ymax), (zmin, zmax) of the points in PCCw . Each cell, i.e. voxel, of the291

grid has edge lengths of ∆x = ∆y = ∆z = 5mm. On this grid, we define a 3D292

array B of size Nx ×Ny ×Nz, where293

Nx = bxmax − xmin
∆x

c+ 1;

Ny = bymax − ymin
∆y

c+ 1;

Nz = bzmax − zmin
∆z

c+ 1.

(1)

Here b·c is the floor function. The 3D volumetric form of the point cloud corre-294

sponds to the binary function B computed as295

B(k, l,m) =


1, if ∃p = (x, y, z) ∈ PCCw :

bx−xmin

∆x
c = k & by−ymin

∆y
c = l & b z−zmin

∆z
c = m

0, otherwise,

(2)

for k = 0, ..., Nx − 1, l = 0, ..., Ny − 1, and m = 0, ..., Nz − 1. In Fig. 4 (Step296

1), the volumetric model of a sample scene is visualised. In the figure only the297

voxels with value "1" are shown.298

Step 2: Skeletonisation We extract the skeleton of the volumetric model B299

using medial axis thinning algorithm given in (Lee et al., 1994). Formally, the300

skeleton of a 3D object is the set of the centers of all inscribed maximal spheres301

where these spheres touch the object boundary at one than more point (Lee302
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Input Point Cloud

Convert the 3D point cloud to 

volumetric form.

Step 1:Voxelization

Extract the skeleton of the 

volumetric model using medial 

axis transform.

Step 2: Skeleton extraction

Project the skeleton onto YZ-plane 

to obtain a binary image. Apply 

Hough Transform to detect 

horizontal lines.

Step 3: Projection and Hough Transform

Step 4: Estimation of the trellis plane

Back-project the horizontal lines to the 3D space. Fit a plane to 

the points within 1cm distance to the lines using RANSAC.

Step 5: Merge lines

Merge the horizontal lines into four 

parallel lines on the trellis plane. 

These new lines serve as initial 

estimates of the trellis wires.

Step 6: Trunk candidate localisation

Project the points within 5cm distance to the trellis-plane to the 

ground. Designate peaks as tree trunk candidates.

Step 7: Trunk verification and pole detection

For each tree trunk candidate:
• Voxelize and skeletonize the cylindrical region, with radius 15cm,

around the candidate location.

• Extract the shortest path between the top and bottom points (shown in

blue in the figure to the right).

• Discard if the length of the path is less than 1m.

• Otherwise, apply pole detection algorithm (Section 2.4.2).

• Classify the location either as a tree trunk or a supporting pole.

Label the points within 4cm distance 

to the skeleton of each main trunk 

position as trunk points.

Step 8: Extraction of trunk points

Step 9: Intersection points of the wires and tree trunks

Locate the intersection points of the trellis wires and tree trunks.

Step 10: Find the end points

Find the closest points to the trellis 

lines as the two extremes of the 

point cloud to the left and right.

Intersection points in magenta
End points to the left in red
End points to the right in yellow

Step 11: Line Fitting

Fit lines to the points 

between intersection 

points. Mark inliers as 

trellis wires. Fit two 

lines corresponding to 

the lowest trellis line 

to also detect the 

water-pipe.

Step 12: Removal of detected trellis wire points

The detected trellis wires (shown with dark blue in the figure 

below) are removed from the point cloud.

Figure 4: Block diagram for detection and removal of trellis wires and the water-pipe.
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et al., 1994). The skeletonisation process produces another binary 3D grid S of303

size Nx×Ny×Nz, where the structures in B are pruned to curves with thickness304

of one voxel. In Fig. 4 (Step 2), the skeleton of a sample scene is shown.305

Step 3: Projection and Hough Transform The skeleton defined in the binary306

3D grid S is projected to the YZ-plane (parallel to the tree row) as a binary307

image, IH of size Ny ×Nz:308

IH(l,m) =

1, if
∑Nx−1
k=0 S(k, l,m) > 0

0, otherwise,
(3)

for l = 0, ..., Ny − 1, and m = 0, ..., Nz − 1.309

In Fig. 4 (Step 3), the projected binary image of a sample scene is shown.310

We apply 2D Hough Transform (Duda & Hart, 1972) to IH to extract main311

horizontal lines in the binary image. The peaks greater than 20% of the maxi-312

mum value in the Hough parameter space, and with angle with the horizontal313

axis less than 10◦ are selected as the main horizontal lines. These horizontal314

lines correspond to candidates for the trellis-lines in the scene.315

Step 4: Estimation of the trellis-plane316

The detected horizontal lines are back-projected to the 3D space of the317

point cloud PCCw , as shown with red lines in Fig. 4 (Step 4). Let the set318

of these horizontal 3D lines be LHL = {hl1, hl2, ..., hlNHL
}, where NHL is the319

number of horizontal lines. Each 3D line is defined by a pair of points on it,320

as hlr = (pr,1, pr,2), with pr,1 = (xr,1, yr,1, zr,1) and pr,2 = (xr,2, yr,2, zr,2). We321

retrieve the points in PCCw with distance 1cm to these lines, and form the subset:322

323

PCtr = {p = (x, y, z) ∈ PCCw : min
r=1,..,NHL

d(p, hlr) < 1cm}. (4)

The distance d(p, hlr) between a point p and the line hlr is calculated as:324

d(p, hlr) =
‖(p− pr,1)× (p− pr,2)‖

‖pr,2 − pr,1‖
, (5)

where × is the cross product operation, and ‖ · ‖ is the Euclidean norm. We fit325

a plane to the points in PCtr using M-estimator SAmple Consensus (MSAC)326
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algorithm given in (Torr & Zisserman, 2000), which is a variant of RANdom327

SAmple Consensus (RANSAC) algorithm. Maximum distance for a point to328

be an inlier is set to be 0.5cm. The output of the algorithm is a plane model329

(A,B,C,D), where the parameters define the plane equation Ax+By+Cz+D =330

0. The unit vector nTP = (A,B,C) corresponds to the normal of the plane. We331

refer to this plane as the trellis-plane on which trellis wires and tree trunks are332

located. Fig. 4 (Step 4) shows the trellis-plane fitted to the points in PCtr for333

a sample scene.334

The trellis-plane plays an important role in the following steps. We rotate335

the calibrated winter point cloud PCCw to a new reference frame such that the336

new YZ plane coincides with the trellis-plane and Y-axis is parallel to the trellis-337

lines. The new Y-axis is computed as the average of the direction vectors of the338

horizontal lines in LHL:339

uY =

∑NHL

r=1 (pr,2 − pr,1)

‖
∑NHL

r=1 (pr,2 − pr,1)‖
(6)

The new Z-axis is orthogonal to the normal of the trellis-plane and the average340

direction of the trellis-lines:341

uZ = uY × nTP , (7)

and the new X-axis is342

uX = uY × uZ (8)

We transform each point p = (x, y, z) in the calibrated winter cloud PCCw343

using the rotation matrix R defined in Eq. (9), and obtain a point cloud of the344

same size, PCTPw . We refer to this point cloud as the winter point cloud aligned345

to the trellis-plane.346

PCTPw = {p̂ = (x̂, ŷ, ẑ) = pR : p ∈ PCCw }; R =


uX

uY

uZ

 (9)

The origin of the new reference frame remains at the base of the target347

tree (see Supplementary Material A). With the transformation, the trellis-plane348
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coincides with the x̂ = 0 plane in the new reference frame. This ensures that the349

x̂ coordinate of each tree trunk is close to 0. Notice that this transformation is350

applied only to the winter point cloud. Once the semantic segmentation of the351

winter cloud is achieved and the trees are delineated, the points are transformed352

back to their original positions using p = p̂R−1.353

Step 5: Merge lines The detected horizontal lines are on the trellis-plane;354

hence, they are located on the x̂ = 0 plane in the new reference frame. Their355

average direction is parallel to the Y-axis. Hence, we represent each line hlr ∈356

LHL with the direction vector (0, 1, 0) and a point on the line (0, 0, ẑr). The357

value ẑr indicates the height of a horizontal line on the trellis-plane and is358

calculated as:359

p̂r,1 = (x̂r,1, ŷr,1, ẑr,1) = pr,1R; p̂r,2 = (x̂r,2, ŷr,2, ẑr,2) = pr,2R; (10)

360

ẑr =
ẑr1 + ẑr2

2
(11)

We merge the lines into parallel lines on the trellis-plane, each separated361

by at least 30cm to create the set of trellis-lines LTL = {tl1, ..., tlNTL
}. Each362

line is represented with the direction vector (0, 1, 0) and a point on the line363

(0, 0, ẑq), with q = 1, ..., NTL. We use the following procedure to cluster the364

horizontal lines in LHL into trellis-lines in LTL: We first sort the horizontal365

lines with ascending height. We start from the bottom line on the trellis-plane,366

and initialise ẑ1 to the height of the first horizontal line. If the distance between367

the closest horizontal line is less than 30cm, we add the line to the group and368

update ẑ1 to the average height of the group. Otherwise, we create a new369

group and proceed to the next line. In our experiments, the horizontal lines370

were grouped into 4 lines for all the winter scenes. Fig. 4 (Step 5) shows the371

resulting trellis-lines in red colour for a sample winter scene. In the rest of the372

paper we fix NTL = 4. The four height values {ẑ1, ẑ2, ẑ3, ẑ4} will be used to373

specify the locations of the trellis-lines.374

Step 6: Trunk candidate localisation To localise candidate tree trunks along375

the trellis-plane we limit the search space within 5cm distance to the trellis-376
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plane. We extract a subset of points PCts from PCTPw :377

PCts = {p̂ = (x̂, ŷ, ẑ) ∈ PCTPw : |x̂| < 5cm} (12)

Fig. 4 (Step 6) shows PCts of a sample scene. We define a regular 2D grid,378

IG on the z = 0 plane, which is parallel to the ground. Each cell of the grid379

has edge length ∆̂x = ∆̂y = 1cm. We compute the number of points in PCts380

falling into each cell:381

IGi,j = {p̂ = (x̂, ŷ, ẑ) ∈ PCts : b x̂− x̂min
∆̂x

c = i & b ŷ − ŷmin
∆̂y

c = j}; (13)

382

IG(i, j) = |IGi,j |, (14)

where x̂min and ŷmin are the minimum of the x̂ and ŷ coordinates of the points383

in PCts, and |X | denotes the number of elements in the set X .384

IG is the histogram of the points in PCts projected to the ground. The385

points on the tree trunks form the densest regions in the histogram correspond to386

the peaks of IG. The locations of the peaks are detected via non-maximum sup-387

pression (Gonzalez & Woods, 2006) as {(I1, J1), (I2, J2), ..., (INP
, JNP

)}, where388

NP is the number of detected peaks. The set of candidate trunk locations in389

the 3D space are then defined as CT = {(0, ŷct1 , 0), (0, ŷct2 , 0), ..., (0, ŷctNP
, 0)};390

with ŷ1 < ŷ1 < ... < ŷctNP
. Recall that the trunks intersect with the trellis-plane.391

ŷcts for s = 1, ..., NP is calculated as:392

ŷcts = Js∆̂y + ŷmin. (15)

Fig. 4 (Step 6) shows the locations of the candidate trunks as vertical purple393

lines passing through (0, ŷcts , 0).394

Step 7: Trunk verification395

Not all the peaks detected in the previous step correspond to tree trunks.396

In this step, we examine the points at each candidate trunk location to verify397

whether it is a tree trunk, a support pole, or neither. We construct the set of398

trees T using the verified trunks. Each tree Tj in T is represented by its tree399
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identity tj ∈ {1, 2, ..., Ntrees} and the location of its base L̂j = (x̂j , ŷj , ẑj), for400

j = 1, 2, ..., TNtrees
. The procedure for constructing the set of detected trees is401

given in Algorithm 1, and explained below:402
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Algorithm 1: Tree trunk verification
Data: PCTPw : The winter point cloud aligned to the trellis-plane;

(0, ŷcts , 0): Candidate tree trunk locations for s = 1, ..., NP

Result: T = {T1, ..., TNtrees}: Set of detected trees;

Ntrees: Number of detected trees;

tj : Tree identity of Tj ∈ T ;

L̂j = (x̂j , ŷj , ẑj): Location of Tj ∈ T ;

SPj : Set of points on the main axis of Tj

1 Initialise T = ∅; Ntrees = 0; j = 0;

2 for s← 1 to NP do

3 Extract the point set PCCTs using Eq. (16);

4 Convert PCCTs to binary volumetric form Bs through voxelization;

5 Compute the skeleton Ss of Bs using medial axis thinning (Lee

et al., 1994);

6 Obtain SKs by retrieving the 3D points on the skeleton Ss ;

7 Find the top and bottom points in SKs with the largest and

smallest z-coordinates and designate them as p̂s,top and p̂s,bottom ;

8 Extract the shortest path between p̂s,top and p̂s,bottom using

Breadth-first search (Cormen et al., 2009) ;

9 Collect the points on the shortest path to form the main axis SPs;

10 Calculate the length dSPs of SPs;

11 if dSPs > 1m then

12 Run Support Pole Detection Algorithm on s (Section 2.4.2) ;

13 if s is not a Support Pole then

14 j ← j + 1; Ntrees ← Ntrees + 1; tj = j ;

15 L̂j = (0, ŷcts , 0) ;

16 SPj = SPs ;

17 Tj = (tj , L̂j , SPj) ;

18 T ← T ∪ Tj

19

403
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We first initialise the set of trees as T = ∅ and the number of tree trunks404

as Ntrees = 0. For each candidate trunk indexed with s, we define a cylindrical405

region, with radius 15 cm, centered at the candidate trunk location (0, ŷcts , 0),406

along the trellis-plane. We extract the points inside this region from PCTPw :407

PCCTs = {p̂ = (x̂, ŷ, ẑ) ∈ PCTPw :
√
x̂2 + (ŷ2 − ŷcts )2 < 15cm} (16)

The point cloud PCCTs is converted to binary volumetric form Bs with voxel408

size ∆̂x = ∆̂y = ∆̂z = 5mm. Then, the skeleton Ss is extracted from Bs using409

medial axis thinning algorithm given in (Lee et al., 1994). The points on the410

skeleton are retrieved from the point cloud PCCTs , and denoted as SKs.411

The two top and bottom points of the set SKs along the Z-axis p̂s,top and412

p̂s,bottom are retrieved. The points on the shortest path between these two413

points is computed using the Breadth-first search algorithm described in (Cor-414

men et al., 2009). We refer to the set of the points on the shortest path as the415

main axis of the sth trunk, and denote it as SPs. Fig. 4 (Step 7) shows the416

skeleton with black dots and the points on the shortest path with blue dots for417

a candidate trunk location.418

If the length of the shortest path dSPs is less than 1m, then the candidate419

trunk location is discarded. Otherwise, it is passed to the support pole detection420

procedure described in Section 2.4.2. If it is not identified as a support pole,421

then we update Ntrees ← Ntrees + 1, and insert the verified trunk into T . We422

also store the main axis of the verified trunk. See Algorithm 1 for the formation423

of the set T .424

Step 8: Extraction of trunk points The previous step gives the attributes of425

each tree Tj = (tj , L̂j , SPj) ∈ T . The main axis of the jth detected tree is426

represented by the set of points SPj . We label a point p̂i in the point cloud427

PCTPw as "Tree trunk" if its distance to the main axis of one of the trees is less428

than 3cm. Specifically:429

γi = "Tree trunk" if min
j

min
p̂∈SPj

‖p̂− p̂i‖2 < 3cm (17)

Fig. 4 (Step 8) shows the points semantically labeled as "Tree trunk" in a430
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winter scene.431

Step 9: Locating the intersection points of trellis wires and tree trunks432

In Step 4, the set of trellis-lines LTL = {tl1, tl2, tl3, tl4} is determined. Recall433

that each line is represented with the direction vector (0, 1, 0) and a point on434

the line (0, 0, ẑq), with ẑ1 < ẑ2 < ẑ3 < ẑ4. Now, having located the trunks435

at L̂j = (0, ŷj , 0) with ŷ1 < ŷ2 < ... < ŷNtrees
, we find the points where the436

trellis wires intersect with the trunk locations. For a trellis-line with index q437

and a trunk location with index j, we find the point p̂q,j ∈ PCTPw closest to the438

location (0, ŷj , ẑq). Fig. 4 (Step 9) shows the trellis-lines, located tree trunks439

and the intersection points p̂q,j for a winter scene.440

Step 10: Finding the end points of trellis wires The end-points correspond-441

ing to the trellis wires in the scene are determined by finding the closest points442

to the trellis-lines at the two extremes of the point cloud along the Y-axis.443

Specifically, for a trellis-line with index q, we locate two points p̂q,0 ∈ PCTPw444

and p̂q,Ntrees+1 ∈ PCTPw , which are closest to the locations (0, ŷmin, zq) and445

(0, ŷmax, zq), respectively. Here, ŷmin and ŷmax are the minimum and maxi-446

mum Y-coordinates of the points in PCTPw . Fig. 4 (Step 10) shows the end447

points for a winter scene with red and yellow dots.448

Step 11: Line fitting to find the points on trellis wires and the water-pipe449

The region between each adjacent intersecting points of trellis-lines and the450

trunks are examined for a precise determination of the points on the trellis451

wires and the water-pipe. For each pair of intersecting points p̂q,j and p̂q,j+1,452

q = 1, ..., 4 j = 0, 1, ..., Ntrees we extract the points:453

PCqj,j+1 ={p̂ = (x̂, ŷ, ẑ) ∈ PCTPw :

(ŷj + 4cm < ŷ < ŷj+1 − 4cm) & (d(p̂, lsj,j+1) < 10cm)}
(18)

where lsj,j+1 is the line defined by the points p̂q,j and p̂q,j+1, and d(p̂, lsj,j+1)454

is the distance between point p̂ and line lsj,j+1. This region corresponds to a455

cylinder of radius 10cm with axis lsj,j+1. We set an offset value of 4cm from456

the trunk locations not to include trunk points to the search region for trellis457

wire points.458
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Using MSAC algorithm given in (Torr & Zisserman, 2000), we fit two lines to459

the points in PC0
j,j+1 corresponding to the regions along the lowest trellis-line460

(one for the trellis wire and one for the water-pipe). One line is fitted to the461

points for the rest of the regions PCqj,j+1 with q = 2, 3, 4. For a point to be an462

inlier, the maximum distance to the fitted line is set to be 7cm for q = 0 and463

4cm for q = 2, 3, 4. Fig. 4 (Step 11) shows points in two regions along the trellis464

wires in blue and the lines fitted to them in black.465

If a point p̂i ∈ PCTPw is an inlier of one of the fitted lines we set its semantic466

label as γi = "Trellis wire + Water pipe" .467

Step 12: Removal of detected trellis wire points468

The detected trellis wire points and the points on the support pole, if there469

is any, are removed from the point cloud to form the set:470

PCtreesw ={p̂i ∈ PCTPw :

(γi 6= "Trellis wire + Water pipe") & (γi 6= Support pole")}
(19)

The procedure for retrieving points on the support pole is given in Section471

2.4.2. The point cloud PCtreesw is supposed to include only the points on the472

trees. In Fig. 4 (Step 12) the points labeled as "Trellis wire+Water pipe" are473

shown in dark blue. Also the resulting PCtreesw is given for a sample winter474

scene.475

2.4.2. Detection of Support Poles476

During the procedure for trellis wire detection and localisation of tree trunks,477

we examine each trunk candidate to determine whether it corresponds to a478

support pole or an actual tree trunk. We consider the points in a vertical479

cylindrical region of radius 15cm centered at the candidate trunk location. We480

partition the points into horizontal slices of height 2cm. We project the points481

in each slice onto the XY-plane (the ground plane) and fit a circle of radius482

4.5cm (the actual radius of a support pole in the orchard) to the projected483

points, and estimate the center. The centers of the slices form the axis of the484

candidate support pole and the new cylindrical region. We count the points485
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in the cylindrical shell with inner and outer radii, 4.5 − 0.5 and 4.5 + 0.5cm,486

and with height 2.3m (the actual height of a support pole). If the ratio of this487

number to the total number of points in the initial cylindrical region is higher488

than 0.8, then we declare that the structure corresponds to a support pole. We489

label the points in the cylindrical shell as pole points.490

2.4.3. Identifying tree membership of points (Tree Separation)491

This module of our pipeline is responsible for delineating the trees in PCtreesw ,492

which is the point cloud with trellis wires, the water-pipe and the support pole493

removed. The output of the delineation process is the assignment of each point494

in PCtreesw to one of the trees Tj = (tj , L̂j , SPj) ∈ T .495

The main steps of the tree separation process is given in Fig. 5. We con-496

vert PCtreesw to binary volumetric form and apply skeletonisation to conduct a497

connectivity analysis. We delineate adjacent trees if they are touching and we498

assign isolated connected components to one of the two nearest trees through a499

set of rules. The details of the steps are as follows:500

Step 1: Voxelization The point cloud PCtreesw is converted to binary volu-501

metric form Btrees with voxel size ∆̂x = ∆̂y = ∆̂z = 5mm.502

Step 2: Skeletonisation The skeleton Strees is extracted from Btrees using503

medial axis thinning algorithm given in (Lee et al., 1994).504

Step 3: Extraction of connected components Connected components of the505

skeleton Strees are extracted using flood fill algorithm (Torbert, 2016). We de-506

note the set of connected components as CC = {C1, C2, ..., CNcomp}, where Cc507

is the cth connected component and Ncomp is the number of connected compo-508

nents. Fig. 5 shows each connected component in a sample Strees in a different509

colour.510

Step 4: Labeling connected components We compute the minimum distance511

of each connected component Cc to all trunk locations L̂j = (0, ŷj , 0). If this512

distance is below 30cm, then we assign Cc to tj . Fig. 5 (Step 4) gives the trunk513

locations as lines in different colours and the connected components coloured514

according to the assigned tree for a sample Strees.515
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Input Point Cloud

Step 1:Voxelization

Convert the 3D.point cloud to volumetric form.

Step 2: Skeleton Extraction

Extract the skeleton using medial axis transform.

Step 3: Extract connected components

Extract the connected components of the skeleton.
(Each connected component is shown in a different color in the figure below)

Step 4: Labeling connected components

For each connected component, compute the minimum distance

from all the trunk locations.
• If the distance is below a threshold (30cm) for a trunk location, assign the

label of the trunk location to the connected component (components

coloured according to assigned trunk label in the figure below to the right).

• If not assigned to any trunk location, label the component as "floating"

(components in black colour in the figure below to the right).

• If the connected component is assigned to more than one trunk location, it is

assumed to span several trees (component in gray colour in the figure below

to the right).

Step 5: Split touching trees

Split touching trees using Algorithm 1.

Step 6:Assign floating components to a trunk

All floating components are assigned to a trunk

location using Algorithm 2.

Step 7: Label all the points

Label each point in the point cloud using the tree assignment of

its nearest skeleton point.

(a)

Step 5: Split touching trees

A connected component spanning multiple trees is split using

Algorithm 1.
• The connected component is converted to a graph.

• For each trunk location spanned by the connected component, the shortest

path between highest and lowest points is extracted (depicted in red in the

figure below to the left)

• Find shortest paths between the trunks of adjacent trees (depicted in green

in the figure below to the left)

• Locate cut points on the paths connecting the trunks.

• Remove the cut points, extract new connected components and assign each

to the closest trunk.

(b)

Step 6: Assign floating components to a trunk

All floating components are assigned to a trunk

location using Algorithm 2.
• Convert the points in the floating component to a graph.

• Fit lines to the end-points of the graph and extend these lines.

• The floating point is assigned to the label of the connected

component with the minimum distance to the extended lines.

line 1

line 2

(c)

Figure 5: (a) Block diagram for separating individual trees. (b) Illustration of Step 5 for

splitting touching trees, (c) Illustration of Step 6 for labeling floating components.
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Algorithm 2: Separation of a connected component into multiple trees
Data: Cc: Connected component spanning multiple trees;

{Tj}: Trees spanned by Cc; j = jc1, ..., j
c
Nc

;

{SPj}: Main axes of trees;

{p̂j,top}: Top points of the main axes

Result: {Cc,d}: Detached connected components each assigned to a

tree; d = 1, ..., N c
comp

1 for j ← jc1 to jcNc
− 1 do

2 CP ← ∅ ;

3 Extract the shortest path CP between the points p̂j,top and p̂j+1,top;

4 while CP 6= ∅ do

5 CP ← (CP \ SPj) \ SPj+1 ;

6 Select the global extremum of the z-coordinate in CP as the

cut-point;

7 Remove the cut-point from Cc ;

8 Extract the shortest path CP between the points p̂j,top and

p̂j+1,top;

9 Apply connected components to Cc to obtain {Cc,d} ;

10 Assign each connected component Cc,d to the closest tree trunk;

516

After this procedure a connected component might be assigned to 1) only517

one tree, 2) to multiple trees, or 3) none of the trees. If the connected component518

is assigned to multiple trees, it is assumed to be spanning several trees that are519

touching each other. We label the connected components not assigned to any520

tree as "floating". The floating components are shown in black colour in Fig. 5521

(Step 4).522

Step 5: Splitting touching trees For a connected component Cc spanning Nc523

trees {Tj}, j = jc1, ..., j
c
Nc

, we run Algorithm 2. Before running the algorithm,524

we update SPj , main axis of the jth trunk, together with the points p̂j,top and525

p̂j,bottom. Recall that p̂j,top and p̂j,bottom are the top and bottom points of the526

skeleton of the jth tree trunk and SPj is the shortest path connecting them.527
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Fig. 5 (b) shows a connected component spanning three trees. The main axes528

of them are plotted in red colour, on the left.529

Algorithm 2 takes as input the set of trees identities {Tj}, j = jc1, ..., j
c
Nc

530

spanned by the connected component Cc. For each adjacent tree pair Tj , Tj+1,531

the shortest path between their top points p̂j,top and p̂j+1,top is extracted. We532

call this path CP , the connecting path, which contains the touching point of533

branches from trees Tj and Tj+1. Each such path is searched for a cut-point534

to separate the connected adjacent trees. The cut-point is removed from the535

component Cc to break the connectivity at that point. The process is repeated536

and CP is updated until there remains no connected path between p̂j,top and537

p̂j+1,top. Fig. 5 (b) depicts the connecting paths CP between adjacent trees538

with green dots.539

After all connecting paths are extracted and the cut-points are found and540

removed, detached connected components {Cc,d}; d = 1, ..., N c
comp of Cc are541

extracted. Then each connected component is assigned to the tree identity of542

the closest tree trunk. Fig. 5 (b) shows the detached connected components543

each coloured according to its tree identity.544

It is challenging to determine the point where branches from two trees touch545

each other. Many architectural and morphological rules concerning apple tree546

branches can be incorporated. However, here, we use a simple heuristic based on547

the assumption that the point that changes direction along the z-axis (upwards548

or downwards) corresponds to a meeting point along the path. We select the549

global extremum of the z-coordinate as the cut-point of the connecting path.550

Step 6: Assigning floating components to a tree The tree membership of a551

floating component Cc is determined using Algorithm 3. Before running Algo-552

rithm 3, we identify the set C = {(C1, τ1), ..., (CNF
, τNF

)} of connected com-553

ponents already assigned to a tree. Here τf ∈ {t1, ..tNtrees
} is the tree identity554

of the component Cf . We determine the two closest components in C to the555

floating component Cc. If the distance to one connected component is more556

than 3 times than the distance to the other component, we assign the points557

in Cc to the tree identity of the closest component. Otherwise, we locate the558
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end-points in Cc, fit lines to these end-points and extend these lines, as shown559

in Fig. 5 (c). The minimum distance of the two closest connected components560

to these lines are calculated. The floating component is then assigned to the561

tree identity of the connected component with the minimum distance to the562

extended lines. Algorithm 3 gives the details of the process.563

Step 7: Labeling all points with tree identities After Steps 5 and 6, all con-564

nected components in Strees are assigned to a tree label τc ∈ {t1, ..tNtrees
}.565

Recall that the connected components are extracted from the skeleton Strees566

of the point cloud PCtreesw . For each point p̂ ∈ PCtreesw , we locate the closest567

component of Strees and assign the tree identity of the component to the point568

p̂. Fig. 5 (Step 7) shows the points of a sample PCtreesw coloured according to569

their tree identities.570

Recall that PCtreesw is a subset of PCTPw , which is the winter point cloud571

aligned to the trellis-plane. To find the tree identities of the points in the572

calibrated winter cloud PCCw , we first apply p = p̂R−1 to each point p̂ ∈ PCtreesw573

with tree identity τ ∈ {t1, ..., tNtrees
}. Then, we retrieve the closest point pi ∈574

PCCw to p and set τi = τ .575
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Algorithm 3: Assignment of a floating branch to a neighbouring tree.
Data: Cc: Floating connected component;

C = {(Cf , τf )}: Connected components already assigned to a tree

(f = 1, 2, ..., NF )

Result: τc ∈ {t1, ..tNtrees
}: Tree identity of Cc

1 for f ← 1 to NF do

2 Calculate the minimum distance df between the points in Cc and

the points in Cf ;

3 dF1 ← Minimum of df ; dF2 ← Next minimum of df ;

4 CF1 ← Component with dF1 ; CF2 ← Component with dF2;

5 τF1 ← Tree identity of CF1 ; τF2 ← Tree identity of CF2;

6 if dF2

dF1 > 3 then

7 τc ← τF1;

8 else

9 Extract the end-points pe of Cc, e = 1, 2, ..., Ne;

10 for e← 1 to Ne do

11 Extract K nearest neighbours of pe with K = 10 ;

12 Fit a line le to the neighbours;

13 deF1 ← Minimum distance of the points in CF1 to the line le;

14 deF2 ← Minimum distance of the points in CF2 to the line le;

15 if min{deN1} < min{deN2} then

16 τc ← τF1

17 else

18 τc ← τF2;

576

2.5. Apple detection577

To detect apples, we applied simple colour thresholding to the calibrated 3D578

colour point cloud of the harvest scene PCCh . First, the RGB colours of points579

are converted to HSV (Hue, Saturation, Value) representation. The points580

in the hue range [0.15-0.2] are assumed to correspond to green/yellow apple581

33



points. The red apple points are assumed to be in the hue range [0-0.05] and582

[0.95-1]. The points with hue values in these ranges are retrieved and converted583

to volumetric form. The connected components of the volumetric form and584

their bounding boxes are extracted. The centers of these bounding boxes are585

mapped to the 3D space of PCCh and are considered to be the locations of586

detected apples. We denote the set of detected apples in a harvest scene as587

A = {pα1 , ..., pαNapples
}, where pαa is the location of a detected apple.588

Although our apple detection approach is primitive, it provides recall rates589

in the range of 74% to 90% (see Section 3.2). This level of detection success is590

sufficient to demonstrate the effectiveness of our approach for assigning retrieved591

apples to their respective trees.592

2.6. Assigning apples to individual trees593

The main objective of this work is to automatically assign detected apples594

to their respective trees; i.e. to determine the tree identity τa ∈ {t1, ..., tNtrees
}595

of each detected apple pαa ∈ A. To this end, we align calibrated winter cloud596

PCCw and summer cloud PCCh and assign apple pαa detected from PCCh to the597

tree identity of the closest branch point in the aligned winter cloud.598

Since both point clouds were transformed, through calibration, to a common599

reference frame with the origin at the base of a reference tree (see Supplementary600

Material A for details), they are already initially aligned. We apply the standard601

Iterative Closest Point (ICP) algorithm (Chen & Medioni, 1992) to improve the602

alignment. Point to point metric is used to minimise the alignment error. ICP603

returns the transformation parameters; a rotation matrix Rwh and a translation604

vector Twh that align the points in PCCw to the points in PCCh :605

PCCwh = {p′i = piR
wh + Twh : (pi ∈ PCCw ) & τi ∈ {t1, ..., tNtrees

}}. (20)

Once the transformed winter point cloud PCCwh is obtained, the closest606

branch point in PCCwh labeled with a tree identity to the apple location pαa607

is retrieved:608

i∗ = arg min
p′i∈PCC

wh

‖p′i − pαa‖; (21)

34



and the tree identity of apple a is set as609

τa = τi∗ . (22)

2.7. Ground truth and evaluation metrics610

To provide ground truth for evaluation of our semantic segmentation scheme,611

we manually labeled each point pi ∈ PCCw with one of the semantic labels γGTi ∈612

{"Tree trunk", "Branch", "Trellis wire+Water pipe", "Support pole"}. We used613

CloudCompare (2.11, GPL software, 2020) to label the point cloud. Fig. 6-(a)614

shows a sample winter scene with points coloured according to their manually615

annotated ground truth labels.616

We evaluated the performance of the semantic segmentation module de-617

scribed in Section 2.4.1 using Recall (Re), Precision (Pr), F1 score (F1), Inter-618

section over Union (IoU), and Class Accuracy (CA), defined as619

Re =
TP

TP + FN
(23)

Pr =
TP

TP + FP
(24)

F1 = 2× Pr ×Re
Pr +Re

(25)

IoU =
TP

TP + FN + FP
(26)

CA =
TP + TN

TP + TN + FP + FN
, (27)

where TP , TN , FP and FN , correspond to the number of True Positives, True620

Negatives, False Positives, and False Negatives, respectively. These cases for621

35



the "Tree trunk" are determined as follows:622

Casei =



True Positive if γi = γGTi = "Tree trunk"

True Negative if (γi 6= "Tree trunk")&(γGTi 6= "Tree trunk")

False Positive if (γi = "Tree trunk")&(γGTi 6= "Tree trunk")

False Negative if (γi 6= "Tree trunk")&(γGTi = "Tree trunk"),

(28)

where γGTi is the ground truth label of point pi and γi is the label predicted623

by our automatic semantic segmentation scheme. The cases for "Support pole"624

and "Trellis wire+Water pipe" are obtained in a similar manner.625

In order to assess the performance of the colour-based apple detection ap-626

proach, we manually marked the apple positions in the harvest point clouds and627

obtained the set of points AGT = {pα,GTg }; g = 1, ..., NGT
apples. In Fig. 6-(b), a628

harvest point cloud with ground truth apple positions is shown. For evaluation,629

we used Recall (Re) and Precision (Pr) metrics, defined in Eq. (23) and (24).630

Here, the True Positives correspond to the cases where a ground truth apple is631

correctly localised. The False Positives are wrong detections returned by the632

algorithm. The False Negatives correspond to the ground truth apple locations633

missed by the algorithm. A detection pαa ∈ A is considered a True Positive if634

there is a ground truth apple pα,GTg ∈ AGT such that ‖pαa − pα,GT ‖ < 10cm635

and there is no other detected apples closer to pα,GT . We pair the indices (a, g)636

to indicate that pαa ∈ A corresponds to pα,GTg ∈ AGT . The number of False637

Positives and False Negatives are then calculated as:638

FP = Napples − TP (29)

639

FN = NGT
apples − TP (30)

where TP is the number of True Positives, Napples is the number of detected640

apples in A and NGT
apples is the number of ground truth apples in AGT .641

The end result of our apple assignment pipeline is the tree identity of each642

detected apple, indicating which tree it belongs to. In order to evaluate assign-643
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(a)

(b)

(c)

Figure 6: Ground truth. (a) Manually labeled point cloud for assessment of trellis wire, tree

trunk and support pole detection, (b) Harvest point cloud with ground truth apple locations,

(c) Point cloud manually segmented to individual trees.

ment performance, we provided the correct tree identities of the ground truth644

apples via manual inspection; i.e. we determined τg ∈ {1, .., Ntrees} for each645

pα,GTg ∈ AGT . We computed the accuracy of the apple assignment (ACC) as646
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the ratio of the number of correctly assigned true positives TPC to the total647

number of true positives TP in the scene:648

ACC =
TPC
TP

(31)

A detection pαa ∈ A is considered to be a correctly assigned true positive649

if its tree identity τa, determined by Eq. (21) and (22), is equal to the tree650

identity τg of its matched ground truth apple pα,GTg ∈ AGT .651

Recall that we assigned each apple pαa ∈ A to the tree identity τi∗ of the652

closest branch point pi∗ in the aligned winter cloud through Eq. (21) and (22).653

In order to decouple the apple assignment errors due to branch deformation be-654

tween winter and summer trees and errors due to our automatic tree separation655

method, we performed the apple assignment procedure on two types of data:656

1. Manually Separated: We manually separated the winter point clouds into657

individual trees and provided the ground truth tree identities τGTi ∈658

{1, ..., NGT
trees} of the trunk and branch points in the winter cloud. We659

used CloudCompare (2.11, GPL software, 2020) for annotation. One ex-660

ample is shown in Fig. 6-(c).661

2. Automatically Separated: We used the tree identities τi ∈ {1, ..., Ntrees} of662

the trunk and branch points in the winter cloud predicted by our automatic663

tree separation procedure.664

3. Results665

We first report the results of the semantic segmentation method, which de-666

tects the trellis wires, tree trunks and support poles. Then, we provide the667

performance of the apple detection method and the assignment procedure of668

apples to individual trees in the scene.669

3.1. Evaluation of detection of trellis wires, tree trunks and support poles670

In Fig. 7, we give visual results of our semantic segmentation method for671

two winter scenes. The visual results for all the seven scenes can be found in672
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(a) (b) (c)

Figure 7: (a) Calibrated point clouds, (b) Manually generated Ground Truth (cyan:trellis

wires, red: tree trunks, black: support poles), (c) Semantic labels obtained by our method for

automatic detection of trellis wires, tree trunks, and support poles

Supplementary Material B. We can observe that all the trees in the scenes of673

the apple orchard, the trees were correctly localised. The number of detected674

tree trunks and the actual number of trees were equal for all seven scenes;675

Ntrees = NGT
trees.676

Table 2 provides quantitative evaluation of our semantic segmentation method.677

In Fig. 8, the results are given as bar graphs. The recall and precision values678

for the trellis wires are satisfactory. All the support poles in the scenes were679

correctly identified and segmented with over 90% success. The recall rate for680

the trunks is over 90% for all but one scene, meaning that most of the trunk681

points are retrieved. The precision rates are satisfactory for our purposes. The682

less than perfect precision is due to the fact that branching points close to the683

tree trunks are also classified as trunks by our method.684

It should be recalled that our aim is not to provide a perfect segmentation,685

but rather 1) to detect and remove the trellis wires to break connectivity between686

adjacent trees, 2) to locate the tree trunks correctly to be able to separate687

individual trees, and 3) to remove the support poles. For the purposes of our688

application, these aims were achieved with this level of automatic point labeling689

of the scene.690
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(a) Trellis wires
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(b) Tree trunks
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(c) Support Poles

Figure 8: Performance of the method for detection of trellis wires, tree trunks and support

poles in terms of Recall (Re), Precision (Pr), F1 score (F1), Intersection over Union (IoU),

and Class Accuracy (CA) (in %).
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Table 2: Performance of the method for detection of trellis wires, tree trunks and support

poles in terms of Recall (Re), Precision (Pr), F1 score (F1), Intersection over Union (IoU),

and Class Accuracy (CA). NP is for non-present.

Trellis wires

% Re % Pr % F1 % IoU % CA

Scene 1 84.98 81.61 83.26 71.32 96.42

Scene 2 88.16 76.01 81.63 68.96 95.19

Scene 3 91.48 73.65 81.61 68.93 95.52

Scene 4 86.48 88.20 87.33 77.51 96.88

Scene 5 75.47 85.21 80.04 66.73 95.64

Scene 6 85.82 77.75 81.59 68.90 96.06

Scene 7 79.24 81.16 80.19 66.93 96.48

Tree trunks

% Re % Pr % F1 % IoU % CA

Scene 1 90.26 77.97 83.67 71.92 92.83

Scene 2 91.49 74.89 82.36 70.01 91.77

Scene 3 92.77 70.03 79.81 66.40 91.31

Scene 4 83.23 71.23 76.76 62.29 90.55

Scene 5 94.25 67.03 78.34 64.40 91.56

Scene 6 94.02 70.39 80.51 67.37 92.78

Scene 7 95.47 69.19 80.24 66.99 93.27

Support poles

% Re % Pr % F1 % IoU % CA

Scene 1 95.50 96.24 95.87 92.07 99.44

Scene 2 NP NP NP NP NP

Scene 3 NP NP NP NP NP

Scene 4 NP NP NP NP NP

Scene 5 91.83 98.74 95.16 90.77 98.65

Scene 6 94.44 99.26 96.79 93.78 98.15

Scene 7 97.94 98.96 98.45 96.94 99.64
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3.2. Evaluation of apple detection and assignment to individual trees691

The precision and recall values obtained with colour-based apple detection692

are given in Table 3 and, also presented in Fig. 9 as a bar graph. Despite693

the simplicity of the detection approach, we achieved over 90.75% recall; i.e.694

most of the apples in the ground truth were retrieved. The false negatives695

occurred since we did not post-process the connected components for resolving696

clusters of apples. The over-detection (precision 65,37%) can be explained by697

the sensitivity of the colour-based algorithm and the lack of shape-based apple698

verification. Fig. 11 (a) and (b) visually illustrate the performance of our apple699

detection method on two sample scenes.700

Table 3: Apple detection performance in terms of Recall (Re) and Precision (Pr).

3D scenes % Re % Pr

Scene 1 74.50 61.29

Scene 2 87.34 62.16

Scene 3 88.54 58.21

Scene 4 90.00 48.64

Scene 5 90.62 58.58

Scene 6 77.41 65.62

Scene 7 80.85 66.66
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Figure 9: Apple detection performance in terms of Recall (Re) and Precision (Pr) (in %).
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Figure 10: Accuracy of assigning apples to the correct apple trees in 3D models.

Our main task is to correctly assign the detected apples to the individual701

trees they belong to. As we have stated earlier, we performed the assignment702

procedure to two types of data: 1) The winter point clouds which are manually703

segmented to individual trees, and 2) The winter point clouds where the trees704

are segmented using our automatic tree separation method. Fig. 10 shows705

the assignment accuracy (ACC) on both type of data. The performance is706

high for both cases (100% on four scenes). With automatic tree separation, a707

performance drop of less than 3% is observed, demonstrating that our automatic708

pipeline was able to detach individual trees and correctly assign the detected709

apples.710

Fig. 11 (c) and (d) show the registration result of winter and harvest point711

clouds for two sample scenes. Each separated tree in the winter clouds is shown712

in a different colour. In Fig. 11 (e) and (f), the detected apples are shown with713

the colour of their corresponding tree labels.714
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Figure 11: (a), (b) True positives, false negatives, and false positives obtained with colour-

based apple detection method for two sample scenes. (c), (d) Registration of harvest and

winter clouds for the two scenes. Each separated tree is shown with a different colour. (e),

(f) Assignment of true positives to their corresponding trees for the two scenes.
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3.3. Processing time715

The average processing times, together with the standard deviations, for716

the steps of the pipeline are provided in Table 4. Given a 3D point cloud717

reconstructed through SFM, the total time for processing the point cloud is718

approximately 3 minutes. We also give the characteristics of the machine we719

used to process the data in Table 5.720

Table 4: Average processing times of the steps of the pipeline in seconds.

Step Processing time

Calibration and ROI extraction 16.53 ± 2.02 s

Detection of tree trunks, trellis wires

and support poles

50.20 ± 2.42 s

Tree separation 18.41 ± 2.56 s

Apple detection and assignment 118.40 ± 3.78 s

Total 203.54 ± 10.78s

Table 5: Machine characteristics.

RAM Processor GPU membership

64 GB
Intel® Xeon® Silver 4114

CPU @2.20 GHz and 2.19 GHz (2 processors)
Quadro P4000 GPU of 8 GB

4. Discussion721

The full pipeline presented and tested in this manuscript achieves great722

performance for assigning apples to individual trees in dense orchards. The723

main strategy is aligning summer and winter point clouds. The sub-steps of the724

pipeline, for which we chose standard approaches for implementation, are open725

to improvement for further performance increase.726

Images were acquired manually with a standard camera. This is a rather727

time consuming process for producing hundreds of images per tree. The speed728
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of acquisition can be increased and the amount of images can be optimised by729

a drone with a camera or a land robot with multiple cameras and automatic730

navigation via GPS localisation (Mogili & Deepak, 2018). The object of refer-731

ence for calibration and registration of the summer and winter point cloud was732

chosen to be the X-Rite ColorChecker, since it is a standard tool in the com-733

puter vision community. In principle, any reference object with a distinctive734

geometric pattern could serve the same purpose.735

The deformation we observed with our data (young trees of four years old)736

becomes even more pronounced for older trees. Registration of winter and sum-737

mer calibrated point clouds could be performed efficiently with non-rigid reg-738

istration while dealing with older trees, where the deformation during summer739

could be larger due to increased fruit load. Non-rigid registration is widely used740

in medical imaging when data from two different modalities, such as MRI and741

X-Ray images, should be registered. Non-rigid deformation between the image742

sets are commonly observed due to movement of the patient or artifacts of the743

imaging systems. The literature on non-rigid registration of medical images744

can thus be revisited for our plant imaging problem (Holden, 2007). To avoid745

having a too large exploration space for this non-rigid registration, one could746

also use botanical and physical knowledge on the development of trees. The747

size and weight of the fruits is important because it can cause arching of the748

branches, therefore, a deformation of the architecture. Another factor that al-749

ters the architecture is the secondary growth of the branches. Expert knowledge750

on such processes can be used to constrain the deformation space and fix the751

hyperparameters of the non-rigid registration algorithms.752

We based the evaluation of the registration of winter and harvest point clouds753

on the rate of correct assignment of the apples to their corresponding trees. A754

thorough evaluation of the matching error is possible through computing dis-755

tances between corresponding keypoints in the two point clouds. However, such756

a procedure necessitates manually establishing ground truth correspondences757

between well-located keypoints. It will be a worthy endeavor to measure the758

registration error and decouple errors due to changing structures in the trees759
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and errors due to the limitations of the matching method. The decoupling can760

be done by locating keypoints both on the fixed structures (e.g. on the trellis761

structure) and on the trees (e.g. branching locations).762

Another issue is the applicability of our method to other orchards and other763

fruit trees. The registration method we proposed relies on the initial alignment764

of two point clouds, each of which are calibrated separately. The calibration765

procedure operates on three requirements: 1) There should be a reference pat-766

tern (in our case, the ColorChecker) in place to recover the scale and to establish767

upwards and leftwards directions; 2) The trees should be organised in a row to768

establish the -y- direction; and 3) The relative position of a designated tree to769

the reference pattern should be known to locate the origin. As long as these770

requirements are met, our calibration procedure will be applicable to fruit or-771

chards organised as rows.772

The parameters of our method were fixed for all the scenes we processed773

in our experiments. We avoided fine tuning the parameters required by some774

standard procedures such as voxelization and Hough line extraction via trusting775

the added robustness of our further processing steps. For example, for the grid776

size for voxelization, the choices of both 5mm and 10mm work effectively for777

extraction of a representative skeleton, although the latter gives a coarser skele-778

ton. The grid size should not be too small compared to the point resolution779

or to cause computational overload; and it should not be too large to cause780

merging unconnected structures into one voxel. The dependency on parameters781

in Hough transform on extracting candidate lines is controlled by the line merg-782

ing step to extract the expected four trellis lines. These parameters will not783

require adjustment for application to apple orchards with a similar trellis-wire784

organisation.785

For other parameters, such as the inlier distance to detect the trellis-plane786

(1cm – to cover the thickness of a trellis wire), trunk candidate search distance787

(5cm – to cover the thickness of a trunk), and the minimum distance between788

successive trellis wires (30cm), we used the actual metric quantities of these789

structures, again avoiding fine-tuning. For application to other orchards, these790
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parameters can be adjusted according to geometric priors such as trellis-wire791

thickness, distance between trellis-wires and expected trunk thickness.792

The point clouds used in our experiments spanned four to five trees re-793

constructed using manually acquired images. The extension of the method to794

process the whole tree row in an automatic manner is possible through instal-795

lation of multiple low-cost reference patterns along the row. Such patterns can796

also be installed per tree, together with a QR code as a tree identifier. Using797

multiple patterns will help reduce the error in the directions of the fixed frame798

through multiple estimations. They can also be used to reset the reconstruc-799

tion process of SFM at predetermined locations to avoid the accumulative drift800

through providing multiple point clouds covering overlapping regions along the801

tree row. These point clouds can be processed separately, and if necessary, can802

be calibrated and registered to obtain the entire row model. Our future work803

includes installation of one board with printed ColorChecker structure and a QR804

code at each tree and the analysis of the performance of suggested solutions.805

In this work, we used connectivity analysis and simple heuristics to discon-806

nect touching trees. Alternatively, the identification of each tree unit can be807

achieved using the architectural criteria specific to each tree. They are linked808

to the basic architectural models defined for each taxon (Hallé, 2004). They are809

supplemented by the growth conditions specific to each tree and are assessed by810

the diameter, length, age and branching angles of the branches but also by the811

location of inflorescences and fruits.812

The apple detection algorithm chosen in this work was extremely simple and813

it will be necessary to revisit the huge literature on apple detection to improve814

the performance, specially on groups of apples or to reduce the amount of false815

positives. State-of-the-art methods employing deep learning architectures, such816

as (Roy et al., 2019; Häni et al., 2018, 2020) have been highly successful. It817

is possible, through the projection parameters estimated by the multi-view re-818

construction process, to combine image-based fruit detection methods with 3D819

point reconstruction of the scene. Indeed, Dong et al. (2020) proposed a method820

where apple detection is performed on 2D images and detected apples in images821
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are used to segment the apples in the 3D reconstruction. A similar method that822

establishes correspondences between 3D points and the pixels in 2D images and823

classifies each 3D point as apple/non-apple can be integrated into our scheme.824

One of the common issues in image-based fruit detection methods is the825

occlusion of fruits caused by leaves and other fruits (Gongal et al., 2015). Imag-826

ing trees from various viewpoints greatly increases the possibility that occluded827

fruits will be visible in more than one image. However, association of the same828

fruits occurring in different images is necessary for 2D image-based methods to829

avoid double-counting. The 3D reconstruction pipeline we used in this work830

greatly alleviates the occlusion problem by utilising multi-view reconstruction831

and inherently registering multiple sightings of a single fruit. A further research832

question can be formulated as the systematic investigation of the severity of833

occlusion with employing the ground truth count of harvested apples and the834

analysis of the impact of the imaging systems and acquisition protocols on cap-835

turing heavily occluded fruits.836

Our pipeline enables the assignment of apples to the trees that bear them.837

This makes it possible to assess the production and the quality of the fruiting838

body in variety testing applications and also in the agronomic management of839

orchards. We know that fruiting is the expression of primary and secondary840

growth followed by a flowering process with the formation of inflorescences and841

flowers. One, two or three years old axes that are part of the overall architec-842

ture of the tree carry these inflorescences. In this biological process, Laury et843

al. (Lauri et al., 1996, 2010) showed the importance of the age of branches,844

their position in the architecture and secondary growth on the fruit load of845

the tree. Our pipeline opens the way to acquire data at different developmental846

stages, analyse the architecture of individual trees, track primary and secondary847

growth, determine their axes of different ages. The location of the fruits and the848

identification of the characteristics of the axes that carry them, supplemented849

by a temporal monitoring of the architectural development could make it pos-850

sible to obtain information to manage and improve the agronomic management851

of fruit trees.852
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5. Conclusion853

In this article, we presented, for the first time to the best of our knowledge,854

a pipeline to assign detected apples to their corresponding apple trees in 3D855

colour point clouds. The pipeline was able to detect and filter out trellis wires856

and support poles. It successfully located trunk locations in the scene and857

retrieved trunk points with more than 90% recall rate. The detected apples858

were assigned to their corresponding trees with more than 95% accuracy.859

This first proof of feasibility has shown the possibility and benefit of reg-860

istration of 3D models of orchard scenes obtained in two different seasons. A861

direction for further development could be more frequent acquisition and re-862

construction during the year, for instance during flowering period to link flower863

density to apple yield on individual trees. As another application, the configura-864

tion of the fruits in the harvest period can be used to guide the pruning process865

in early spring. These perspectives are now open with the pipeline proposed in866

this study.867
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